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Abstract

After presenting evidence that the electrical actiatyarded from the brain surface can reflect
metastable state transitions of neuronal configuratibtieeamesoscopic level, | will suggest that their
patterns may correspond to the distinctive spatio-terhpotiity in the Dynamic Core (DC) and the
Global Neuronal Workspace (GNW), respectively, in tloelets of the Edelman group on the one hand,
and of Dehaene-Changeux, on the other. In both cémesecursively reentrant activity flow in intra-
cortical and cortical-subcortical neuron loops playsssential and distinct role. Reasons will be given
for viewing the temporal characteristics of this actifibyv as signature of Self-Organized Criticality
(SOC), notably in reference to the dynamics of nealramalanches. This point of view enables the use
of statistical Physics approaches for exploring phasesitions, scaling and universality properties of
DC and GNW, with relevance to the macroscopic eledtactivity in EEG and EMG.
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1. Introduction

Neuroscience is being practiced in many different forntsaa many different organizational
levels. Which of these levels and associated concejpauaéworks is most informative and
commensurate to the intrinsic style of brain functioansempirical question and subject to pragmatic
validation. It has become customary to speak of Madfeso- and Micro- levels, each defined by the
respective method of data acquisition, ranging from braiiacgirecordings of EEG and EMG, to
activity in neuronal assemblies of an extent indittker of magnitude of 1 cm in space, and 100 msec
in time, to single neuron activity. In this essay &mphasis is on the dynamical interdependencies
between scales and levels of analysis. This is pretica the view that dynamics at any scale will
affect and constrain the activity across scales ar@d®f observation, in the spirit of ‘Constrained
Multiscale Systems’ of Breakspear and Stam (2005). Thesiigations which will be discussed in the
following have generated several dynamical hypothesbsaof processes which form a kind of “family
resemblance”, though also differing in some important asew —where applicable- in their respective
computational models (for a survey, see Werner, 2006)cl&aty of exposition, | will at first trace the
various kinds of observations and conceptual referencespat the different levels separately in order
to, subsequently, situate their interrelations at trexsection of Nonlinear Dynamics and statistical



Physics. Some aspects of related issues have recerttigdussed by Le van Quyen (2003), Chialvo
(2006) and Cosmelli at al. (2006).

2. Data and M odels
2.1 The macroscopic scale

As standard bearer of this scakhe Electroencephalograrhas proven to be a seemingly
inexhaustible source of data interpretations. Like tlaglerof Delphi, it answers in many voices to the
questions it is asked by diverse methods of analysis aral idtrpretation. However, scale-free
dynamics (Freeman, 2005) and phase transitions (FreantaHolmes, 2005) situate cortical electrical
activity as this level in the domain of non-linear dynesnas do numerous other observations (Freeman,
2000, 2003; Nunez, 1995, 2000; Basar, 2004). Linkenkaer-Hansen (2001) unequistedllished that
the amplitude fluctuations in the 10-20 Hz frequency range pber law scaling behavior in humans.
Quantitative fMRI analysis of functional connectivitfEguiluz et al, 2005, Chialvo, 2004) and EEG
analysis of functional connectivity (Fingelkurts & Fingedts, 2004) supply additional signatures of
brain-style non-linear dynamics.

Different methods of data analysis revealed charatitediscontinuities in the EEG record which,
in the view of Fingelkurts and Fingelkurts (2006), are alternagivels of description, complementary
to continuous data records. In a series of studies, thekers identified rapid transitions occurring in
the amplitude of continuous EEG activity which mark therataries between quasi-stationary segments
of activity (Fingelkurts and Fingelkurts, 2001, 2004, 2005; Kaplan, 1987). It is assumed that each
homogenous segment within a particular EEG frequency lancesponds to a temporary stable
microstate in the brain’s activity, i.e. an ‘operatiom’'the terminology of these authors. The transition
from one segment to another is thought to reflect thenemt of switching from one neuronal network to
another. Moreover, the synchronization of these safgnbetween different EEG channels would
indicate the synchronization of spatially separatenbogierations: this is the ‘operational synchrony’
phenomenon of Fingelkurst & Fingelkurts, 2001). This processtseaulransient metastable states of
EEG activity which is sustained by a form of ‘operatiomadules’, encompassing a range of distributed
cortical areas.

