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Abstract:

The performance of fast forward-backward splitting, or equivalently fast proximal gradient
methods, is susceptible to conditioning of the optimization problem data. This conditioning
is related to a metric that is defined by the space on which the optimization problem is stated.
By selecting a space on which the optimization data is more well-conditioned, the performance
of the fast forward-backward splitting method is likely to improve. In this paper, we propose
several methods, with different computational complexity, to find a space on which the algorithm
performs well when applied to the dual of a strongly convex optimization problem. We evaluate
the proposed metric selection procedures by comparing the performance to when the fast
dual forward-backward splitting method is applied in the Euclidean space. For the most ill-
conditioned problem we consider, the computational complexity is improved by two to three
orders of magnitude. We also report compatible to superior performance compared to state-of-

the-art optimization software.

1. INTRODUCTION

Fast gradient methods have been around since the early
80’s when the seminal paper Nesterov (1983) was pub-
lished. The fast gradient method in Nesterov (1983) is ap-
plicable to unconstrained smooth optimization problems.
This method was not well recognized until the mid 00’s,
after which several extensions and generalizations of the
fast gradient method have been proposed. In Nesterov
(2003), new acceleration schemes were presented as well
as methods for constrained optimization, i.e., projected
fast gradient methods. In Nesterov (2005), smoothing
techniques for the fast gradient method for nonsmooth
problems were presented. Fast proximal gradient methods,
or equivalently a fast forward-backward splitting methods,
that solve problems of the form

f(z) +g(x) (1)
where f is convex and smooth and g is a proper, closed,
and possibly extended-valued convex function, were pre-
sented in Nesterov (2013); Beck and Teboulle (2009). In
Tseng (2008), generalizations and unifications of many fast
forward-backward splitting methods were presented.

minimize

The smooth part of the composite objective function, f in
(1), is in fast forward-backward splitting approximated by
the r.h.s. of

f@) < fy) + (Vi) 2 —y) + L)z -yl (2)
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where the norm and inner-product are given by the space
on which f is defined. The condition that (2) holds for all
x and y is referred to as f being S-smooth w.r.t. the space
on which f is defined. Since the r.h.s. of the smoothness
condition (2) is the only information the algorithm has
about the smooth function, the smaller the gap in (2) (i.e.
the better the r.h.s. of (2) approximates f), the better
the performance of the algorithm is likely to be. In this
paper, we show how to select a space (or metric, we will
use these notions interchangeably since the metric defines
the space) on which the fast forward-backward splitting
method performs well, when solving the dual of strongly
convex composite optimization problems.

The spaces we consider when solving these problems are
Euclidean spaces with inner product (z,y) = 2’y and

a scaled norm |z||x = VaT Kz, where K is a positive
definite metric matrix that defines how distances are mea-
sured. In this paper, we analyze how K should be chosen to
get efficient fast proximal gradient methods when solving
the dual of strongly convex optimization problems. This
is done by providing tight quadratic majorizers to the
smooth part of the dual problem, and by showing how
this knowledge can be utilized to improve the convergence
of the algorithms. We also provide a number of differ-
ent computational methods, with different computational
complexity, that find the desired metric matrix K exactly
or approximately.

Recently, Richter et al. (2013); Patrinos and Bemporad
(2014) proposed fast dual forward-backward splitting as
appropriate optimization algorithms for embedded model
predictive control. They propose two different dual formu-
lations and apply fast forward-backward splitting in the
Euclidean space on their respective dual problems. Using
the results in this paper, we show how to select an appro-
priate space on which to apply these methods. The perfor-



mance improvement is evaluated by applying the methods
to a pitch control problem in an AFTI-16 aircraft that
has previously been studied in Kapasouris et al. (1990);
Bemporad et al. (1997). This is a challenging problem for
first order methods since it is fairly ill-conditioned. The
numerical evaluation shows that for such ill-conditioned
problems, the computation time can be improved by two to
three orders of magnitude by selecting the space on which
to apply the algorithm appropriately. We also compare
the performance to the algorithm in O’Donoghue et al.
(2013); Jerez et al. (2013) that use an ADMM-based (see
Boyd et al. (2011) for more on ADMM - the alternating
direction method of multipliers) algorithm to solve the
embedded model predictive control optimization problems.
Our algorithms are implemented in the MATLAB toolbox
QPgen Giselsson (2014a). We compare the performance
of QPgen to DuQuad, see Necoara and Patrascu (2015),
which is based on the dual gradient methods in Nedelcu
et al. (2014); Necoara and Nedelcu (2014) that use inex-
act inner minimizations instead of splitting methods as
in Richter et al. (2013); Patrinos and Bemporad (2014)
and here. We further compare to FiOrdOs, see Ullmann
and Richter (2012), which implements, e.g., the method
in Richter et al. (2013) and the method in Chambolle
and Pock (2011). We compare to FORCES Domahidi
et al. (2012) and CVXGEN Mattingley and Boyd (2012),
that are C code-generators that use tailored interior point
methods. We compare to qpOASES, which implements the
online active set method in Ferreau et al. (2008). Further,
we compare to the MPTtoolbox Herceg et al. (2013), which
is based on the explicit MPC approach in Bemporad et al.
(2002). Finally, we compare to the general commercial QP-
solver MOSEK, see ApS (2013). The proposed fast dual
forward-backward splitting when applied on a suitable
space performs little to much better than all other methods
on the considered example.

Fast dual forward-backward splitting can also be used for
distributed optimization when the objective to be mini-
mized is separable. In the context of gradient methods, this
has been known since Everett (1963); Danzig and Wolfe
(1961); Benders (1962). Recently such approaches have
been proposed for distributed model predictive control
(DMPC) Negenborn (2007); Doan et al. (2011); Giselsson
et al. (2013); Giselsson (2013), and resource optimization
over networks Ghadimi et al. (2013); Beck et al. (2013);
Necoara and Nedelcu (2015). Often, centralized coordina-
tion is needed when selecting the step-size for the gradient-
step. In Beck et al. (2013), it was noted that the smooth
part of the dual problem consists of a sum of local dual
terms. Each of these can compute its own step-size, share
with its neighbors, and sum to get a fully distributed step-
size selection. This procedure can be augmented by the
results of this paper to not only select a local step-size,
but local matrices K; that, after neighborhood exchange
and summation, give a space on which to apply the fast
distributed dual forward-backward splitting. When solving
a set of randomly generated separable optimization prob-
lems, the iteration count of the algorithm when applied
on a space as computed by the methods presented in
this paper is two to ten times lower than the iteration
count when the local step-sizes are computed as in Beck
et al. (2013). We also compare the performance to the
recently proposed dual Newton conjugate gradient method

in Kozma et al. (2014). The proposed methods outperform
this method by at least a factor of 10 on the considered
examples.

This paper unifies and extends the conference publications
Giselsson (2014b,c); Giselsson and Boyd (2014).

