A Simple Method for Extracting M odels from Protocol Code

DavidLie Andy Chou DawsonEngler David L. Dill

Computer Systems Laboratory
Stanford University
Stanford CA 94305
E-mail: {davi dl i e, acc, engl er, di | | }@t anf ord. edu

Abstract

The use of model checking for validation requires that
models of the underlying system be created. Creating such
models is both difficult and error prone and as a result, ver-
ification is rarely used despite its advantages. In this paper,
we present a method for automatically extracting models
from low level software implementations. Our method is
based on the use of an extensible compiler system, xg++,
to perform the extraction. The extracted model is combined
with a model of the hardware, a description of correctness,
and an initial state. The whole model is then checked with
the Mury model checker. As a case study, we apply our
method to the cache coherence protocols of the Stanford
FLASH multiprocessor. Our system has a number of advan-
tages. First, it reduces the cost of creating models, which
allows model checking to be used more frequently. Second,
it increases the effectiveness of model checking since the au-
tomatically extracted models are more accurate and faith-
ful to the underlying implementation. We found a total of 8
errors using our system. Two errors were global resource
errors, which would be difficult to find through any other
means. We feel the approach is applicable to other low level
systems.

1 Introduction

Our ability to design and manufacture increasingly com-
plex systems is quickly outstripping our ability to verify
those systems. The traditional method of verification is test-
ing through trials. However, it becomes exponentially more
difficult to fully exercise a system through testing as the
number of control paths and corner cases increases. The
result is increased system cost and decreased system relia-
bility.

Formal verification methods are an attempt to solve this
problem [17, 18, 21]. One option is model checking, which
is the systematic and exhaustive exploration of the system

state space. The computational complexity of model check-
ing makes it impractical for full system models, so it is com-
mon to abstract system behavior (which means to suppress
implementation details) or to scale the system down (which
means to model a small instance of the system, say, three
processors instead of 64). Performing one or both of these
usually covers a greater range of behavior than conventional
testing, and so uncovers bugs that testing does not. It is im-
portant to note that when used in this way, model checking
abandons the traditional goal of formal verification, which
is proving the “correctness” of a system, in favor of the
more pragmatic goal of discovering bugs.

The difficulty of abstracting the design, a process that
involves a great deal of manual effort, hampers the use of
model checking in actual system design. Moreover, human
errors in the manual abstraction result in missing bugs and
causing false alarms during the verification process, further
increasing the cost and reducing the usefulness of model
checking. Such errors can be introduced both when con-
structing the model and as a result of “drift” as the actual
system evolves [8].

This paper focuses on making model checking practi-
cal by developing techniques to automatically extract model
descriptions from code. As a case study, we apply our meth-
ods to the cache coherence protocols used on the Stanford
FLASH multiprocessor [15]. A FLASH protocol imple-
mentation consists of a collection of event-driven software
handlers that are dispatched according to the requests that
arrive on the various interfaces. These handlers, which run
on the node controller, send messages on the 1/O, processor,
and network interfaces to maintain a directory of cache line
states and service cache line requests.

Conventional simulation-based verification of FLASH
has found many protocol bugs. Nevertheless, no protocol
has booted perfectly on the hardware on the first try [7]. Us-
ing simulation to verify the protocols has been inadequate
because of the limited and fixed detail level of the simulator
and the high cost of simulating a large number of paths.

Though our approach could have been applied to a wide

range of systems, FLASH protocol code has a number of
features that make it a good case study of our approach.
First, the catastrophic nature of coherence code bugs has al-
ready led others to use manually driven model checking to
check FLASH protocols [19]. Thus, we can compare our
method with a more conventional verification technique.
Second, FLASH is representative of low level code that ex-
ists on a variety of embedded systems. It is highly opti-
mized and difficult to read, and thus difficult to specify cor-
rectly. Finally, for the purpose of finding errors, FLASH
represents a hard test: it is real, working, systems code that
has undergone years of testing under simulation, on a real
machine, and via formal verification. The main protocol we
check, dyn- pt r, has been under constant use for over five
years and has formed the basis for almost all experimental
results on the hardware [13].