Extensive studies by Lehmann and associates (1984, 1998, 2006) likewise revealed a
segmentation of global brain activity into discretéenporal units: such ‘microstates’ of discontinuous
brain electrical activity occur as chunks of up to 150 nth@@tion (Koenig at el., 2002), and are
detectable as quasi-stable fields, recorded at the scalpns€ious, inattentive subjects (Michel et al.,
1999, 2001). During such episodes, the recorded electric fiettoally conceived as landscape)
remains stable, but is punctuated by abrupt changes to new cotidigsird.ehmann and associates
conceive of these stable episodes as “atoms of thoulbtikpu and Lehman, 1987), i.e. particular
steps in mental information processing, perhaps compatabtbe “mental objects” postulated by
Changeux 1983).

Conjectures and implications regarding the dynanficBscontinuous electric activity episodes in
the scalp EEG will be developed in Section 3, followingdéscription in the next section of relevant
aspects of activity patterns in neural models whichlamayerceptual-cognitive functions.



2.2 Models of perceptual-cognitive brain functions
2.2.1 TheDynamic Core Hypothesis (DCH)

Plasticity of synapses and neuron connections affeedisal link between the functional
organization of neuron assemblies and the world, adaptiveda and disuse. The Theory of Neuronal
Group Selection (TNGS) is an application of this pplei(Changeux, 1983; Edelman, 1987,1989,
1993; Tononi & Edelman, 2001]. A primary repertoire of anatahuonnections established during
development responds to experiential exposure to the envinbiwitl differential amplification of
synaptic populations. The second central notion is r@entnapping: this is a dynamic process that is
inherently parallel and distributed. It consists of ongaignaling between separate neuronal groups in
a reciprocal and recursive fashion over cortico-cortmatico-thalamic and thalamo-cortical radiations.
Neuronal group selection and reentrant mapping, togetlgecpasidered the prerequisite for
establishing new and sustaining existing statistical sigmegledions between groups of neurons.
Neuronal groups thereby come to reflect spatiotemporal grepef signals arising in the environment,
and serviceable for perceptual categorization.

Generalization of this principle to cross-modal pptaal categorization is accomplished by
dynamic structures that encompass multiple reentiasdl maps (sensory and motor) and interaction
with basal ganglia, brain stem and cerebellum; therlaor perception-action coupling. Within such
global mappings, long-term changes in synaptic streiagthr the formation of neuron groups with
correlated activity as basis for memory. Memory wbgll mappings is procedural, and requires
dynamical re-assembly by rehearsal. Note that eaclssembly of a global memory may be constituted
by different neuron populations: a consequence of the deggn@edundancy) of neuronal groups.

Reentry is instrumental for generating oscillationthe simulated models: Sporns et al. (1991)
and Tononi et al. (1992)] established in their respective Indke linking of stimulus features by
reentrant circuitry, within and between segregated codreas. It depends in these studies on the
occurrence of rapid changes in efficacy of reenttantections, and is an aspect of segregation and
integration of elementary features into objects anétdacind through temporal correlation and phase
relationships among neuronal groups. In a very large computeéel of spiking neurons, synchronous
oscillations emerged spontaneously, even though the netwaskaot designed to produce any form of
specific dynamics (Lumer et al. 1997)

Conscious experience is in this theory associatedgiothal properties of large but distinct sets of
distributed neuronal groups: the Dynamic Core (DC).oiftsest of distributed clusters of neurons that
are intensely interacting with each other (i.e.: irhégpl) and, at the same time, are quite distinct and
differentiated from the rest of the system. Funlsegregation is epitomized by stimulus feature
detectors in cortical receiving areas; functionalgna#ion is expressed in temporal correlations and
synchrony in the large-scale, reciprocally interconrtectetical network and thalamic regions. On
activation, the neuron clusters of DC achieve higégrdation within hundreds of msec through reentrant
interactions in the thalamo-cortical system. DC iagsviewed as a process, creating transiently the
clusters of neurons which reflect rapidly shifting longgmifunctional connectivity among distributed
neuron groups, not constrained by anatomical proximity. Suggesincerning the inter-level



dynamics of the distinct spatial and temporal propedig¢se Dynamic Core will be the topic of Section
2.2.3, following the review of comparable features ofGRN.