2. NOTATION AND PRELIMINARIES
2.1 Notation

We denote by R, R™ R™*" the sets of real numbers,
column vectors, and matrices. We use notation (z,y, z) :=
[#T yT' 2117 for stacked real column vectors. We also use
notation R = R U {oo} for the extended real line. S* C
R™*™ is the set of symmetric matrices, and S, C S,
[Sh] C S™, are the sets of positive [semi] definite matrices.
We consider real finite-dimensional normed vector spaces
with the Euclidean inner product (z,y) = 2Ty and

different norms. When using the induced norm ||z| =

v/ (z,z), we get the standard Euclidean space. We also
consider spaces Ey (with Euclidean inner product) with

scaled norm |z||g = +/(x,Hz), where H € S ,. The
first element z in the inner product (x,y) on Eg is from
the dual space, denoted by E3;, ie., 2 € E%;, while the
second element y € Eg. The dual norm to ||y||z is ||y||}; =
maxy {(y,z)2 : |lzllg =1} = ||yllg-1, ie, Efy = Eg-1.
Further, the class of closed, proper, and convex functions
f :+ Ey — R is denoted by I'o(Eg). The conjugate
function f* Ef — R to f € To(Epy) is defined as
f*(y) = sup, {{y,z) — f(x)}. The adjoint operator to a
bounded linear operator A Er — Eg is denoted by
A* : Ej — E} and is defined as the unique operator that
satisfies (Az,y) = (A*y,z) for all z € Eg and y € E},.
Since the ambient space for Ep is the standard Euclidean
space, we often denote the matrix that corresponds to the
operator A : Eg — Ex by A € R™*™. Finally, Iy denotes
the indicator function for the set X, and I ;)<o denotes

the indicator function for the set X = {z | g(z) < 0}.
2.2 Preliminaries

In this section, we introduce the concepts of strong con-
vexity and strong smoothness and present a result on how
these concepts relate to each other through the conjugate
function.

Definition 1. A function f € Tg(Ep) is S-strongly convex

(wor.t. Egr) if £ — 5|3 is convex.
Definition 2. A function f € To(Eg) is B-smooth (w.r.t.
Eg) if it is differentiable and gH |4 — f is convex.

Remark 3. An equivalent characterization of S-smoothness
w.r.t. Ef is that

f@) < f@)+ (Ve -y +5le -l (3)
holds for all z,y € Ey.

Next, we state a result that links the notions of strong
convexity and smoothness though the conjugate function.
A proof to this, in a more general setting, can be found,
e.g., in (Zalinescu, 2002, Proposition 3.5.3).

Proposition 4. Suppose that f € Tog(Eg). Then the fol-
lowing are equivalent:



(i) f is B-strongly convex (w.r.t. Ep)
(i) f*is %—smooth (wrt. Ef; =Eg-1)

Remark 5. The converse statement also holds since f =
(f7) for f € To(En).

3. PROBLEM FORMULATION

We consider optimization problems of the form
f(@) +9(y)

Az =y (4)
We assume that the following assumption holds through-
out the paper:

minimize
subject to

Assumption 6.

(a) The extended valued function f € To(Eg) is 1-
strongly convex (w.r.t. Ey) with H € ST .
(b) The extended valued function g € T'g(Ex) with K €
S .
+
(¢) A : Ey — Eg is a bounded linear operator.
Remark 7. A function that satisfies Assumption 6(a) is

f(x) = LaTHz + f where H € ST, and f € Ty(Ep).

Since g (and f) are allowed to be extended valued, they
can, e.g., be indicator functions for nonempty, closed, and
convex constraint sets.

The operator A Eyg — Ex has an associated matrix
A : R™ — R™ that satisfies Az = Az for all x € R"™.

To arrive at the dual problem, we introduce Lagrange
multipliers 4 € Ex -1, to get Lagrangian
L(z,y,p) = f(x) + 9(y) + (Az —y, ).
By minimizing the Lagrangian over x, and y, we get
inf L(z, y, ) = inf {{A"p, 2) + f(2)} + inf {{~y, 1) + 9(y)}
= —sup {(—=A"p, z) — f(2)} —sup {(1, ) —9(y)}
T Yy

= =T (=A) — 9" (w)-
Negating this, we get the negated dual problem to (4) (see,
e.g, (Rockafellar, 1970 §31) for more details):
minimize d(p) + g* (1) (5)
where
d(p) = f*(-Ap).
Note that d, g* € To(Ex-1).

(6)

The performance of fast dual forward backward splitting is
highly sensitive to on which space the algorithm is applied.
This paper is about computing metrics H and K, based
on problem data, that define spaces on which fast dual
forward backward splitting performs well.

4. DUAL PROBLEM PROPERTIES

In this section, we will present tight characterizations of
the smooth part of the dual problem. These characteriza-
tions will later guide us in choosing space/metric on which
to apply the forward-backward splitting algorithm.

From, e.g., (Rockafellar, 1970, Theorem 23.5) combined
with the chain rule, we know that d is differentiable with

Vd(p) = —A"" (1) (7)

where
@*(n) = argmin {(A"p, x) + [(2)} (8)

It is also well known, see e.g. (Nesterov, 2005, Theorem 1),
that Vd is Lipschitz continuous with constant ||A*|? =
|AJ|? (since f is l-strongly convex (w.r.t. Ey) due to
Assumption 6), where the norm is the operator norm.
(This also follows directly from Proposition 4, i.e., from
(Zalinescu, 2002, Proposition 3.5.3), and the Cauchy-
Schwarz inequality.) Since A Ey — Eg, the norm
|A]| is defined by

[l = max {[Az|x : [[z]a <1}

= {2 Az H2a)p <1}
= {2 a2y ulle <1}
— ||K1/2AH—1/2||2

where || - ||]2 denotes the standard induced Euclidean
norm and A is the Euclidean matrix representation of A.
By defining d on Ej, i.e., by choosing K = I, we get
that d € T'o(Er) is Lipschitz continuous with constant
|AH=/2||3 = |AH1A”|5. This is exactly the Lipschitz
constant provided in Richter et al. (2013) which implies
that

—1 4T
d(w) < d(v) + (Vd(W), p = pa + B 1 — w3
(9)
holds for all p, v € R™. This upper bound can be improved
by defining d on Ei—1 with K = (AH 1 AT)~! (where we
have implicitly assumed that A has full row rank). This
implies that d is 1-smooth w.r.t. E4g-1 47, i.e., that

d(p) < d(v) +(Vd(v), p — )2 + 5llp = vl g-14r (10)
holds for all u,v € E -1 47. This is obviously a tighter
characterization of d than (9).

Remark 8. We improve the upper bound on d by defining
it on a different space. It is straight-forward to verify that
this does not influence the shape of the function d itself,
only the bound is improved.

When selecting K = (AH~*AT)~!  we implicitly assume
that A has full row rank. In the following result, we show
that (10) also holds when A is not full row rank.

Proposition 9. Suppose that Assumption 6 holds. Then
d € Ty(Ex-1) as defined in (6) satisfies

d(p) < d(v) +(Vd(v),p —v) + 5l — VIl (11)

for any L = AH 'AT and for all u,v € Eg-1, where
A € R"™*™ is the matrix representation of A.

Proof. Since Assumption 6 states that f is 1-strongly
convex w.r.t. Ef, Proposition 4, gives that f* is 1-smooth
w.r.t. Eg—1. Thus, (3) holds for f* for any x,y € Eg-1.
Further, since f* is independent of the norm on the space
(it only depends on the inner product) (3) holds for f*
also for any z,y € R™. Especially, let + = —ATy and
y=—ATv to get

d(p) = f*(—A"p)

d(v) + (Vf*(=ATv), = AT (u—v)) + FI| AT (n — V)|
=d(v) + (—AVf*(=A"v), p—v) + 5w — vl g ar

d(v) + (Vd(v), p—v) + gllw—vlig-1ar-



Since the the inequality holds for AH~1AT, it also holds
for any L = AH'AT. This concludes the proof.

