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ABSTRACT: 
 
In this paper we present a method to efficiently detect moving objects namely vehicles in airborne thermal videos. The motion of the 
sensor is estimated from the optical flow using projective planar homographies as transformation model. A three level classification 
process is proposed: On the first level we extract interest location applying the Foerstner - operator. These are subject to the second 
finer level of classification. Here we distinguish four classes: 1. Vehicles cues; 2. L-junctions and other proper fixed structure 3. T-
junctions and other risky fixed structure. 4. A rejection class containing all other locations. This classification is based on local 
features in the single images. Only structures from the L-junctions class are traced as correspondences through subsequent frames. 
Based on these the global optical flow is estimated that is caused by the platform movement. The flow is restricted to planar 
projective homographies which highly reduces the computational time. This opens the way for the third classification. The vehicle 
class is refined using motion as feature. Inconsistency with the estimated flow is a strong evidence for movement in the scene. This 
is done by computing a difference image between two sequent frames transformed by a homography to be taken from the same 
position. The difference images are pre-processed using vehicle properties and velocity. 
 
 

1. INTRODUCTION 

Detection of moving objects even if the observer moves is a 
very important task for every creature in the world. Think on a 
predator and a prey. In civilisations this is very important in 
traffic and security aspects. Even for sensor calibration or 
sensor pose estimation this is important because the movement 
between two sequent frames is often so small, that it can not be 
detected by RANSAC (Fischler & Bolles 1981) or similar 
outlier detection algorithms. Thermal images provide unique 
opportunities to detect vehicles and reveal their activity in 
urban regions at any season in the year and at day or night. 
Independent of the colour or type all vehicles appear similar 
with respect to their size and outer conditions (Ernst 2005). 
Depending on the resolution and aspect active vehicles or parts 
of them may appear as hot spot (e.g. the exhaust). The exterior 
of the body of fast vehicles takes the temperature of the 
surrounding air. Often they will appear as cold spots on the 
warmer road surface. On a sunny day high temperature 
differences occur due to shadow and sun. So the appearance of 
vehicles in such data varies strongly with the exterior condition.  
Because the videos are taken from a moving platform the 
optical flow caused by this movement has to be estimated in 
order to distinguish the two types of motion in the images: Flow 
caused by the platform motion versus motion caused by moving 
objects in the scene. 
Estimations of the flow caused by the sensor platform usually 
assume the scene to be stationary. Therefore, vehicles may 
cause substantial systematic error. If some of them move in the 
same direction and cause correspondences with residual 
movement below the threshold used for outlier decision they 
may have a considerable impact and spoil the precision of the 
estimation. For data from urban terrain with a lot of traffic this 
is not unlikely. The main purpose of this contribution is to solve 
both problems at the same time: Refine pose estimation by 
reducing the systematical error caused by moving objects and 

use the pose estimation namely the estimated homography to 
improve the detection of moving objects in the image. 
 
 

2. APRIORI CLASSIFICATION OF INTEREST 
LOCATIONS 

In order to exclude as many unreliable structures from the flow 
estimation as possible we propose a two level classification of 
image locations prior to it. The flow estimation is then followed 
by a third step. We use only this third step of classification to 
exclude moving objects from the flow estimation. In the first 
level homogenous and boundary locations are detected and 
excluded from further consideration. Only a few interest 
locations remain for which the second level is performed which 
consumes much more computation per location. Fig. 1 gives an 
overview of the structure of our classification hierarchy. It is 
described in more detail in the sections below. 
 