2.2.2 The Global Neuronal Workspace Model

The Global Neuronal Workspace hypothesis was describedait lofe Changeux & Dehaene
(1989) and Deahaene & Naccache (2001), and most recently sizeuriay Dehaene & Changeux
(2004). The hypothesis postulates two computational spacestiott patterns of connectivity: 1) a
collection of subcortical, automatic processorshesgpecialized for a particular signal input which is
provided via encapsulated local and medium-length connsciami 2) a global neuronal workspace
with the capacity for wide-spread, long-range connectiongeentrant signal flow between it and the
specialized processors. The workspace is a dynamic comg@pBspace neurons are not sharply
delineated anatomically, but distributed among distantcégsm areas (Dehaene & Changeux, 1997,
2005; Deahaene et al. 1998). The decisive event is thetawotioh GNW (see Section 3.3). Between
episodes of activation, the neurons of GNW are itate ©f permanent spontaneous activity,
comparable to the intrinsic activity in awake human bratrgst (Reichle, 2006). In the model, this
activity is sustained by ascending neuromodulatory input. nidhsufficient intensity, the network will
display gamma oscillations of thalamo-cortical arighd possibly sudden surges of activation which
may be identified with ‘vigilance’ (Llinas et al, 1998hety enhance the activation of GNW by sensory
stimuli. Activation of GNW also occurs with intensensory stimulation in the absence of facilitation
The GNW hypothesis postulates that global activatioan GNW is associated with reportability of a
subjective experience (Deahaene & Changeux, 2004).

The basic design of GNW was implemented in seveeal&l Network models, with
McCulloch Pitts as computational elements, and provesfaetory for emulating aspects of human
performance in a variety of (effortful) psycholodit@havioral tasks (Deahaene et al. 1987,1998). To
convey the operational flavor of the theory, | wiélscribe here briefly the most recent model by
Dehaene et al. (2003) of a network of single compartmewte! neurons with explicitly specified ionic
conductances and synaptic currents for simulating feabfiteée cortical inter- and intra-columnar
connectivity and as cortico-cortical projections. Tagét of the model was a modified attentional blink
paradigm for which conditions for reportability of peese or absence of stimuli were determined in
human trials: subjects saw serial visual presentatibaistractors, interspersed with two targets T1 and
T2; the task was to rate T2 visibility and then to repdridentity. Typically, reportability of T2 drops
at for several hundred msec after T1 presentation.adibguacy of this model compared favourable
with human performance in the same task situation.

For the simulation of the human task, the modelpl@ased in a regime of spontaneous
thalamo-cortical oscillations. The attentional bliekt was simulated by stimulating two groups of
thalamic neurons, one coding for T1, the other for TBe ifidex of model performance was the degree
and extent of activity across the cortico-thalamicdrighy. As to be expected, network activation
evoked by T1 stimulation set a long-lasting dynamic bssate in motion. But the activation elicited by
T2 stimulation dependent tightly on its timing: T1 eéditactivity prevented T2 activation from
propagating to higher cortical levels and abolished paheofdp-down amplification in reentrant
circuitry, with the global network seemingly actiag a bottleneck (Sigman and Deahaene, 2005).
Selective lesions of the long distance connectiotsammodel corrupt the model performance.



2.2.3 Dynamicsin Dynamic Core and the Global Neuronal Workspace.

The focus of this section is the nature of the reehtaetivity for the transient formation of the
neural functional complex described as “Reentrant Dyn&ure” (DC) on the one hand, and “Global
Neural Workspace” (GNW) on the other. Although differingnany respects, both models attribute an
essential role to the reentrant neuronal activityiricugts connecting cortical with other cortical as wel
as thalamic regions, and with peripheral processoinsa®e et al (1998) speak of “ distributed neurons
with long distance connectivity that provide a ‘globa@rispace’ that can potentially interconnect
multiple distributed and specialized brain areas in adiwated though variable manner”, and Dehaene
& Changeux (2003) characterize it as “self-amplifying resntractivity”. Edelman (2003) speaks of
“dynamic reentrant interactions across corticalwiec.. that allow synchronous linking and binding to
take place among widely distributed brain areas”, andiders reentry “a unique feature of higher
brains” (Tononi & Edelman, 2000). Both groups of investigatonshasize the importance of this
pattern of connectivity for generation of oscillatoryiaty.

From their respective publications (see Section 2.2.2&hd), it appears that DC and GNW
have a somewhat similar temporal pattern of evolving afew hundred msec, and persisting for
several hundred msec, prior to dissolving. Dehaene & Char{@é0#, 2005) who are more explicit
about this than the investigators of the Edelman groupitdedtis temporal course as sudden onset of
coherent synchronized neuron activity in multiple distamtical areas and peripheral processors, which
is sustained for several hundred msec by reentraatntiogbrtical signal flow. They refer to ‘phase
transition in a metastable dynamic” and use also theeaptession of “ignition” to convey the
abruptness of the transition. To assist with gaininghantive grasp of the complex dynamics attributed
to their Dynamic Core, Tononi & Edelman (2000) offer a hidlpmodel: envision a large cluster of
tense springs, variously connected to each other and sdedby another set springs, loosely coupled
to the former cluster; it is then easy to see thahevsmall perturbation will spread rapidly and
effectively throughout a system of this kind.