Next, we show that for many interesting functions f, the
bound provided in Proposition 9 on d is indeed tight.
Essentially, we show that if the strong convexity bound on
the primal (i.e., the quadratic lower bound to the primal)
is tight, so is the smoothness bound on the dual (i.e. the
quadratic upper bound to the dual). A proof is provided
in Appendix A.

Proposition 10. Suppose that Assumption 6 holds and
that there exists a full-dimensional ball B} (z*(f1)) centered
around z*(fi) for some fi € Ex-1 on which f — 3| - ||% is
linear. Then no matrix L % AH'AT exists such that
d : Eg-1 — R as defined in (6) satisfies (11) for all
p,v € Ep—1.

The assumptions in Proposition 10 are met, for instance, if
A has full column rank and f(z) = 3||z[|% + h(z) where h
is the indicator function for a closed and convex constraint
set with nonempty interior, the 1-norm, a linear function,
or any other function that is linear on a convex subset with
nonempty interior. For these examples, Proposition 10
indeed gives the best obtainable quadratic majorizer of
d. However, for f being a quadratic plus the indicator
functions for an affine subspace Ip;—p, the assumptions in
Proposition 10 are not met. The reason is that the interior
of Ip,—p is empty (except in the trivial case where B =0
and b = 0). In the following proposition we present a result
that shows how the quadratic bound in Proposition 10
can be improved in that case. A proof is provided in
Appendix B.

Proposition 11. Assume that f(z) = 1zTHz + Tz +
Ipy—p(x) with H € ST, £ € R", B € RP*", and b € RP.
Further assume that 7 Hz > 0 whenever z # 0 and

Bx = 0, i.e. that H is positive definite on the null-space
of B. Then d : Ex-1 — R satisfies

d(p) < d(v) +(Vd(v),p —v) + llu—v|i (12)
for any L = AM;1 AT for all pu,v € Eg—1, where
My My _ [H BT (13)
Ms1 Mao B 0 ’

Further, no matrix L # AM;1 AT exists such that (12)
holds for all p,v € Egx-1.

Note that the results in Propositions 9, 10, and 11 are
independent on which space the function d is defined, i.e.,
they are independent of K. This holds since the shape of d
is the same when defined on any Ex-1. The results merely
relate the shape of d to AH ' AT Since AH ' AT might be
rank deficient, this matrix cannot define a norm. However,
by selecting a positive definite metric matrix K~! that
satisfies K~1 = AH AT and by linking the results in
Propositions 9, 10, and 11 to the smoothness definition in
Definition 3, we can summarize Propositions 9, 10, and 11
as follows, assuming that Assumption 6 holds:

o The function d € T'g(Eg-1) is 1-smooth glyv.r.t. Ex-1)
for any positive definite K=t = AH1AT.

o If f is quadratic with positive definite Hessian H on
some full-dimensional set, then d € To(Ex-1) is 1-
smooth w.r.t. Ex—1 if and only if K~! = AH AT
(and K~ is positive definite).

o If f is quadratic with Hessian H (that is positive
definite on the nullspace of B) plus indicator function
for an affine subspace Bx = b. Then d € Ty(Eg-1) is
I-smooth (w.r.t. Ex—1) if and only if K—! = AM;; AT
(and K~ is positive definite).

In this section, we have shown how to compute tight
quadratic majorizers to d . In the following section, we

will show how to use this knowledge to find good metrics
on which to perform dual forward-backward splitting.

5. FAST DUAL FORWARD-BACKWARD SPLITTING

We apply fast dual forward-backward splitting to solve the
dual problem (5). The dual problem is defined on Eg-1.
In this section, we introduce the notation L = K1, i.e.,
the dual problem is defined on Er. The algorithm is

VP = 1P 4 (F — )

phtt = Prox,. (V* — L7Ivd(V*))
where oy, = 0, (9;_11 —1) and the 0x-sequence satisfies (see
Tseng (2008))
1 1—0
R 0
and the prox (backward) step is defined as

prox,- (2) := argmin {g° () + 5l ==L}

(14)

The p*+l-update can equivalently be written as (expand
the square, remove constant terms and add d(v*) which
does not affect the minimizer):

argmin {d(v*) + (V). j— ¥ + Hllu— o4 + 9" (1)}
i

We see that d is approximated by the r.h.s. of the smooth-
ness definition in (3), i.e., by

d(v*) + (V") p— V%) + 5llu—v*2. (15)
Indeed, the algorithm converges if d is 1-smooth w.r.t. the
L that is used in the algorithm, see Zuo and Lin (2011),

i.e., if the approximation (15) used in the algorithm is an
upper bound to d. A bound on the convergence rate is (see

Zuo and Lin (2011))
. 2| > 0112

D) = = (k+1)2

where D = d + g* and p* is a solution to (5). Also,
convergence rates for the primal iterates as well as the
primal infeasibility can be obtained, see Patrinos and
Bemporad (2014); Nedelcu et al. (2014); Necoara and
Nedelcu (2014).

Remark 12. The constant in the rate bound in (16) can be

compared to the constant in the rate bound for standard
fast dual forward-backward splitting used, e.g., in Richter

et al. (2013), which is
* 2ﬂ||,u* 7MOH2
D(u*) = D(u*) < W

where (8 is a Lipschitz constant for d. From the previous
section (and Richter et al. (2013)), we know that f =
|AH=1AT ||y (which is actually tight). We compare this
to (16) where we can choose L = AH'AT due to the
analysis in the previous section. Therefore, the constant
in the convergence rate bound provided in (16) is as good

(16)



or better than the one in Richter et al. (2013) due to
Cauchy-Schwarz inequality. For ill-conditioned problems,
the difference in constant can be significant, depending on
the initial condition p".
Remark 13. From Giselsson and Boyd (2014) it follows
that forward-backward splitting algorithm applied on
E -1 is equivalent to applying forward-backward splitting
on the Euclidean space R™ to the dual of the precondi-
tioned problem

minimize  f(x) + g(y)

subject to DAx = Dy

where K = DTD. We can also define the dual problem
on the finite-dimensional vector space with inner product
(x,y) = 27 Ky and with the induced norm ||z|| = V2T K.
When applying the forward-backward splitting algorithm
on this Hilbert space, we get another equivalent algorithm
(note that the metric K is inverted compared to Egx-1).
These equivalent approaches are, however, not further
discussed here due to space limitations and clarity of
exposition.