The critical enabling technology for our approach is an
extensible compiler, xg++ [7, 10]. xg++ allows users to
easily write domain-specific analysis extensions using a lan-
guage called metal. There are two types of extensions: ex-
tensions that perform extraction, and extensions that per-
form translation. Extraction extensions select sections of
protocol code to be modeled, while printing extensions
translate the extracted protocol code into a Mury model de-
scription. xg++ uses program slicing to extract the selected
sections of the implementation, while the translation is per-
formed on the sliced-out abstract syntax tree (AST) [23].
Because the extraction is flexible, the author of the exten-
sions can use human judgment to abstract away implemen-
tation details in order to focus on the important aspects and
exploit all of the programming conventions used in the pro-
tocol code to do the best possible extraction. The use of
xg++ for this application makes it feasible to write several
customized translators to produce different models of the
same underlying system, each focusing on different func-
tionality. Each extracted model is then combined with a
manually constructed model of the rest of the system, a cor-
rectness definition, and an initial state to form a complete
model, which is verified using the Mury model checker.

Our main results are:

1. The approach is effective. We found eight hard errors
in the code. All of these could have crashed the sys-
tem. Two are errors that only occur on very specific
sequences of events, which would make them difficult
to find through testing.

2. The approach is practical. Our extraction and trans-
lation extensions are about 100 lines of code, which
extract descriptions that are approximately 1000 lines
from implementations that are about 10K lines. We
did not have to make any modifications to the FLASH
source, except to preprocessing macros.

3. The approach is more effective than manual verifica-

tion — it found more bugs (the manual effort found
none) and is significantly easier. Its increased ef-
fectiveness is largely due to the automatic extrac-
tion, which is more faithful to the implementation and
checks many more features than the manually con-
structed model.

We are not claiming that these techniques are fully auto-
matic. Rather, they automatically extract models from parts
of the system whose implementations are understandable by
xg++. For example, the FLASH network had to be manu-
ally modeled because it did not have an implementation that
could be automatically processed.

In this paper, we will explain our methodology and show
how it was applied to the FLASH cache coherence proto-
cols. We begin with a high level overview of how the sys-
tem works in Section 2. The steps that require manual inter-
vention are then detailed in Sections 3, 4, and 5. Section 6
presents the results of our verification of the FLASH proto-
cols. We follow this by examining the accuracy of a manu-
ally constructed model of a FLASH protocol in Section 7. A
comparison of our method to other similar methods is given
in Section 8. Finally, we conclude the paper in Section 9.

2 Overview of the Extraction Method

In this section, we explain at a high level how our sys-
tem works and then give an example of how an extracted
model compares with a manually built model, as well as
with the corresponding implementation code. Figure 1 il-
lustrates the process of extracting and verifying models of
the FLASH protocols. In our system, clients use the xg++
extension language, metal, to write the metal slicer exten-
sion, which specifies the state variables and subroutines that
should be extracted into the model. The user also specifies
rules in the metal printer extension for translating the sliced
actions into a Mury model description. The xg++ compiler
then takes these two metal extensions along with the origi-
nal implementation code and produces a Mury model of the
protocol.

Mury is a model checker that uses explicit state enu-
meration with a Pascal-like language for specifying mod-
els. Model checkers perform verification by exhaustively
searching the reachable states of a system for violations
of user-specified invariants. In any given state, Mury will
“nondeterministically” execute all possible outcomes. Each
outcome is a new state, which is checked for correctness and
then inserted into a table that contains visited states. If the
state has been visited earlier, it is pruned and its successors
are not visited again.

Before the Mury model checker can be applied, the pro-
tocol model must be combined with a model of the hard-
ware on which the protocol runs. Unfortunately, there is

Protocol Code
(Implementation)

Correctness
Properties

State Variables | Xg++
(Metal Slicer) compiler

Protocol Model

Error List

Translation Patterns
(Metal Printer)

Hardware Model

—
.

