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Abstract A reflectometric technique able to characterize almost completely fiber birefringence is experimentally
validated. Linear and circular birefringence can be measured, although the latter appears as a rotation of the
former.

Polarization sensitive optical time domain reflectom-
etry (P-OTDR) has been proposed about 25 years
ago as a tool to measure the birefringence in single-
mode optical fibers (see [1] and references therein).
Since then, many papers have been devoted to the
analysis of the gathered data. In fact, the P-OTDR
basically provides only the evolution of the state of
polarization (SOP) of the backscattered field; there-
fore, retrieving information about the birefringence is
a matter of data modelling and analysis.
Actually, the Mueller matrix F (z) representing for-
ward propagation in a fiber obeys the equation
dF /dz = β̄(z) × F (z), where the birefringence vec-
tor β̄ = (β1, β2, β3)

T is the quantity one would like
to measure. It is worthwhile expressing β̄(z) as
β̄L(z) + β̄3(z), where β̄L = βL(cos 2θ, sin 2θ, 0)T

is the linear component and β̄3 = (0, 0, β3)
T is

the circular one. Similarly, the round-trip Mueller
matrix B(z) representing propagation up to a point
z, backscattering and backward propagation to the
fiber input reads B(z) = MF T (z)MF (z), where
M = diag(1, 1, −1) [1].
A P-OTDR can basically measure B(z); the issue
is then to retrieve information about β̄(z) from this
quantity. However, whether B(z) contains the com-
plete information about β̄(z) or not has not been com-
pletely clarified yet. In this paper the intrinsic limits of
any P-OTDR measurement will be assessed and a
technique to extract as much information as possible
from B(z) will be described.
The first thing that has to be noted is that the
backscattered SOP, ŝB(z) = B(z)ŝ0, is invariant un-
der any rotation around the longitudinal axis of the
fiber. In particular, let R = {x̂′, ŷ′, ẑ} be a mov-
ing reference frame obtained by rotating the labo-
ratory frame around the fiber axis ẑ, by an angle
Θ(z) = −

R z

0
β3(t)dt/2. In the Stokes space this

transformation is described by the matrix R3[2Θ(z)];
therefore, with respect to R, the Mueller matrix rep-
resenting the forward propagation reads F R(z) =

R3(z)F (z). Similarly, the round-trip is described by
BR(z) = MF T

R(z)MF R(z); nonetheless, note that
R3 and M commute, thus BR(z) = B(z).
To gain more physical insight on this result, note
that with respect to R the birefringence vector reads

β̄R(z) = R3[2Θ(z)]β̄L(z). This means that the SOP
ŝB(z) backscattered by a fiber with generic birefrin-
gence β̄(z) can be thought as being backscattered
by a fiber with birefringence equal to β̄R(z). In other
words, a reflectometric measurement is intrinsically
unable to distinguish between circular birefringence
and rotation of the linear birefringence. This is a fun-
damental limit that cannot be avoided, unless some
other measurement diversity (such as optical fre-
quency, for example) is exploited.
Once the limits of reflectometric techniques have
been assessed, the point is how to extract all the
available information. Before facing this problem, it
is worthwhile including in the analysis also the polar-
ization effects of the patch-cords unavoidably present
in any P-OTDR set-up. Let F 1,2 represent the optical
path from the P-OTDR laser source to the fiber input
and let F 2,3 represent the path from the fiber input
to the P-OTDR receiver. Then, the measured round-
trip matrix reads BM (z) = F 2,3B(z)F 1,2 and is gov-
erned by the equation dBM/dz = β̄B(z) × BM (z),
where the round-trip birefringence vector β̄B(z) can
be effectively calculated from the measured matrix
BM (z) [1]. According to the argumentation given
above, there is no lost of generality in assuming
that B(z) represents a fiber with birefringence β̄R(z);
therefore, β̄B(z) = 2F 2,3MF T

R(z)β̄R(z).
Consider now the matrix Q(z) = F 2,3MF T

R(z). Re-
calling that dF R/dz = β̄R × F R, the following result
can be proved:

dQ

dz
= (F 2,3MF T

Rβ̄R)×Q =
1

2
β̄B ×Q . (1)

Note also that β̄R(z) = QT (z)β̄B(z)/2; so it seems
that β̄R(z) might be calculated upon integrating (1).
Nonetheless, in order to get exactly Q(z), (1) should
be integrated with initial condition Q(z0), z0 begin
the point where the integration is started. However,
Q(z0) is unknown and cannot be easily measured.
To overcome this impasse, let QI(z) be the solution
of (1) with initial condition QI(z0) = I, so that Q(z) =