The suggestion of Dehaene & Changeux to view éheral history of the formation and
dissolution of the neural complex that arises tranlsien their neuronal models invites an exploration
of its dynamic origin. Taking into account that thisiaty (and the presumed counterpart in the models
of the Edelman group) occurs in nonlinear systems far &guilibrium directs attention to the principle
of Self-organized Criticality (SOC) of which abrupt amthe-like transitions are one of its signatures.

As is well known, Bak et al (1987/1988) introduced a theoly@C€ to designate the property of
systems to exhibit non-equilibrium phase transitimmgsccount of their intrinsic dynamics, without
requiring tuning of control parameters by external influen@dis was thought to be the distinguishing
criterion from the conventional phase transitiangquilibrium systems which require external tuning of
control parameters to attain critical state. Systeftkis former kind evolve spontaneously to a critical
state at which their responses to perturbations disps®y of characteristic properties: temporal and
spatial scale invariance (i.e. absence of a charsiitescale of length and time, associated with filacta
and 1/f noise), drastic reduction of the number of degregsedom, and divergence of correlation
function as signal for lack of characteristic leng8taling behavior’ refers to determining whether the



temporal (or spatial) pattern of an observable remaiestical under scale transformation; ‘scale-free’
then signifies the absence of any characteristic sPabeesses based on SOC are characterized by a
power law relation between frequency bands and tesgective frequency in the record, usually
represented as 1/f relation. This is generally takensaggature of SOC. (Bak, 1996; for an extensive
review on scale invariance in Biology: Gisiger, 2001pCS-eflects the process of propagation of long-
range interactions based on local effects in the medis a kind of domino effect) until the state of
criticality is attained at which any further disturbatraggers an abrupt, critical phase transitions
(Flyvbjerg, 1996). This sequence of events is sustained bgdnaurrent processes with different time
constants: a faster disturbance of the dynamimsiaty state, and a slower relaxation towards its
restoration, often referred to as avalanche (a metdyased on the sand pile of the original model of
SOC). The critical state is then maintained untilae@d by circumstances that lead to initiation of
another process of the same kind.

With the foregoing criteria for self-organized critibain mind, it is now possible to
examine whether measurements of brain activity andtateicomply with the stipulations of the
theory. Linkenkaer-Hansen (2001) unequivocally establishedhit@amplitude fluctuations in the 10-20
Hz frequency range obey power law scaling behavior in hunsuade-free neocortical dynamics was
also ascertained by Freeman (2005) in the electroencegpaalamf rabbits; a computer model also
suggested that neodortex is stabilized in a scale fa&e at self-organized criticality. Quantitative fMRI
analysis of functional connectivity (Eguiluz et al, 2006jal/o, 2004) and EEG analysis of functional
connectivity (Fingelkurts & Fingelkurts, 2006) supply additiomatience. Sporns et al (2004) reviewed
recently the numerous literature sources which identdynlneural networks as ‘scale free’. The most
direct evidence is provided by the work of , Beggs & PI@@08, 2004) reported critical behavior in
slices of cortical tissue, in the form of “avalanchesneuronal discharges. This type of activity was
subsequently also ascertained in intact cortical tisEparates, and supports the contention that
neuronal avalanches are an organizing principle of seéirablies in cortical tissue (Plenz &
Thiagarajan , 2006; for a discussion, see Vogels et al., 200&)."avalanches” observed by these
investigators meet the criteria for Self-organized Gilitig which signifies their scale invariance: thus,
the extent of neuron assemblies encompasses spat@&igion at any scale, including very large-range
connections, potentially covering major expanses ofaadttissue. Taken together, the evidence
suggests that the brain as a whole may be viewed asibairgjate of self-organized criticality and,
thus, amenable to being studied in terms of principlesatistical Physics (Chialvo, 2006).