Starting State

Figure 1. Flow chart of model extraction and verification

no easy way to automatically create this model since the
hardware model must describe everything from the behav-
ior of the processor interconnect to the functional units on
the node controller. As a result, the user must still write
the hardware model manually. The user must also spec-
ify a definition of correctness in the form of invariants and
assertions, as well as a starting state. In the case of the
FLASH protocols, these had to be manually specified since
none could be extracted from the implementation.

At a high level, the user performs the following five
steps:

1. Define the protocol state to be modeled. This is es-
sentially a list of variables and functions relevant to
the properties to be checked and comprises the metal
slicer extension.

2. Add routines that insert or rewrite code. This step may
add correctness checks or abstract away detail for the
model. This comprises the metal printer extension.

3. Create amodel of the hardware, correctness properties,
and initial state. This process is entirely manual.

4. Combine the extracted model with the manually speci-
fied components to create a complete model that Murp
can check. This can be automated — in our case, a set
of scripts performed this function.

5. Check the model with Mury. The model checker pro-
vides an error trace if any correctness properties are
violated.

However, these steps are not as difficult as they might
appear. The first three steps are only necessary when the
model is first defined, if there is a significant reimplementa-
tion, or if the scope of the verification effort changes. Since

the metal extensions are applied to all handlers, they are in-
dependent of the number of handlers in the protocol code or
the length of the code. The first two steps can be used to de-
fine several different protocol models, but these models will
usually have nearly identical hardware models, correctness
properties and starting states. Furthermore, though the last
two steps might need to be performed more frequently than
the first three, they are almost completely automated in our
system, thus minimizing the incremental cost of keeping the
model up to date if the underlying implementation changes.

Now, let us examine how this extraction method works
on an actual segment of FLASH protocol code and how the
extracted model compares with a manually specified model.
Figure 3 shows a manually specified model of the FLASH
protocol code in Figure 2, both with line number annota-
tions that illustrate the correspondence between the FLASH
implementation and model description. What the segment
code actually does is not important for this example. Rather,
the reader should notice that the paths of execution are de-
pendent on the hl structure, which is the directory state. In
addition, there are various SEND commands that cause mes-
sages to be sent on the processor (Pl) or network (NI) inter-
faces. Finally, the reader should note that there are debug-
ging assertions in the code that function just as assertions
do in any C code. A Mury model description consists of a
series of rules. The rule bodies are executed when the rule
precondition (the part before the ==>) is true. The structure
of the model differs from the code because the author of the
model chose to use two separate rules with different precon-
ditions that are explicit “if” statements in the code. Despite
this superficial difference, there is a clear mapping between
statements in the Mur¢p description and the FLASH imple-
mentation.

The core observation motivating our work is that the cor-

voi d Pl Local Get (void) {
[* ... Boilerplate setup code ... */
headLi nkAddr =
FAST_ADDRESS _TO_HEADLI NKADDR(addr) ;
FLDEBUE ' h’, "%: headLi nkAddr = %1 x",
procNum headLi nkAddr) ;
READ HEADLI| NK(headLi nkAddr) ;
nh.len = LEN _CACHELI NE;
2,10 if (!'hl.Pending) {
11 if ('hl.Drty) {
/[* ... 37 lines deleted ... */
ASSERT(!hl . 10;
/! The comented out ASSERT is
/] true 99.99% of the tine, but is
/'l not al ways

12! /1 ASSERT(hl . Local);
/*... deleted 15 lines ... */
14 Pl _SEND(F_DATA, F_FREE, F_SWAP,
F_NOMAI T, F_DEC, 1);
13 hl . Local = 1;
/* ... deleted 14 lines */
3 } else {
5 ASSERT(! hl . Li st);
5 ASSERT(! hl . Real Ptrs);
FLSTAT_I NC(procNum readsCancel | ed);
if ('hl.10 {
5 ASSERT(hl . HeadPtr);
4 ASSERT(! hl . Local) ;

nh. |l en = LEN_NODATA;
/* setting opcode for send */
8 nh. negType = MSG_CET;
/* setting destination to
node that called us */