The important question how to choose L = K ~! remains.
As mentioned, the smooth part of the dual problem, d, is
approximated by a quadratic function that majorizes it,
see (15) and the r.h.s. of the smoothness definition (3).
The tighter this quadratic majorizer is, the more accurate
the function approximation used in the algorithm is, and
consequently the faster the convergence of the algorithm is
likely to be. For example, if the majorizer is tight (i.e., (3)
holds with equality for all z,y), the algorithm converges
in one iteration. This can be seen from the p**!-update

argmin {d(l/k) +(Vd(F), p—v*) + %HH — M7+ g*(ﬂ)}
m

= arginin {d(u) + 9*(M)}

which in that case reduces to solving the original problem
(5). Proposition 9 suggests that E;, with L = AH-'AT
would be a good space on which to apply the algorithm,
since the r.h.s. of (3) would (in many cases) be the best
quadratic majorizer of d, see Proposition 10. In most cases,
however, it is not advisable to let L = AH'AT (which
is typically sparse or full) since the prox operation of g*
could become computationally too expensive. For instance,
if g* is separable, using a non-diagonal L would typically
increase the computational burden in each iteration more
than what is gained by the reduced number of iterations.
This discussion suggests that to get good performance,
we should choose L ~ AH 'AT where the structure
of L should be such that the computational complexity
of evaluating the prox operator is kept low. We also
need L = AH 'AT to guarantee convergence of the
algorithm. By letting an invertible matrix E satisfy L =
(ETE)~!, these objectives can be formulated as choosing
E such that I ~ EAHYATET and I = EAH-'ATET,
A natural choice is then to minimize x(EAH 'ATET)
subject to I = EAH 'ATET, where r denotes the
condition number. However, if A does not have full row
rank, or if the objective is to satisfy L ~ AMj; AT (when
the assumptions in Proposition 11 hold), the matrix AP AT
(with P = HlorP= M;1) does not have a well defined
condition number. In such cases, the ratio between the
largest and smallest non-zero eigenvalues of EAPATET
could be minimized instead. This is reasonable, since the

zero eigenvalues of APAT cannot be affected or made
positive by pre- and post-multiplying APAT with E and
ET respectively. Exact methods to achieve this as well
as heuristic approximations are discussed in the following
section.

6. COMPUTING THE METRIC MATRIX

In this section, we show how to solve
M(EQET)
Ar(EQET)
where A; denotes the largest (non-zero) eigenvalue, A,
denotes the smallest non-zero eigenvalue, and Q € S%
is Q = AH AT or AM;; AT. We restrict the matrix E
to be full, block-diagonal, or diagonal, since this implies
that also L = (ET E)~! is full, block-diagonal, or diagonal
respectively. We denote by & any of these structural
constraints. Besides showing how to solve (17) exactly, we
also present heuristic methods to (hopefully) reduce the
(pseudo) condition number in (17).

(17)

minimize

6.1 Exact condition number minimization

In this section, we show how to solve (17) exactly. We
consider two different cases; ) positive definite, and @
positive semi-definite. In Boyd et al. (1994), it has been
shown that minimizing the ratio between the largest and
smallest eigenvalues of (FRET)T(FRET) by selecting E
and F' can be written as a quasi convex optimization
problem. Here, as we will see, we are interested in the case
where either £ = I or F' = I. For these cases, the optimal
matrices can be found by convex optimization. Before we
show how to solve (17), we state the following well known
lemma that follows directly from the definition of singular
values.

Lemma 14. For any matrix & € R™*™ the non-zero
eigenvalues of ®7® equals the non-zero eigenvalues of
o7,

The positive definite case.  Here, we assume that @
is positive definite, which occurs, for instance, if Q =
AH AT, where H € S7, and A € R™*" has full row
rank.

Proposition 15. Assume that ¢ € ST, . Then a matrix
E € &€ that minimizes the ratio (17) can be computed by
solving the convex semi-definite program
minimize ¢
subject to tQ > L
Q=L
Le&

where L = (ETE)~!. Further, L = Q.

(18)

Proof. Since @ has full rank, (17) is the condition num-
ber. Thus, according to (Boyd et al., 1994, Section 3.1),
(18) can be solved in order to minimize (17). Since the
cost and constraints in (18) are all convex, this is a con-
vex optimization problem. Further, the second constraint
implies that L = Q.

The condition number minimization problem (17) is also
investigated in Lu and Pong (2011), where they search
for E directly using a convex relaxation of the nonconvex



constraint EQET > %I . It is shown that the convex
relaxation is tight if F is diagonal. Therefore the approach
in Lu and Pong (2011) is slightly more restrictive than our
setting since we allow also for block-diagonal structures.

The positive semi-definite case.  Here, we assume that
@ is positive semi-definite. This situation occurs, e.g.,
if Q = AH'AT and A € R™ "™ with m > n, or if
Q =AM, AT,

Proposition 16. Assume that @ < ST is factorized as
Q = RTR, where R € R?*" has rank ¢. Then a matrix
E € £ that minimizes the ratio (17) can be computed by
solving the convex semi-definite program

minimize —t

subject to RMRT <1
RMRT = tI (19)
Meé&

where M = (ETE). Further L= M~! = (ETE)"! = Q.

Proof. Since RM R” has full rank, we get from Lemma 14
and equalities M = ETE and @ = RT R that minimizing
the condition number of RM R is equivalent to minimiz-
ing the ratio between the largest and smallest non-zero
eigenvalues of EQET | i.e. equivalent to solving (17). From
(Boyd et al., 1994, Section 3.1), we get that (19) minimizes
the condition number of RMRT| i.e., it minimizes (17).
Since the cost and constraints in (19) are all convex, this is
a convex optimization problem. Further, the first inequal-
ity in (19) implies through Lemma 14 that EQET < I,
which is equivalent to that L = (ETE)~! = Q. This
concludes the proof.

6.2 Heuristic 1 — Trace minimization
We also propose to use a trace minimization heuristic

to reduce the (pseudo) condition number of EQET. Let
L= (ETE)~! to get

minimize trace L
subject to @Q <X L
Le&

Also this is a semi-definite program and therefore re-
stricted to small-scale problems.

6.3 Heuristic 2 — Equilibration

In equilibration, given a matrix T" € R™*"  the objective
is to find positive and diagonal matrices £ € R™*™
and F' € R™ "™ such that all rows and columns of the
scaled matrix ETF have the same length in some norm.
This is a heuristic to reduce the condition number of the
scaled matrix ET F' compared to the original matrix 7', see
Bradley (2010) for an overview of equilibration and further
references. There are no guarantees that the condition
number is reduced, but in practice, this is most often the
case. In our setting, we will use this heuristic to improve
the conditioning of EQE” which is the objective stated
in (17). To this end, we consider symmetric equilibration
where the pre- and post-multiplied matrices are the same,
i.e., where £ = F. Below, we present different methods to
achieve symmetric equilibration of symmetric matrices in
the 1-norm, 2-norm and oo-norm. None of these methods
guarantee that I > EQET, which is required to get

convergence of the fast dual forward-backward splitting
method. However, this is achieved by appropriately scaling
FE using a norm computation.

FEquilibration in 1-norm and 2-norm.  For a symmetric
matrix, the ith row and column are the same, hence
also their norms. Thus, in symmetric equilibration of
symmetric matrices, we need only equilibrate either the
rows or the columns. The 1-norm of row i of EQET is
given by

IEQET) ||, = Y 1EuQiEjj| = Ei Y |1Qis| Ej
j=1 Jj=1

since E is diagonal with E;; > 0. Similarly, the squared
2-norm is given by

IEQET).|l; = Y (EuQuiiBi)* = BL Y Q%4 E,
Jj=1 Jj=1
Thus, by introducing the matrices T3 = |Q| (where | - |
denotes element-wise absolute value) and Tp = (Q)®
(where () denotes element-wise square), and by letting
E = diag(e), symmetric equilibration can be stated as
finding E (and e) such that
ETie=1 (20)
in the 1-norm case and
E@Ty e =1 (21)

in the 2-norm case. We treat these cases simultaneously
by introducing E = diag(€) and T that satisfies E=E
and T = T} in the 1-norm case, and E=FE® and T = TS
in the 2-norm case. The conditions (20) and (21) can then
be written as _

0=Te— E'1.
This is indeed the gradient of the function

¢(e) = te"Te — iln(a).
i=1

Since e'Te > Y .(Tye?) > (min; Ty;)|[€]|3 for all e €
domg, i.e. for all € > 0, and since —In is convex, ¢ is
convex on its domain. If in addition min; T;; > 0 (which is
the case we are interested in), then ¢ is strongly convex.
Since ¢(€) < oo for all € € int(dome¢) and since ¢(€) — oo
as € approaches the boundary of the domain, we conclude
that ¢ has a unique minimizer e* € int(dome). This unique
minimizer can be found in various ways.