 
 

Figure 1. Classification hierarchy for image locations 
 
2.1 First Level: Interest Locations, Boundary Locations 
and Homogenous Locations 

It is not possible to localize correspondence between different 
frames if the image is homogenous in that location. If an edge 
or line structure is present at a location in the 2-d image array 
there may still be an aperture problem. Secure correspondence 
can only be obtained at locations where a corner, crossing or 
spot is present. It is proposed to use the averaged tensor product 
of the gradient g of the grey-values (Förstner, 1994) 
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where x and y indicate the directions in the image. The discrete 
version of this matrix is obtained by convolution of the original 
image with three masks successively (two for the directional 
derivatives with inherent smoothing and one Gaussian for 
averaging the squared gradient). For better precision we 
recommend to use an hourglass like filter in the last averaging 
step, oriented on the gradient direction (Köthe, 2003). We do 
not further treat the interest-operator in this contribution.  
Note that the remaining pixels have both eigenvalues 
significantly non-zero and are called interest pixels from this 
on. For image materials like the one presented in Section 3 
around one ‰ of the pixels are classified as interest pixels. For  
further reduction of computational complexity without losing 
precision of the result we perform non maximum suppression 
using the eight pixel neighbourhood. 
 
2.2 Second Level: Spots, Corners, T-Junctions and other 
Structure 

As already proposed by Förstner (1994) the pixels around the 
interest pixels class are grouped in clusters according to 
proximity and local paraboloids are fitted to these clusters to 
determine a unique location for each such cluster with sub-pixel 
accuracy. The result is the set of interest locations. 
In order to make sure that the interest locations are distributed 
over the whole image and do not cluster too much in densely 
structured areas, we set an equally spaced grid (e.g. ten by ten) 
over the image. Inside of each sub-image only a limited number 
of interest locations (e.g. maximal fifteen) is accepted. If there 
are more interest locations available only those with the best 
value for the structure tensor will be accepted.  
Felsberg & Sommer (2001) theoretically derive the 
recommendation of using polar coordinates once interest 
locations have been detected by local energy maximizations 
like the structure tensor operator presented above. As practical 
consequence there is a research line particularly concerning 
structure based correspondence evaluation for stereo based on 
this decomposition of local structure around interest locations 
(Krüger & Felsberg 2004). 

d

 
Figure 2. The circular grey-level function: Left pixel grid with interest 
location and circle around it; right grey–level function along this path 

 
Following this we define a cyclic one-dimensional function gd 
along a circular path of radius d around each interest location 
containing the grey-values as function on the interval [0,2π). 
Fig. 2 shows the principle. Note that while the grey-values are 
associated to discrete pixel positions the centre of the circle is 
located at the interest location which is determined with sub-
pixel accuracy. In order to avoid strong dependence of the 
results on the parameter d we repeat the circular sampling at all 

radii 1≤d≤dmax and obtain several functions over the interval 
[0,2π). Figs. 3 display such sampling in the upper left position 
under ‘Original’ whereby the functions are appended one after 
the other so that the total domain is [0,dmax2π). This function is 
normalized (byte to one) and average-free so that it takes 
positive and negative values.  
 As proper rotation invariant features we chose the Fourier 
power coefficients of each function. The first ten coefficients 
i.e. dmax10 features are used in a nearest neighbour classifier. To 
obtain a consistent metric we normalised the features to be in 
the interval [0,1]. The feature vectors are displayed in the Figs. 
3 upper right under ‘Discrete Fourier transform’. Also the grey-
values around the interest locations are shown in a window of 
(2d max)2 pixel size (dmax was chosen to be 7 here). The lower 
right part indicates the corresponding location in the image 
using a black arrow. 
 

 
Figure 3. Example for an interest location of the L-class For each radius 
more than one of the lower frequencies appears strongly. For the larger 

radii this gets stronger 
 
The following three classes were distinguished: 
 
Class 1 – L-class: The main purpose of the classification is to 
distinguish among the interest locations those that may 
contribute reliably to the homography estimation from those 
that do not. We call this class the L-class because it contains 
things like the corners of terrain regions of different 
temperature. In urban terrain this includes also building 
vertices. So also Y-junctions belong to this class.  
 