8 nh.dest = hl.Ptr;
8 NI _SEND(THI RD, F_NODATA, F_FREE,
F_NOSWAP, F_NOMAIT, 12);
/* ... deleted 12 lines ... */
6 hl . Pendi ng = 1;

}

Rule "PlI Local Get (Else)"

1: Cache.State = Invalid & ! Cache. Wi t

2: & ! DH. Pending -- if pending NAK

3: & DH.Dirty ==>

Begi n

4. Assert !DH.Local "PlLocal Get:L = AQ";

5: Assert DH Head & !DH. List & DH. Real =0
"Pl Local Get: case D=1";

6: DH. Pending := true;

7: Cache.Wait := true;

8: Send_Request (Honme, DH HPtr, Get,
Horme, void);
End;
Rule "PlI Local Get (Put)"
9: Cache.State = Invalid & ! Cache. Wit

10: & ! DH Pending -- if pending NAK
11: & ! DH Dirty ==>

Begi n
12: Assert !DH. Local "PlLocal Get:L = A0";
13: DH. Local := true;
14: CC_Put (Hone, Menory);

EndRul e;

Figure 3. Partial Mury model description for
the Pl Local Get handler in Figure 2.

Figure 2. Code associated with model de-
scription in Figure 3.

* nh.len : = | en_nodat a;
nh. negType : = MSG_CET;
nh.dest := hl.Ptr;

* assert(nh.len = | en_nodat a);

Rule "PlI Local Get"
Cache. State = Invalid & !
Cache. Wit & Qspace(l) ==>
Begi n
* HG header.nh.len := |l en_data;
i f(hl.Pending 0) then
if(hl.Dirty = 0) then
nmbResul t
pi _send_func(procNum nh);
Local := 1;
el se
assert(((hl.List =0) !=
assert(((hl.Real Ptrs = 0)
if(hl.10=0) then
assert((hl.HeadPtr '= 0));
assert(((hl.Local =0) !'=10));

0)):
'=0));

ni _send(2, 0, procNum nh);
hl . Pending : = 1;

el se

/* ... deleted ... */

Figure 4. An automatically extracted model of
the FLASH code in Figure 2.

respondence between the model and the implementation is
so strong that it should be possible to automatically build
the model description from the code. We see this in Fig-
ure 4, which shows an automatically extracted model of
the code in Figure 2 that was derived by our system. The
metal slicer used to generate this description specifies that
the hl and nh variables, the SEND functions, and the asser-
tions should be extracted. The extracted model mirrors the
code more closely than the manually constructed model and
is richer in its description. Specifically, the header length
assignments and assertions present in the code, which are
marked with asterisks in the figure, are included. Automatic
extraction makes it easy to model such additional features.

There are some differences between the manually con-
structed model and the extracted model. An example of this
is line 7 in Figure 3, which does not appear in the proto-
col code because the hardware sets the cache state. When
manually modeling a system, the user is free to mix ac-
tions of both the code and the hardware in the model. Our
extracted model does not include hardware actions, which
must be modeled manually instead. Another good example
of both of these problems is line 12 in Figure 3. It is an
assertion that has been removed from the implementation,
but remains in the Mury description. On the other hand,
it did not cause any false positives because of translation
mistakes elsewhere in the model. The problem of drift and
translation mistakes between manually written models and
the underlying implementations will be given more detailed
treatment in Section 7.

Automatic extraction has two important benefits. First,
the time required to create a model is reduced, and thus the
user can specify a large number of small models that check
orthogonal aspects of the same implementation. These
small models make model checking computationally fea-
sible, but do not sacrifice model detail. The other benefit
is that the automatic extraction ensures that the extracted
model is faithful to the original implementation.

3 The Metal Slicer

We now discuss how one uses xg++ to extract a proto-
col model. xg++ breaks the extraction down into two tasks.
First, it uses the metal slicer to remove lines of code that do
not affect the protocol state the user is interested in mod-
eling, thus slicing the implementation down into a simpler
model. Second, it translates the actions in the protocol im-
plementation into abstracted actions in the model with the
metal printer. We examine the metal slicer facility in this
section and leave the metal printer for the next section.