(22)

One approach is to perform element-wise optimization and
cycle through the elements until convergence. Optimality
conditions for optimizing (22) w.r.t. €;, while the other €;
are fixed, are given by

0="Tye + » Tie;+1/&

J#i
J#i

Each such element-wise optimization is very cheap since
it requires the solution of a second-order equation and a
vector-vector multiplication of size m — 1.

A classic method to perform l-norm and 2-norm equi-
libration is the (symmetric) Sinkhorn-Knopp algorithm,
Sinkhorn and Knopp (1967), which was originally devel-
oped to generate doubly stochastic matrices from positive



matrices. The symmetric Sinkhorn-Knopp algorithm is
given by the iteration
gk-i—l _ (Tgk)_l

where (-) 7! denotes element-wise reciprocal. This is known
to converge, see Sinkhorn and Knopp (1967), to an al-
ternating sequence that satisfies e = Fe*+! for some
B € Ry under the conditions that 7' is positive, sym-
metric, and fully indecomposable. Full indecomposability
means that no sub-matrix with only zeros of size | X p exists
where [ + p > m, where m is the dimension of T'. This
excludes, e.g., block-diagonal matrices where each block
instead have to be equilibrated separately.

Also other equilibration methods exist, see Ruiz (2001);
Bradley (2010); Knight et al. (2011). Common for all these
methods is that usually two to five passes over the data
are sufficient to obtain a close to equilibrated matrix. This
implies that they are computationally very cheap, and can
be used both for offline and online metric selection.

Equilibration in oo-norm. In oo-norm equilibration of
general symmetric matrices, the magnitude of the largest
element in each row (or column) is set to 1. For positive
semi-definite matrices S € S}, we have that S > 0 and
max; S;; > max;x; |S;;], see (Horn and Johnson, 1990, p.
398). Thus, for positive semi-definite matrices with S;; > 0
for all 4, having S;; = 1 for all ¢ gives equilibration in the
oo-norm. For § = EQET with @ positive semi-definite
with positive diagonal, this scaling, which is also referred
to Jacobi scaling, is obtained by letting E; = 1/v/Qy.
This is less computationally expensive than equilibration
in the 1-norm or 2-norm as discussed above.

7. APPLICATIONS

In this section, we show how to apply the results in this
paper on two quadratic programming formulations. We
consider one formulation with no specific structure that we
solve in two different ways, and one that has a separable
structure that allows for distributed implementation. We
state the algorithms on Ex—1 and let L = K ! to simplify
notation.

7.1 Two QP splittings

Here, we consider the following quadratic program

minimize %xTHac +&Ty
subject to Brx=b
d<Czx<d

where H € S, { € R", Be R™*", bec R™, C € RP*",
and d,d € RP. We form two different dual problems to
this problem by employing two different splittings that
has previously been used in the literature. We present the
resulting fast dual forward-backward splitting method and
discuss how to choose the space on which to apply the
algorithm.

QP splitting 1.  In the first splitting, which has been
used in Patrinos and Bemporad (2014) in the context of
fast dual forward-backward splitting and in O’Donoghue
et al. (2013) in the context of ADMM, we set f and g in
(4) to

fl@)=32"Ha + T2+ Ipy—p(a)

9(y) = Iggyga(y)
which gives equality constraint Cz = y. (Here, it is enough
to assume that H is positive definite on the null-space of
B.) We form the dual as in (5) and restrict L = K ! in the
algorithm to be diagonal. After some simplification, the
resulting fast dual forward-backward splitting algorithm

on E; = Eg-1 becomes

V= g (= ) (23)

2% = argmin {22"Ha + "0 + Ipp—p(z) + v Ca} (24)
1 = min (I/k + L7 (CxF - a),
max (V¥ + L™ (Ca* — d),0) ) (25)

where aj, = 0)(0, ', — 1) and 0y, satisfies (14). The restric-
tion that L is diagonal implies that the prox-operation
becomes a min-max operation only, hence very cheap.
The matrix L should be computed in accordance with
the suggestions in Section 6. Specifically, according to
Proposition 11, we need L = CM1CT, where M, is
defined in (13). Obviously also L = CH~*C” holds since
My < H-1L.

Equation (24) can be efficiently implemented since it
is an equality constrained quadratic problem. It can be
solved by forming and storing M;; and Mo in (13),
and reuse these in all iterations. Another option, that
might be beneficial if [g BOT] (from (13)) is sparse, is to
compute and store a sparse LDL factorization of [g BOT}
and perform forward and backward substitution on the
factorization in each subsequent iteration.

QP splitting 2.  The second splitting, which has been
used in Richter et al. (2013), is obtained by letting f and
g in (4) be

flz) = %xTHx +&+ li<cz<a(T)

9(y) = Ly=(y)
which gives equality constraint Bz = y. Without struc-
tural restrictions on L = K !, the resulting fast dual for-
ward backward splitting method on E;, = Ex -1 becomes
after some simplification:

VI = pF g (- P (26)
2% = argmin {%xTHx +&Tx+ Lycop<alz) + I/TBSC}
(27)
pkF = vk + L7Y(Ba® —b) (28)
Since we have no structural constraints on L, we can
choose any L = BH 'BT. If BH 'B” is sparse, an
efficient choice is to let L = BH 'BT and compute
and store a sparse Cholesky factorization of BH'BT.

Updating ©* then reduces to a forward and backward solve
in each subsequent iteration.

The complexity of solving (27) depends highly on the
structures of H and C. If H and C are block-diagonal
with sufficiently small blocks, then (27) can be solved
efficiently and exactly in parallel using, e.g., the MPT
toolbox, Herceg et al. (2013). In the limiting case where
H and C are diagonal, solving (27) reduces to one max
and one min operation for each variable. For problems



where solving (27) is computationally expensive and no
exact solutions can be obtained easily or fast, we suggest
to instead use QP splitting 1.