Class 2 – T-class: One source of systematic error for the 
homography estimation are image structures that result from 
partial occlusion. We call this class the T-class because 
typically the occluding part crosses an occluded boundary like a 
T. Such structure will often not be detected as outlier by the 
sub-sequent RANSAC analysis described in Sect. 3. because 
the systematic error is below the thresshold. We include also 
other unreliable structure like those locations that do not 
provide robust correspondence – e.g. for lack of curvature. 
 
Class 3 – vehicle cues: Vehicles often move and thus violate 
the assumptions made for the homography estimations. If their 
movement is small they may not be detected as outliers by the 
RANSAC search just like the T-class objects and cause 
systematic deviation of the estimation. On this stage we can 
only detect vehicles that appear sufficiently small, so that they 
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can be discriminated as being spot-shaped by our features 
within the radius dmax.. Larger vehicles in the foreground will 
often end up in the L-class, because they are to big to be 
recognized by local features. But these are usually fast enough 
to be recognized later as not consistent with the homography. 
 
Fig 4. shows the result after the first two classification steps. 
You can see many falsely detected vehicles because all spot 
shaped objects were put in this class. 
 

 
Figure 4.  A priory classification of interest location: +=reject, T=T-

class, L=L-class, □=vehicle cue class 
 

3. MOTION DETECTION 

 
The main feature for the recognition of vehicles is their 
movement in the scene. However movements in the aerial video 
result from two sources, the vehicle movement and the 
movement of the platform. We are interested in oblique views 
from sufficiently high moving planes. The appropriate model 
for the optical flow caused by platform movements is therefore 
a planar projective homography (Hartley & Zisserman 2000) 
which is estimated from the video itself. 
Any correspondence trace of interest points not consistent with 
this mapping is resulting from a moving vehicle with high 
significance or objects far outside the main scene plain. The 
homography estimation must be robust and precise. If the 
precision is too bad many interest points may violate the 
homography mapping and will falsely be detected as vehicle. 
 
3.1 Robust Homography estimation and difference image 

We therefore basically use the RANSAC method (Fischler & 
Bolles 1981). But there are some modifications and 
improvements. At first we perform a standard adaptive 
RANSAC with guided matching (Hartley & Zisserman 2000). 
This means that the algorithm computes the number of samples 
on its own. Based on the lowest outlier rate this is done by 
assuring that with a probability of 99% one of the samples 
consists of inliers only. Then a least square solution is 
computed and the outliers are proved on this hypothesis. To 
increase the precision by redundancy we compute three 
homographies for each time step t, i.e. frame pairs (t,t+1), 
(t+1,t+2) and (t,t+2).  Taking only correspondences that were 
tracked through all three images we perform bundle adjustment 
for homographies (Kraus 1994, Hartley & Zisserman 2000) 
using minimal parameterization. To this end we compute the 
quadric decomposition of the homography as proposed by 
Faugeras (1993). To select the right one of the two solutions we 

build pairs of solutions with consistent normal vector of the 
scene plain and compute the back-projection-error as last 
criterion. The constraint that all correspondences are located on 
the same 3D-plane reduces the problem from 24 to 14 
parameters describing the homographies uniquely. To further 
improve the homography estimation we only use those view 
correspondence-triple that have –after initialising over the first 
triple – the first interest point classified as L-class after the last 
step of classification. 
Figs. 5 and 6 show exemplarily that prior classification of the 
interest locations and restriction of the input to the estimation 
process only to the most reliable class – the L-class - leads to 
high improvement of the flow estimation. The first image was 
transformed with the computed homography to match the same 
sensor position as the second but to a sequent time period. Then 
the absolute differences between the transformed first image 
and the second image of a pair is computed and coded in grey 
in Fig. 6. 
 