The metal slicer allows the user to match arbitrary ex-
pression patterns in the implementation code to select a
slice. Figure 5 gives a partial example of a metal slicer that
extracts actions needed to check that the protocol code sets

the length field of a packet header correctly. Each pattern
declaration (pat) selects a portion of the FLASH code that
will be extracted. For example, pat | engt h indicates
that the length field in the message header is to be extracted
as part of the model description. Message sends and some
directory values are also included: the former since the pro-
tocol must ensure that messages have their header length
fields set correctly before sending, the latter so that paths
dependent on the directory state are executed. In total, the
metal extension of the dyn- pt r protocol is very compact,
encompassing approximately 40 lines without comments.

Using a slicing algorithm [22, 23] automatically derives
all code that affects the parts selected by the metal exten-
sions. Our xg++ based slicer computes a backward slice at
the level of statements with an algorithm based on the pro-
gram dependence graph (PDG) [12]. The nodes of a PDG
represent program statements and the arcs represent the
control and data dependencies between statements. Control
dependencies occur when a statement can affect whether an-
other statement is executed. For example, the true and false
branches of an “if” statement are control dependent upon
its condition. Data dependencies, on the other hand, link
definitions of variables to their uses. Intuitively, these de-
pendencies capture the flow of information from value pro-
ducers or mutators to their consumers. Data dependencies
can be calculated using the well-known “reaching defini-
tions” data flow algorithm [1]. The slicing algorithm itself
is implemented as a simple graph traversal of the PDG.

Standard slicing techniques have difficulty producing ac-
curate slices in the presence of common C constructs such
as pointers, unions, and unstructured control flow. How-
ever, since FLASH protocol code shares features common
with low level systems code, it those troublesome features
of C in very limited ways. As our slicer is configurable, we
can have it automatically abstract those features by rewrit-
ing those sections, as will be demonstrated in Section 4.

By having an extensible compiler such as xg++ the user
need not understand the details of manipulating the com-
piler’s internal data structures, nor does the user need to un-
derstand the implementation of program slicing algorithms.

4 The Metal Printer

Translation of the sliced code is accomplished by the
metal printer extension, which allows the user to arbitrar-
ily insert or rewrite actions in the model description. This
facility allows the user to exploit domain-specific knowl-
edge to create an optimal extraction. This capability is im-
plemented by matching user-specified patterns against the
abstract syntax tree as the slice is emitted. A pattern is
enclosed by the first set of braces before the ==>. If the
pattern matches, then the default output is suppressed and
the pattern’s action (after the ==> token) is executed to

smlen slicer {
/* wildcard variables for pattern matching */
decl { scalar } type, data, keep, swp, wait, nl;

/* Pattern that will match all
pat length = { nh.len };

uses of the length field.

/* Patterns to match network and processor nessage

sends, which use the length field. */
pat sends =
{ NI _SEND(type, data, keep, swp, wait, nl) }
| { PI_SEND(type, data, keep, swp, wait, nl) }

/* Patterns to match accesses to directory entries */
pat entries = { hl.Local } | { hl.Dirty } | { hl.List };

/* Mark all matched patterns: the slicer wll
extract these and all code that influence them */

*/

all: length | sends |

}

entries ==> { nmgk_tag(mgk_s); }

Figure 5. A metal slicer extension used to extract a model for verification of length field handling.

output user-specified code. The special emitter function
ngk _e takes a pr i nt f -like format string augmented with
% , which allows matched pattern subtrees to be output
as strings. One use of this facility is to include additional
code that checks for correctness properties. This can help
users tighten the verification of their models. Figure 6 gives
an example of a protocol-specific printer that automatically
inserts assertions before each NI _SEND to check that the
length field in a network packet is correctly set before the
packet is sent.