QI(z)Q(z0). This allows to calculate the vector

v̄(z) =
1

2
QT

I (z)β̄B(z) = Q(z0)β̄R(z) . (2)

To get rid of the unknown rotation Q(z0) note that
β̄R(z) is by definition linear; therefore, it lays on a

P.1.23ECOC 2008, 21-25 September 2008, Brussels, Belgium

Vol. 5 - 45978-1-4244-2229-6/08/$25.00 ©2008 IEEE



−0.7

0

0.7
v R

,1
  [

ra
d/

m
]

−0.7

0

0.7

v R
,2
  [

ra
d/

m
]

0 1 2 3 4 5
−0.7

0

0.7

z   [km]

v R
,3
  [

ra
d/

m
]

Figure 1. Components of v̄R(z) as a function of z.

plane and so does v̄(z). Let n̂ be a unit vector or-
thogonal to the plane where v̄(z) lays and let T be a
rotation that maps n̂ on ŝ3. Then, the following final
result is achieved:

v̄R(z) = T v̄(z) = ±R3(ξ)β̄R(z) , (3)

where ξ is an unknown constant angle which is
due (along with the sign uncertainty) to the non-
uniqueness of the rotation T .
To summarize, the proposed measurement tech-
nique goes through the following steps:
1) the round-trip birefringence vector β̄B(z) is calcu-
lated from the measured evolution of BM (z) [1];
2) the matrix QI(z) is calculated integrating (1) from
an arbitrary point z0, with initial condition QI(z0) = I;
3) the vector v̄(z) is calculated from (2);
4) the unit vector n̂ orthogonal to the plane of v̄(z) is
determined (this can be done, for example, by mini-
mizing |n̂ · v̄|);
5) one of the possible rotations mapping n̂ on ŝ3 is
determined and, finally, v̄R(z) is calculated from (3).
The vector v̄R(z) is linearly polarized and its modu-
lus is equal to the modulus of the linear component
of the real birefringence vector β̄(z); furthermore, it is
rotated by the angle φ(z) = ±[ξ+θ(z)+Θ(z)], where
ξ is unknown, θ(z) is the intrinsic rotation of the linear
part of β̄(z) and Θ(z) is related to the circular birefrin-
gence, if present. The sign uncertainty prevents the
determination of the absolute sense of rotation; yet,
the sense variations are correctly tracked.
The proposed technique has been experimentally
tested on some fibers (all wounded on shipping bob-
bin) which, according to previous measurements [2],
were suspected of being twisted at constant rate due
to bobbin rewinding. The twist causes a rotation of
the linear birefringence by the angle τ(z) = 2πτ0z

(τ0 being the twist rate) and induces a circular bire-
fringence equal to gτ ′

z(z), with g ' 0.14 [3]. This
should appear in v̄R(z) as a rotation by an angle
(2 − g)τ(z). The aim of the experiment is to deter-
mine if v̄R(z) actually has such a deterministic rota-
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Figure 2. φ(z) for three different fibers: (a) twisted
G.652, (b) twisted G.655 and (c) untwisted G.655.

tion or not. Measurements have been performed with
the P-OTDR described in [1].
As a first example, fig. 1 shows the three components
of v̄R(z) as a function of z, measured on a 5 km long
section of G.652 fiber. The third component of v̄R is
not exactly equal to zero because of the measure-
ment noise. Yet, it is about one order of magnitude
lower that the other two components, confirming the
reliability of the theoretical model given above.
Fig. 2 shows the angles φ(z) by which the linear part
of v̄R(z) is rotated; each curve corresponds to a dif-
ferent fiber. In particular, curve (a) corresponds to
a G.652 fiber; clearly, φ(z) grows linearly with z at
a rate of about 0.75 rad/m, corresponding to a twist
rate of τ0 ' 0.064 rad/m. This values agrees with
the rate of 0.069 rad/m estimated with the technique
presented in [2]. The random intrinsic rotation θ(z)

of the birefringence are visible on a smaller scale
in the inset of fig. 2. Curve (b) presents similar re-
sults obtained on a different fiber (G.655); in this case
τ0 ' 0.043 rad/m. Finally, curve (c) refers to a G.655
fiber which does not show sign of twist: indeed, in
this case φ(z) does not have any linear growth.
In conclusion, a novel reflectometric technique has
been presented that can correctly track modulus and
orientation of the linear birefringence vector. If the
fiber has also circular birefringence, this appears as a
further contribution to the birefringence rotation. The
technique may be potentially extended to perform a
point-wise characterization of the spin profile in spun
fibers, provided that the P-OTDR has sufficient spa-
tial resolution.
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