 
Figure 5. Homography differences without prior classification 

 

 
Figure 6. Homography differences with prior classification 

 
3.2 Segmentation and physical information 

In the difference image we see different types of objects. There 
are some systematical errors caused by the fact that the scene is 
no texture on a plan but truly three-dimensional. The larger the 
scene depth is the more systematical errors appear in the scene. 
Mostly we see grey value differences caused by the motion of 
objects like vehicles. 
We have to decide between the two object classes: systematical 
error from motion and from three-dimensional structure. For 
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this decision we use some physical information about the 
objects we like to detect. We can not compute the exact 
velocity of a vehicle from one difference image but we can 
compute the velocity relative to the width of the vehicle. Setting 
a default velocity we can perform segmentation of the 
difference image. The computed segments can be evaluated 
using properties like roundness or eccentricity. Objects with a 
distinct three dimensional structure – like buildings – cause 
segments with high eccentricity which can easily be 
distinguished from the others. Fig. 7 and 8. show the different 
results after the segmentation and after using physical 
information. The different segments are coded in multiple 
colours. 
 

 
Figure 7 default segmentation result 

 

 
Figure 8 segmentation result with physical information 

 
3.3 

3.4 

Motion detection in the context of interst location 

The last step in our approach is the motion detection. In contrast 
to other methods we analyse only the motion of our interst 
locations. This highly reduces the computational time. We 
analyse the region around our interst location in the difference 
image and can set different thresholds for the size of the nearest 
segment for our decision based on the a priori information. 
The results are shown in Fig.12 and 13. 
 
 
 
 

Limitations 

 
The first kind of limitations we have to take care of is shown in 
Fig. 12. If we have to deal with many occlusions the detected 
motion will often be smaller than the true and can not be 
detected over the whole sequence. The second limitation we 
have to take care of comes from the relative scene depth. Figure 
9 shows the maximal relative scene depth dependent on the 
velocity of the air vehicle under two different depression angles 
and two different maximal errors in the image. If the scene 
depth is too strong the system can be changed to work in the 
motion detection step with half resolution. This is in general 
only the case if the flight altitude is too low and the vehicles we 
want to detect become very big. This means that the system also 
works under worse conditions. 
 

 
Figure 9 maximal scene depths dependent on velocity 

 
One different way to deal with the errors caused by scene depth 
was presented in section 3.2. We have to remember that the 
main scene depth comes from extended structure and therefore 
lead to extended objects in the difference image. This is why in 
Fig. 12 false alarms are only isolated single. 
 

4. EXPERIMENTS AND CONCLUSION 

4.1 The Data 

Both example videos had been obtained with an AIM camera 
with focal plane array sensitive in the mid thermal domain at 3-
5µm. It was forward looking mounted to a helicopter platform. 
They were taken during day-time, so that vehicles and 
vegetation appear darker (i.e. colder) than the background. The 
road surface is quite warm. One frame is displayed in Fig. 10. 
This needs special care in order not to disturb the flow 
estimation. Some vehicles on the right lanes exhibit hot 
exhausts. Vehicles are of considerable different size. 
One frame of the second sequence - called small road scene - is 
shown in Fig. 11. In this scene we had to deal with very low 
flight altitude which increases the scene depth and many 
occlusions on the road. Even our reference classification - made 
the human eye failed in the most frames of this sequence. 
Fig. 12 shows the classification result of one frame from the 
autobahn scene after using the movement feature to detect the 
vehicles. Note that in contrast to the prior classification 
presented in Fig. 4 almost no false alarm appears off the road. 
On the other hand almost all vehicles are correctly marked now. 
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Figure 10. One frame of the autobahn scene (grey values have been 

adapted for good visibility here) 

 
Figure 11. One frame of the small road scene (grey values have been 

adapted for good visibility here) 
 
4.2 Results 

Table 1 and 2 show the classification results of our approach on 
two randomly picked frames of each scene as absolute values.  
 