In addition to strengthening the correctness properties,
the metal printer facility can be used to abstract away imple-
mentation details by taking advantage of FLASH domain-
specific knowledge. There are three main areas in the
FLASH verification where this is done: the emulation of
bit operations in Mur¢, reconstructing implicit types from
C unions, and abstracting C data structures to reduce the
state space.

Mury is a more minimal language than C, and as such,
does not provide some of the facilities that C does. Some
examples of this are the bit operations that are often found
in embedded systems code such as the FLASH protocols.
These operations must be emulated by the Mury model to
allow for proper protocol modeling. We use our config-
urable printer to match uses of unsupported operations and
rewrite them to call subroutines in the hardware model that
emulate those actions.

Another complication results from the loose typing of C.
In the bi t vect or protocol, the Vect or variable repre-
sents a single node ID when there is only one sharer, but

holds a bitvector of sharers when there is more than one.
The bi t vect or protocol keeps the number of sharers in
a separate variable. Mury does not have enough type in-
formation to interpret these values since the union is im-
plicit. However, we may leverage the xg++ compiler to
infer the type and rewrite the extracted output. Thus, in the
extracted model, two variables replace the single Vect or
variable, one of which is a node 1D, and the other, a list of
nodes. Each access to Vect or is replaced by an access to
the appropriate variable while each modification becomes
two modifications, one to each of the extracted variables.

Finally, to make model checking tractable, measures
must be taken to limit the number of states. When manu-
ally constructing a model, the user will abstract data types
when it is safe to do so. The same can be done with the au-
tomatic extraction if the compiler can be made to recognize
instances where such abstractions can be made. For exam-
ple, the dyn- pt r protocol uses a linked list to keep track
of the sharers on a cache line. Implementing a literal linked
list produces artificial state space explosion and complicates
the model description since Murp has no concept of point-
ers. Abstracting the linked list to an array makes the model
much simpler and more efficient. The dyn- pt r protocol
code manipulates the linked list through a set of functions,
so every access is explicit. The linked list in the imple-
mentation is thus transformed into an array in the extracted
model by configuring the metal printer to rewrite calls to
the linked list accessing functions.

Interestingly, the extraction itself does not contribute di-
rectly to state explosion in the model checker. The size

smprinter tagged_printer {
decl { scalar } data, keep,

al l:
/* Automatically insert

{ NI _SEND(type, data, keep,

mgk_e("assert (nh.
el se
ngk_e("assert (nh.
mgk_e("ni _send(%,
}
/* rewite 'l en_cacheline’
| { len_cacheline } |

1

swap,

if (mgk_i nt_cst(data)

| ength assertions before each send. */
swap, wait, null); } ==>
1= 0)
len = len_data);");

%

{ len_word } ==> { ngk_e("len_data"); }

wai t, dec, null, type;

len = len_nodata);");

procNum nh);", type,

swap) ;

and 'len_word as 'len_data */

Figure 6. A metal printer extension used to insert length field assertions.

of the state space and encoding is determined by the way
the user chooses to specify the data structures in the model.
Since the actions being extracted are executed atomically,
redundancies and extra local variables in the extraction do
not add extra states. They may result in additional com-
putation time, but for large models this is usually not the
limiting factor.

The metal printer is a good example of the benefit of hav-
ing an extension-based system rather than an annotation-
based one, since the annotation is effectively automated by
the rules set in the printer. This alleviates the need for the
user to manually place annotations throughout the code.

5 The Hardware Model, Correctness Defini-
tion, and Starting State

Before the model checker can be applied, it must be com-
bined with a model of the hardware on which the protocol
runs. In addition, a definition of correctness in the form
of invariants and assertions must be specified, as well as a
starting state for the model. The user verifying the system
must manually create these components. Fortunately, these
components usually do not change much in the course of
system development.