In the nearly 20 years since introduction @CS$critical examination of the claims of Bak
et al for universality of SOC have introduced some quatifos in the original theory, and
circumscribed the range of its validity (Dickman, 2008d&noff et al, 1989; Jensen, 1998). The
conceptual prototype of SOC was originally the ‘sand poeleti in which stepwise addition of sand
grains on the tope leads in the critical state to prdmageaf avalanches across the pile, which exhibit
the properties of scale invariance. Numerous modifinataf the original paradigm were instrumental
to characterize the boundary conditions under whichhbery of SOC applies while, on the other
hand, the signatures of SOC were identified in mod&l®nginally considered, such as for instance
percolation models (Stauffer & Aharony,1991/1994, Grimmett, 19B@yenthetically, it is worth
noting that one of the extensions of SOC, designedgdiicate the sale invariance of earthquakes
(Olami, et al, 1992 ), shares many features with TonwhiEdelman’s’ (2000) spring model of
reentrant activity, referred to earlier. It is nowrfly established by the work of Bak’s own Group
(Paszuski et al, 1996) and many others that SOC is a eseitgpt for describing systems far from



equilibrium that will manifest a phase transition wiakiven from the outside (Frigg, 2003). Like
conventional phase transitions, some forms of S@@menable to analysis by Renormalization
Analysis (Pietronero et al.,1994; Vespignani et al., )98t is: the computational techniques that
enables the explicit computation of the critical exgras for scale invariance and other critical
properties (Kadanoff et al, 1967; Wilson, 1979; McComb, 2004¥ biturring what was earlier thought
to be an essential distinction between SOC and icksqtuning- dependent) phase transitions. The
twin concepts of scaling and universality play an impantale in description of dynamical systems for
elimination of degrees of freedom and scale transfoomsitat points near critical transition (Kadanoff
et al, 1989; Kadanoff, 1990). The significance of this liegh@possibility of identifying universality
classes (Odor, 2004) which will be pursued in Section 3oAljh still lacking a comprehensive theory
of SOC, it is now an established part of Dynamical&ystTheory by characterizing (specifically in
some instances and in others, in principle) the atistate as the system’s attractor, and its fractal
structure (Blanchard et al, 2000 ).

3. Discussion and Conclusions

In their totality, concepts and observations sketcheke foregoing section are intended to give
credence to the notion that the transient configurabdéneural activity (designated respectively
Reentrant Dynamic Core by Edelman et al, and Globatd&Nal Workspace by Dehaene & Changeux)
are manifestation of SOC in the neuronal reentryug¢scof the respective models. As such, they require
several hundred msec for constitution of their lomggeaconnections to full criticality at which point
the characteristic properties of scale invariance, estldonensionality and long-range correlations
come to obtain for the critical state’s duration. Wil on the way to criticality, a metastable regime
is in effect. The spatial extent and temporal coufskeopattern of activity in the neuronal models
under discussion are thought to be essential for thdmrpgance in realistic task conditions and, by
extrapolation, aspects of neural processes in humantiomgand consciousness. It is the purpose of
this essay to propose that the dynamics of the “opeedtsynchrony” in the work of Fingelkurts and
Fingelkurts and of ‘microstates ‘ in the work of Lehmamal associates are expressions at the
macroscale of the recursively reentrant activity irsoseopic neuronal circuits of DC and GNW.
Changeux and Michel (2004) made a similar suggestion. Thillwleen be an instance of the
dynamics at one brain organizational level finding expoesst another.

What can be gained from pursuing this view ? The answes tarthe notion of Universality
classes, mentioned in passing in Section 2.2.3. Pemnatiaself some levity, Universality classes
may be viewed as God’s gift to the Physicist : univessadifers in this context to the phenomenon
whereby dissimilar systems can exhibit the same nuaienidices that reflect the creation of long
range correlations from local interactions, and themeain which disturbances propagate through the
system. These indices are independent of physical rattine system’s components, and are solely
determined by the properties of the components’ interac{Bmney, 1992; Yeomans, 2002). Itis
empirically established that nonlinear dynamic systémefiyding those operating far from
equilibrium (Odor, 2004), can often be categorized by theseal indices into distinct classes. This
means that having ascertained one or the other critiopepy for a system under study, it is then
possible to predict all other critical properties of thygtem merely on the basis of its class
membership. Applying this approach to plausible models of eemtuitry in the systems of DC and
GNW would enable characterizing the nature of their dyognand its relation to the potential role in



the Operational Architectonis of Fingelkurts & Fingelkurts (200%) the microstates in the studies of
Lehmann ansd associates (2006). Among the various candisitesme to mind is the type of
percolation studied by Kozma et al (2005) on models of ¢eapil, or one of its several variants.
Such computational models of Dynamic Core and the GNbeatonal Workspace would serve as
windows for gaining insight into the dynamics of neurona¢adsies with established functions in
their respective models. This, so it is thought, would #ulst at least at this time, for the direct
observation of the relevant neural assemblies ina&gtit,would reveal indirectly the total range of
their dynamic properties, on the basis of sharing usalty class membership with animate and/or
inanimate known substrates.
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