 Moving objects Non moving objects 
Detected motion 38     …|… 39 1          ...|...   5 
No motion detected 0        ...|...   3 1045    ...|...   995 

Table 1: Detected motion in the autobahn scene 
  
 Moving objects Non moving objects 
Detected motion 2    ...|...   16 0        ...|...   5? 
No motion detected 0    ...|...   1 995    ...|...   887 

Table 2: Detected motion in the small road scene 
 
Here the non moving objects are all inters points from scene 
fixed structure. You can see the relative results averaged over 
ten randomly picked frames of each sequence in Table 3. Note 
that for the small road scene even the human classification 
failed so that some results are shown with a “?” to remind on 
the inaccuracy. 
 
 Moving objects Non moving objects 
Detected motion 91.30% | 88 ±4% 0.30%   | 0.8 ±0.7% 
No motion detected 8.70%   | 12 ±4% 99.70% | 99.2 ±0.7% 

Table 3: Left: autobahn scene , right: small road scene 
 

 
Figure 12. Posterior classification for autobahn scene  

 

 
Figure 13. Posterior classification for small road scene 

 
4.3 Discussion and Future Research Lines 

Learning samples –about ten for the first three classes- have 
been taken from the first image of the 400 frames of the first 
video. For the experiment we used then only the last 200 frames 
of this video to ensure that we made no self-classification. For 
the second experiment we used the same trainings data. The 
prior classification may suffer from inadequate samples if the 
parameters of the scene (daytime, season, wheather) or of the 
camera change. On the other hand the posterior classification 
opens the way for automatic adaptation of the learning example 
set. We may use constantly appearing moving vehicles as new 
learning examples for the vehicle class and remove those old 
ones that could not be affirmed. Also we may use the residual 
error after estimating the flow as criterion to assess old and new 
learning samples for the L- and T-class. For experiments 
following this line of research we need a larger data set. 

Deviations in the optical flow from the proper homography may 
not only result from movement but also from violation of the 
planarity assumption. Actually, the terrain around the Autobahn 
shown in Fig. 10 is not flat at all. Yet, in this example the flight 
altitude is so high compared to differences in the terrain (scene 
depth) and the time interval for the correspondences between 
the frames so short, that such effects hardly matter. The 3d 
structure can be understood as texture on the main plane. 
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We could also show that for more difficult terrain like in Fig. 11 
the systematical error from scene depth could be suppressed by 
the segmentation described in section 3.2. Particularly, for low 
flying platforms over urban terrain with high buildings, 
however, they will. Albeit violating the homography transform 
such non-planar structure flow must fulfil another weaker 
constraint – the epipolar condition which is best captured in the 
fundamental matrix. This can also be estimated from 
correspondences (Hartley & Zisserman 2000). In such 
situations an additional classification of interest locations is 
recommended – consistent with the epipolar constraint versus 
violating it. The latter must really be moving, while nothing can 
be asserted about the former. Those may be moving in the 
direction of the epipolar line. Further studies in this direction 
are intended. They require appropriate example videos. 

Another source of deviation from the homography flow is 
distortion resulting from the camera (Michaelsen et al. 2004). 
Particularly, cameras that scan the image using rotating mirrors 
and only a few sensors exhibit strong non-projective distortions. 
They violate the planarity assumption inherent in the pin-hole 
camera model. More recent and future thermal cameras feature 
focal plane array sensors and thus overcome the problem. The 
example video of this contribution was obtained by such 
modern device. The remaining non-projective lens distortions 
are a minor problem. A linear radial symmetric model for this is 
usually sufficient. In the estimation procedure outlined in Sect. 
3 of this contribution such distortion estimation with one 
parameter is included. 
In Sect. 2.1 we excluded boundary locations from further 
processing for this contribution. However, it is possible to use 
straight lines instead of point locations for homography 
estimation as well. Following this rationale the boundary 
locations have to be connected and prolonged into sufficiently 
long and straight line segments. This is going to be one of our 
future research topics. Freeform boundaries can also be used in 
this context following the approach of Akav et al. (2004). It is 
obvious from Fig. 10 that this opens the way to utilize much 
more of the information contained in such data. 
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