7.2 The distributed case

Here, we consider separable optimization problems of the
form (which is similar to the formulations in Beck et al.
(2013); Necoara and Nedelcu (2015)):

Z(fi(wi) + 9i(yi))

1=1
subject to Az =y

minimize

(29)

where f; Eg, — R is 1-strongly convex (w.r.t. Eg,),
i € To(Eg,), x = (z1,...,2m), ¥y = (Y1,-..,Ym), and
Ay ... Al
A= | S
Api - Avm

We further assume that many A;; = 0. The non-zero block
entries of A are indexed by the sets

Ni={je{l,....,M} | A; # 0}
My ={ie {1 M} | Ay #0).
We introduce the notation za;, = (..., z;,...) that stacks
all z; with j € Nj, and Ay, = [..., 4;j,...] that collects
all A;; # 0 in block-row 4. This implies that (29) can
equivalently be written as
M

> (filws) + gi(wi)
i=1
subject to  An,xa, =y, forallie {1,..., M}

We introduce dual variables p; for all equality constraints
An;zn;, = yi and define the vectors pag, = (..., i, .. .)
that stacks all p; with ¢ € M. We also define the matrix
Apm; = [..., AL, .. ]7 that collects all Aj; # 0 in block-
column j. This implies that the dual problem can be
written as

minimize

M
minimize Z (di(pam;) + g7 (1i)
i=1
where

di (M./Vh) = fz*(_ATMZMMw )
In Beck et al. (2013), it is shown how to compute a matrix
L that defines a space Er,, using distributed computations
only, on which

i=1
is 1-smooth. The procedure from Beck et al. (2013) is
presented below:

1A, 13

Ly, = N () (30)
Li= )Y L, (31)
JEN;
L = blkdiag(L+1,..., Ly I) (32)
2
This metric selection procedure relies on that d; is %—

smooth w.r.t E;. From Proposition 9, we know that d; is

majorized by a quadratic with Hessian AMiHi_lAfAi, ie.
that

di(pm;) < di(va,) +(Vdi(vam, ), pm, — V)2
+ %| BM; — VM,

2
A H? A{Ai )

or equivalently that d; is 1-smooth w.r.t. Ep,, for any
L, = AMiHi_lA%li. This is obviously a tighter charac-
terization of d; than the one used in Beck et al. (2013), i.e.,

2
that d; is W—smooth w.r.t. E;. Using Proposition 9,

min(H;

the distributed metric selection procedure proposed in
Beck et al. (2013) can be modified to yield a less con-
servative set from which L may be chosen. The modified
procedure is presented below:

L, = blkdiag(. .., Lag,.ir---) = A, Hy PAL,, (33)

Li=> L. (34)
JEN;

L = blkdiag(Ly, ..., L) (35)

where Ly, ,; are sub-blocks of the same dimension as ;.
With this restriction, is it straight-forward to verify that
the fast dual forward backward splitting algorithm on E,
can be implemented in distributed fashion with the same
communication structure as the algorithm in Beck et al.
(2013). Also, the proof in Beck et al. (2013) to show that
d is l-smooth w.r.t. E; with L computed as in (30)-
(32) is straight-forwardly generalized to show that d is
1-smooth w.r.t. E; with L as computed in (33)-(35). This
is needed to guarantee convergence of the distributed fast
dual forward-backward splitting algorithm.

By choosing L a4, appropriately (using some method from
Section 6) an L computed by (33)-(35) probably gives a
better approximation of d (in the sense of (3) with || - ||1)
than if L is computed using (30)-(32). Computing L from
(33)-(35) is therefore likely to improve the convergence
of the algorithm compared to using (30)-(32), i.e., the
method in Beck et al. (2013). This is confirmed by nu-
merical examples in Section 8.

Remark 17. Note that Laq; is restricted to be block-
diagonal to facilitate a distributed implementation. How-
ever, we could superimpose additional internal structural
constraints on each sub-block L4, ; that may differ from
one block to the next. For instance, each sub-block L 4; ;
could be restricted to be diagonal, sparse, or full.

Remark 18. Applying the dual fast forward backward
splitting on Er with L computed as in (33)-(35), enables
for a distributed implementation (since the resulting L is
block-diagonal). If g = I,—4(y), the problem has similar
structure as QP-splitting 2 in Section 7.1. Then, as in QP-
slitting 2, we can choose L = AH 'AT since no prox-
operation is needed for the dual variable update. This
choice of L gives a parallel algorithm where the primal
variables are updated in parallel, and the dual variable
updates require centralized computations. The central-
ized computations reduce to one forward and one back-

ward substitution after an initial Cholesky factorization
of AH-1AT.

8. NUMERICAL EXAMPLES

In this section, we present numerical evaluations of the
proposed methods. We apply the methods on a (small-



Table 1. Comparison to other first-order methods, all implemented in MATLAB. FDFBS refers
to fast dual forward backward splitting, ADMM refers to alternating direction method of
multipliers, QP1i refers to QP-splitting i (for i = 1, 2).

exec time (ms) nbr iters
Algorithm /splitting(/reference) Parameters avg. max avg. max
FDFBS/QP1 L diag fr. (19) with Q = CM1,CT 14 71 235 128
FDFBS/QP1 L diag fr. (18) with Q = CH~'CT 1.2 5.8 20.0 105
FDFBS/QP1/Patrinos and Bemporad (2014) L = ||C'M11C'T||21 98.5 673.0 1835.9 12686
FDFBS/QP1/Patrinos and Bemporad (2014) L = |[CH~1CT||21 98.9 679.4 1850.1 12783
FDFBS/QP2 L=BH BT 2.3 12.1 21.7 102
FDFBS/QP2/Richter et al. (2013) L=|BH BTl 4713.9 28411 50845 308210
ADMM/QP1/0O’Donoghue et al. (2013) p=0.3 193.9 920.6  3129.5 15037
ADMM/QP1/0O’Donoghue et al. (2013) p=3 29.7 142.2 457.3 2179
ADMM/QP1/O’Donoghue et al. (2013) p =30 35.1 264.4 556.7 4194

scale) aircraft control problem and on large-scale sepa-
rable randomly generated problems that are solved in
distributed fashion.

8.1 Aircraft control

Here, we apply QP-splitting 1 and QP-splitting 2 from
Section 7.1 to the AFTI-16 aircraft model in Kapasouris
et al. (1990); Bemporad et al. (1997). As in Bemporad
et al. (1997), the continuous time model from Kapasouris
et al. (1990) is sampled using zero-order hold every 0.05
s. The system has four states x = (z1,22,3,24), two
outputs y = (y1,¥y2), two inputs u = (u1,us), and obeys
the following dynamics

0.999 —3.008 —0.113 —1.608 —0.080 —0.635
ot = | —0.000 0.986 0.048 0.000 | . | —0.029 —0.014
= | 0.000 2.083 1.009 —0.000 —0.868 —0.092 | W
0.000 0.053 0.050 1.000 —0.022 —0.002
_ 10100
Yy= [0 00 1] T

where T denotes the state in the next time step. The
system is unstable, the magnitude of the largest eigenvalue
of the dynamics matrix is 1.313. The outputs are the
attack and pitch angles, while the inputs are the elevator
and flaperon angles. The inputs are physically constrained
to satisfy |u;| < 25°, i = 1,2. The outputs are soft
constrained to satisfy —s; — 0.5 < y3 < 0.5 4+ so and
—s3 — 100 < yo < 100 4+ s4 respectively, where s =
(s1,82,83,84) > 0 are slack variables. The cost in each
time step is

Uz, u,s) = %((:c —z,)"Q(x — z,) + v Ru + s Ss)
where z, is a reference, Q = diag(107%,102,1072,102),
R =1072I, and S = 10%I. This gives a condition number
of 1019 of the full cost matrix. Further, the terminal cost is
@, and the control and prediction horizon is N = 10. The
numerical data in Tables 1 and 2 are obtained by following
a reference trajectory on the output. The objective is to
change the pitch angle from 0° to 10° and then back to 0°
while the angle of attack satisfies the output constraints
—0.5° < y; <0.5°. The constraints on the angle of attack
limits the rate on how fast the pitch angle can be changed.
The full optimization problem can be written on the form

minimize %ZTHZ +rlz
subject to Bz =bxy (36)
d<Cz<d

where x; and r; change from one sampling instant to the
next.

