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Abstract 
For the first time to our knowledge the computation of the expansion coefficients of the principal modes of 
multimode fibers is reported. 

 

Introduction 
Multimode fibers (MMFs) traditionally considered for 
many years as a transmission medium with limited 
bandwidth performance as compared to singlemode 
fibers have recently demonstrated their feasibility to 
support broadband transmission by means of several 
techniques, including subcarrier multiplexing (SCM) 
[1], mode group multiplexing (MGM) [2], optical 
frequency multiplication [3], and, orthogonal 
frequency division multiplexing (OFDM) [4]. 

To fully understand the performance of MMF links it is 
essential to analyze the effect of modal dispersion 
and its interplay with mode coupling. Although this is 
traditionally carried out using coupled mode theory 
the resulting equations do not lead to an easy 
interpretation of the results. Very recently however it 
has been shown by Fan and Kahn [5] that multimode 
fibers support principal modes (PMs) which play a 
similar role than that of the principal states of 
polarization (PSPs) in a singlemode fiber [6]. PMs do 
not suffer from modal dispersion to first order of 
frequency variation and form orthogonal bases both 
at the input and the output of the fiber. They 
constitute therefore an ideal tool for deriving a more 
amenable formalism for the analysis of propagation 
through MMFs. 

There are however differences between PSPs and 
PMs. One of the most important is that, both PMs at 
the fiber input and output depend on the fiber link 
length z and this is also true as far as the expansion 
coefficients (those required to express the input 
electric field to the fiber in terms of the input PM base) 
are concerned.  Without the knowledge of the later, 
the technique based on the expansion of the signal in 
terms of the input PM is of limited application. To the 
best of our knowledge this has not been reported so 
far. 

In this paper we provide, for the first time to our 
knowledge, a very simple derivation of such 
coefficients which is based on the derivation of the 
MMF link transfer function using the PM model and 
then comparing the result with that previously 
obtained by us [7] using the coupled mode theory. 
The results confirm that the expansion coefficients 
depend on the MMF link length as expected. These 
results open new perspectives for the use of the PM 

model to the analysis of both digital and analog MMF 
systems limited by intermodal dispersion. 

Principal Modes Coefficient derivation 
To this purpose we express the input field to the 
multimode fiber in terms of its input principal modes 

� 

ai(z){ } , i=1,2….N: 
 

� 

Ein (t) = u(t) ci(z) ai(z)
i=1

N

∑  (1) 

where 

� 

ci(z)  is the (z-dependent) coefficient 
corresponding to the principal mode 

� 

ai(z)  and 

� 

u(t) 
is the information bearing time domain signal which is 
given by: 
 

� 

u(t) = S(t) f (t)  (2) 
 
with 

� 

S(t)  representing the modulating signal and 

� 

f (t) the continuous-wave optical carrier. The output 
electrical field from the multimode fiber link will be 
given by:  
 

� 

Eout (t) = ci(z) u(t) * hi(t)[ ] bi(z)
i=1

N

∑   
(3) 

 
where 

� 

hi(t) represents the MMF impulse response 
corresponding to the principal mode “i” and 

� 

bi(z){ } 
are the output principal modes of the multimode fiber. 
We consider the case where the impulse response for 
the principal mode “i” is given by: 
 

� 

hi(t) =
1

2πjβ2z
e
−
t−τ i( )2
2 jβ 2z  

 
(4) 

 
In other words, each principal mode has a different 
group delay 

� 

τ
i
and also experiences the effect of the 

fiber first order chromatic dispersion parameter 

� 

β2. 
To compute the MMF transfer function we consider 
an analog single tone RF modulating signal: 
       

� 

S(t) = P 1+
mo

8
(1+ jαc )e

jΩt +
mo

8
(1+ jαc )e

− jΩt⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
  

(5) 
 
where 

� 

P  is the RF power, 

� 

mo << 1 the modulation 
index, 

� 

αc the source chirp parameter and 

� 

Ω the 
frequency of the modulating RF tone. If we assume 
as in  [7] that the source autocorrelation function is 
given by a Gaussian function: 
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� 

R(t'−t' ') = e
−
t '−t ''( )2

2σ c
2

 
 
(6) 

 
where: σc ≈  1/(√ 2W ) is the source RMS coherence 
time and W is the source RMS linewidth. From (1)-(6) 
one gets the following transfer function for the MMF 
link: 
 

� 

H(Ω) = 1+ αc
2e

−
1
2

Ωβ 2z
σ c

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
2

cos Ω2β2z
2

− atan αc( )⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ . ckεk

b 2e jΩτ k

k=1

N

∑
  

(7) 
 
If we compare (7) with the transfer function obtained 
in [7] using the coupled mode theory for mode groups 
k=1,2,…N we finally deduce the expression for the 
expansion coefficients as: 
 

� 

ckεk
b 2 = 2k(Ckk + Gkk )   

(8) 
 
where Ckk is the light injection coefficient [see Eq. (5) 
of [7] for definition] and Gkk is the modal-coupling 
coefficient defined for power transitions only between 
adjacent mode groups. Both have been defined in 
terms of the relevant MM fiber parameters in [7]. 

Results 
 
Equation (8) shows that the principal mode expansion 
coefficients depend on both the light injection 
condition at the input end of the MMF and the 
coupling between the mode groups propagated 
through the fiber. The evaluation of the intermodal 
coupling influence is shown in Fig.1, where the 
dependence of the coefficients 

� 

ckεk
b 2   (normalized to 

their maximum value) with the normalized distance 
z/D for different values of the variance of the core 
deformation function f(z) have been plotted for a silica 
62.5-µm core-diameter multimode fiber with a 
parabolic core grading, i.e. α = 2. D represents the 
mode coupling correlation length. It has been 
assumed a uniform distribution of the light injection 
coefficients Ckk and an optical source emitting at 1310 
nm. As it was expected from (8) and the results of [7] 
the coefficients 

� 

ckεk
b 2behave as an inverse function of 

the distance, converging more rapidly to a constant 
value for decreasing values of the coupling length 
variance σ2. The influence of the offset launch 
technique is evaluated in Fig. 2 for a 500 m MMF link 
with the same characteristics as the previously 
simulated one. The variance of the core deformation 
function has been fixed to σ2 = 510-3 m2 and the 
correlation length to D = 1e-3 m. Fig. 2 shows the 
normalized expansion  coefficients  versus the 
principal mode number “k” for different Gaussian 
distributions of the Ckk coefficients centered at k = 1, 
N/4, N/2, 3N/4 and N, (where in this case we obtain N 
= 12), compared with the uniform one. Firstly, we 
observe the quadratic dependence with the principal 
mode number power to its lower-order adjacent mode 
group. Secondly, it is shown that the principal mode 
number dependence follows the behavior of the mode 
injection distribution since the maximum expansion 
coefficients values (near 0 dB) are related to the 
applied offset values. 

 

Figure 1: . Influence of the normalized distance z/D 
on the expansion coefficients for uniform launch 

distribution. 
The influence of the graded-index exponent α and the 
optical emission wavelength λ on the expansion 
coefficients were also analyzed, concluding that their 
effect was almost negligible. 

 

Figure 2: Influence of the offset launch technique on 
the expansion coefficients in a 500 m link. 
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