In Table 1 we compare the performance of QP-splitting 1
and QP-splitting 2 from Section 7.1, when solving (36). We
compare the performance of these when applied in the Eu-
clidean setting E; and when applied on a space Er, where
L is computed as suggested in Section 6. Since QP-splitting
1 in the Euclidean space is exactly the algorithm proposed
in Patrinos and Bemporad (2014), and QP-splitting 2 in
the Euclidean space is exactly the algorithm proposed
in Richter et al. (2013), the comparison in Table 1 is
a comparison to other methods proposed for embedded
model predictive control in the literature. We also compare
the performance of these methods with the performance of
the ADMM-based method for embedded model predictive
control proposed in O’Donoghue et al. (2013). Since the
method in O’Donoghue et al. (2013) is based on ADMM,
the p-parameter much be chosen. In Table 1 we provide
simulation results for three different values of p, the best
performing p that we found (p = 3) and one larger and
one smaller value of p. All algorithms are implemented
in MATLAB and the numerical results in Table 1 are
obtained by running the simulations on a Linux machine
using a single core running at 2.9 GHz. To create an easily
transferable and fair termination criterion, the solution
to each optimization problem 2z* is computed to high
accuracy using an interior point solver. The optimality
condition is then set to [|z% — z*||2/||z*||2 < 0.005, where
z¥ is the primal iterate in the algorithm at iteration k.
This stopping criterion implies that a relative accuracy of
0.5% of the primal solution is required.

Table 1 indicates that applying the fast forward backward
splitting method for this example using QP-splitting 1 on
Er, where L is diagonal and computed by minimizing the
(pseudo) condition number of CH'CT or CM;;CT, out-
performs with one to two orders of magnitude QP-splitting
1 applied in the Euclidean space, i.e., the algorithm in
Patrinos and Bemporad (2014). From Table 1 we also read
that QP-splitting 2 applied on E;, with L = BH~'BT for
this example outperforms the algorithm in Richter et al.
(2013), i.e., QP-splitting 2 on the Euclidean space, with
more than three orders of magnitude. We also see that the
fast dual forward-backward splittings methods applied on
appropriate spaces converge considerably faster than the
method in O’Donoghue et al. (2013).

In Table 2, we compare different solvers implemented in
C. For QP-splitting 1 we use QPgen Giselsson (2014a)
which implements this methods. For QP-splitting 2, we
generate C code that take the reference trajectory and



Table 2. Comparison to other solvers, all implemented in C. We report average and worst case
execution times, code size for methods that generate problem specific code, and what type of
algorithm that is used.

exec time (ms)

Alg.(/split.) Comments avg. max code size algorithm type
FDFBS/QP1 (QPgen) L diag fr. (19) with Q = CH-1CT  0.083 0.212 36 kB First order
FDFBS/QP2 L=BH'BT 0.079 0.232 54 kB First order
FORCES 0.347 0.592 109 kB Interior-point
CVXGEN 0.639 0.760 404 kB Interior-point
MPT toolbox N = 3 and no tracking 0.22 0.31 9.8 MB Explicit
qpOASES warm-starting version 0.189 5.8 - Online active set
qpOASES cold-starting version 4.7 6.0 - Active set
DuQuad alg: inexact fast dual grad. method  27.2s 56.5s - First order
FiOrdOs alg: Chambolle and Pock (2011) 38.4 58.2 27 kB First order
MOSEK 4.6 8.1 - Interior-point

the initial state as inputs. Compared to the corresponding
MATLAB implementations in Table 1, the generated C
code is more than 20 times faster. Also, the two different
QP-splittings have similar performance. These implemen-
tations are compared to other toolboxes written in C for
MPC problems, namely FORCES, CVXGEN, qpOASES,
FiOrdOs, DuQuad, the MPC toolbox. We also compare
to the commercial software MOSEK. FORCES Domahidi
et al. (2012) and CVXGEN Mattingley and Boyd (2012)
are based on interior point methods. We see that our meth-
ods are three to five times faster for this problem. DuQuad
Necoara and Patrascu (2015) and FiOrdOs Ullmann and
Richter (2012) are based on first order methods with in-
exact (DuQuad) or exact (FiOrdOs) inner minimizations.
In DuQuad, the fast gradient method is chosen, and in
FiOrdOs, the primal-dual method in Chambolle and Pock
(2011) is chosen. We see that our methods perform quite
much better than these methods. This is largely due to the
developed preconditioning techniques. Actually, DuQuad
reached the maximum number of iterations (set to 107
inner and 10° outer iterations) in more than 50% of the
problem instances. For the remaining instances (that was
solved to sufficient accuracy) the average execution time
was 0.15s and the worst case execution time was 6.56s. We
also compare to qpOASES, which has similar performance
as our methods for this problem in the warm-starting case.
The problem is too big for the MPT toolbox. However, we
have compared to the MPT toolbox when the horizon is
shortened to three (instead of ten), and when no reference
tracking is used. This gives 30 instead of 100 decision
variables and 4 instead of 64 parameters. Even in this
reduced setting, the execution time is not better than for
our methods and the code size is much larger. We note
that this is close to the upper size limit of what the multi-
parametric approach can handle. Finally, we compare to
the commercial solver MOSEK, which is more than one
order of magnitude slower than our methods.

8.2 Distributed examples

Here, we apply the fast dual forward-backward splitting
method to randomly generated dynamical systems with
a sparse dynamic interaction. The dynamic interaction
structure is decided using the method in (Kraning et al.,
2013 §6.1) and the number of subsystems are 500, 2000,
and 8000 respectively. The resulting average degree of the
generated interconnection structures are 2.27, 2.23, and
2.23 respectively. The number of states in each subsystem

is randomly chosen from the interval {10, 11,...,20}, the
number of inputs are three or four, and the control horizon
is N = 10. This gives a total number of 87060, 350860, and
1405790 decision variables respectively. The entries of the
dynamics and input matrices are randomly chosen from
the intervals [—0.7 1.3] and [—1 1] respectively. Then the
dynamics matrix is re-scaled to get a spectral radius of
1.15. The states and inputs are upper and lower bounded
by random bounds generated from the intervals [0.4 1] and
[-1 —0.4] respectively. The state and input cost matrices
are diagonal and each diagonal entry is randomly chosen
from the interval [1 10].

We evaluate the distributed fast dual forward backward
splitting when applied on the Euclidean space, when
applied on Ez, where L is computed as in (30)-(32) (this is
the method as proposed in Beck et al. (2013)), and when
applied on E; where L is computed by the procedure
presented in this paper, (33)-(35). These methods are
compared to the parallel method discussed in Remark 18
and to the dual Newton conjugate gradient (CG) method
proposed in Kozma et al. (2014). The dual Newton CG
method presented in Kozma et al. (2014) solves the dual
problem using a Newton method. The search direction
is computed by solving the resulting linear equations
to some accuracy using distributed conjugate gradient
iterations. In each of these iterations, one local and two
global communications are performed. The Newton step-
size is decided by a distributed line search procedure
that requires two global communications for each function
value comparison. In the algorithm, the accuracy of the
solution to the linear system solved by the conjugate
gradient method must be specified. There is a trade-off
between the number of iterations in the CG-algorithm
and the quality of the resulting search direction. If the
accuracy requirement is too low, we get close to a gradient
direction, which results in an expensive method that
takes approximately gradient steps. On the other hand,
if the accuracy requirement is too high, too many CG-
iterations are performed in each iteration which gives a
high communication load.

The evaluation in Table 3 is obtained by generating 200
feasible random initial conditions from the state constraint
set for each of the systems. The corresponding optimal
control problems are solved using the different algorithms,
each utilizing 12 parallel cores. For each problem size, we
compare the performance when the L-matrix (that defines
E) is computed using (33)-(35), where in (33) we use dif-



Table 3. Numerical evaluation for fast dual forward-backward splitting (FDFBS) applied on
different spaces Ep,, including the space selection from Beck et al. (2013) and the Euclidean
space. The comparison also includes the dual Newton CG method in Kozma et al. (2014).

# communication rounds

local global avg. exec. time
Algorithm Parameters # ss/vars./constr. avg. max avg. max 12 cores [mm:ss.s]
FDFBS L=AHTAT 500/87k/246k - - 16.2 118 2.3
FDFBS L fr. (33)-(35), min trace 500/87k/246k 523.7 774 - - 3.2
FDFBS L fr. (33)-(35), || - ||2-equil. 500/87k/246k 1912.5 3022 - - 10.1
Beck et al. (2013) L fr. (30)-(32) 500/87k/246k 4789.8 7558 - - 25.4
FDFBS L=||AH1AT o1 500/87k/246k 6114.7 6556 - - 324
Kozma et al. (2014) ;= 1074 1 =0.8,0=10.3 500/87k/246k 6661.1 28868 4082.6 17694 2:06.0
FDFBS L=AH1TAT 2000/351k/993k - - 4.5 12 7.9
FDFBS L fr. (33)-(35), min trace 2000/351k/993k 356.8 652 - - 15.6
FDFBS L fr. (33)-(35), || - ||2-equil. 2000/351k/993k 1138.0 1666 - - 33.0
Beck et al. (2013) L fr. (30)-(32) 2000/351k/993k 2530.5 3218 - - 1:13.5
FDFBS L= ||AH1AT |21 2000/351k/993k 44749 4608 - - 2:09.9
Kozma et al. (2014) ¢ =10"%, 1 =0.8,0=10.3 2000/351k/993k 6464.1 20624 3961.9 12641 41:28.0
FDFBS L=AH"1AT 8000/1.41M/3.98M - - 2.0 2 9.4
FDFBS L (33)-(35), min trace 8000/1.41M/3.98M 340.2 426 - - 44.6
FDFBS L fr. (33)-(35), || - ||2-equil. ~ 8000/1.41M/3.98M  1350.1 1776 - - 2:10.8
Beck et al. (2013) L fr. (30)-(32) 8000/1.41M/3.98M  3050.2 3458 - - 4:55.5
FDFBS L=||AH1AT |21 8000/1.41M/3.98M  10583.4 10688 - - 17:05.3

ferent methods from Section 6. We have chosen to include
the cases where the local L, in (33) are computed by
trace-minimization and 2-norm equilibration only. Com-
puting L, by minimizing the (pseudo) condition number
is not included due to computational complexity, and
equilibration in 1-norm and co-norm is also excluded since
the performance is very similar to the 2-norm equilibration
case. The performance of these methods is compared to the
performance of the method from Beck et al. (2013), i.e.,
when the L-matrix is computed using (30)-(32), and to fast
dual decomposition with the optimal parameter selection
given by L = ||AH 'AT||3]. We see that the parallel
algorithm has fewest communications rounds (which is two
times the iteration count for these algorithms), then the
algorithm with L computed using trace minimization, then
L computed using equilibration, thereafter the method
from Beck et al. (2013), and finally fast dual decomposition
with a global step-size. This is indeed expected, since as
we traverse up the list, the approximation used in the
algorithm that is defined by the L-matrix matches better
and better the smooth part of the dual function, d. Note
that the algorithm with fewest communication rounds is
a parallel algorithm, i.e., L has no block-diagonal struc-
ture. For the algorithm where the L-matrix is computed
using local trace-minimization problems, the sub-blocks
in L have a sparsity pattern that is not diagonal, while
the remaining algorithms have diagonal L-matrices. The
added flexibility in having more non-zero elements in L
gives a reduced number of iterations. We also note that
the dual Newton CG method in Kozma et al. (2014)
performs considerably worse than the other methods on
this example.

The execution times in Table 3 are pure execution times
for the DMPC scheme, i.e., without offline pre-processing
steps such as metric selection and factorization of matrices.
To solve a semi-definite program, or to factorize a very
large matrix to find the metric L is usually only com-
putationally beneficial if the resulting L can be used to
solve many optimization problems, as is the case in DMPC.
Thus the first two rows in Table 3 of every problem size are

merely for DMPC applications, or other applications with
the same characteristic. The computational complexity for
equilibration is only slightly higher than for the method
in Beck et al. (2013). Both these methods are consid-
erably less computationally demanding than computing
|AH~*AT||; which is required to compute a global step-
size. This implies that these methods are very useful when
selecting metric also in general distributed optimization.

9. CONCLUSIONS

We have proposed several methods, with different com-
putational complexity, to compute spaces on which to
perform fast dual forward-backward splitting, when the
primal optimization problem is strongly convex. We have
evaluated these methods by applying them to an aircraft
control problem and to distributed optimization problems.
For the most ill-conditioned problem, the numerical evalu-
ations show that it is possible to reduce the computational
effort by up to three orders of magnitude compared to
applying the algorithms on the Euclidean space.
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Appendix A. PROOF TO PROPOSITION 10

The function f — 1| - |3 is linear on B (z*(f)) if and only
if f(z) = 3|z} + (£, 2)2 + 0 for some £ € Ey-—1, 0 € R

and all x € Bl(«*(f1)). Since 2* (1) € B'(x* (1)), we have
o* () = argmin { §||z[|3 + (&, 2)2 + 0 + (AT, )2}

=-H '+ A"p).
Due to continuity of H~'AT we also have z*(fi + pq) =
—H Y&+ AT (i + p1a)) € Br(2* (1)) for sufficiently small

g € R™ pointing in any direction. Thus, there exists a
ball B™(f1) such that for each p € B™(j1)

(1) = — min {3, + (€ 2)2 + 0+ (AT, )}
= 3 ATu+€lff-2 6.
That is, d is a quadratic with Hessian AH 1 AT on B™ ().
This implies that for any L ¥ AH 'AT, where exist

v, € B() (since B(i1) has non-empty interior) such
that (11) does not hold. This concludes the proof.

Appendix B. PROOF TO PROPOSITION 11

Since H is positive definite on the null-space of A, the
inverse in (13) exists, see (Boyd and Vandenberghe, 2004,
p. 523). Thus a*(u) = —M11 (AT + €) + Mi2b, where x*
is defined in (8). Further

1
d(p) = §MTA(2M11 — My HM)A w+ T+ 6

1
= QHTAMMATH +¢n+0

where ¢ € R™*P and 6 € R collect the linear and constant
terms, and where M7y HMq; = M, is used in the second

equajl&jty.ﬂ}his iden;city J\EOH(])C}VS from tj\}}e upper left block
of [amians ][5 % ][ anz] = (A an:] and using

MirlB = MllB = BM11 = 0, where BM11 = 0 follows

from the lower left block of [# B ][4t 472] = [} 9].

This implies that (12) holds with L = AM;; AT and
obviously for any L > AM;;A”. Further, since d is a
quadratic function with Hessian AM;, AT, (12) is tight for
L = AM; AT for all p,v € Ex—1.Thus, no L ¥ AM AT
exists such that (12) holds for all pu,v € Eg-1. This
concludes the proof.