In manually modeled systems, actions performed by the
hardware and protocol can be interleaved. Because part of
the modeling is done automatically in our system, this is no
longer true. Rather, the hardware must be described sepa-
rately so that it accurately models the interaction between
hardware and the extracted model description of the pro-
tocol. There are two types of interaction that concern us.
First, the protocol code can make calls to hardware func-
tional units. Examples of this are the SEND instructions,
which in reality are assembler instructions that cause the
FLASH node controller to transmit messages. The other

type of interaction is where the hardware causes certain
parts of the protocol code to execute. For example, when
the FLASH node controller receives a request, it consults
a table that causes it to execute a specified piece of code
called a handler.

On FLASH, the protocol code activates hardware units to
perform functions. An example of this is the node controller
logic that sends protocol messages out on the various 1/0
subsystem, processor, and network interfaces. The SEND
instructions in the protocol code normally map to assembler
commands, which are decoded and executed, eventually ac-
tivating the interface logic. The hardware model maps these
instructions to a subroutine that manipulates the model net-
work and node controller data structures in the appropri-
ate way to mimic this behavior. Another example is the
“software queue”, which is provided by the FLASH node
controller hardware, where protocol handlers can suspend
themselves in instances when there are not enough physical
resources for them to complete their tasks, to be reactivated
at a later time. Similarly, the hardware model has subrou-
tines that act on data structures that mimic this queue. The
instructions that the protocol code uses to activate the soft-
ware queue are mapped onto these subroutines that we have
provided.

Naturally, the hardware reactivates the suspended han-
dlers at a later time. Thus, we arrive at the other form of
interaction, where the hardware causes certain parts of the
protocol code to run. The FLASH node controller has four
input queues that can cause handlers to execute. One of
these is the software queue where handlers are suspended.
The others are input queues from the 1/O, processor, and
network interfaces. Before suspending themselves on the
software queue, handlers store a continuation PC to a field
in the software queue entries. If there is a valid entry present
on the software queue, the node controller can select this

| Invariants

| Dynptr [BitV | RAC | Coma |

The Real Pt r s counter does not overflow (Real Pt r s maintains the number of
sharers)

Only a single master copy of each cache line exists (basic coherence)

A node can never put itself on the sharing list (sharing list is only for remote
nodes)

No outstanding requests on cache lines that are already in Excl usi ve state

Nodes do not send network messages to themselves

Nodes never overflow their network queues

Nodes never overflow their software queues (queue used to suspend handlers)

The protocol never tries to invalidate an exclusive line

Protocol can only put data into the processor’s cache in response to a request

All processor message header opcode fields are set to valid opcodes

Opcode XOR operations always occur on known opcodes (invalid opcodes are
never created)

If there is no sharer in the HeadPt r , the sharing list is empty

If the sharing list is not empty, Real Pt r s, the number of sharers is greater than
zero

The protocol state is pending while waiting for invalidations

When a line is dirty, the sharing list is empty (this is only true for if there are no
handler suspensions)

X

XXXXXXXX XX

X X

X

X X

XX XX X X X X

X

XXXXXXXX XX

X X

X

XXXXXXXX XX

X X

Table 1. Description of all invariants checked.

suspended handler to be serviced by jumping to the contin-
uation PC. An enumerated variable whose values represent
all the possible entry points that the continuation PC’s can
take together with a dispatch function that mimics the hard-
ware jump mechanism models this behavior. The dispatch
mechanism for the other three queues is similar. Each mes-
sage that arrives on one of the 1/O, processor, or network
interfaces, contains an opcode that indicates the message
type. A JumpTable configuration file that indicates which
handler is executed depending on the type of message that
arrives, is used to program the hardware dispatch. These
dispatch conditions can be easily transformed into the pre-
conditions that guard each extracted handler rule. In fact,
the mapping is simple enough that in our FLASH verifica-
tion, this process was automated with a simple script.

In addition to the hardware model, a correctness defini-
tion must be provided. Table 1 gives a list of invariants that
we check. Some of these are invariants about the modeled
hardware components. For example, a node cannot send a
packet to itself — the network will not route such a request
properly. On the other hand, some invariants are model spe-
cific. For example, in the dyn- pt r protocol, if the list
of sharers is non-empty, then the head pointer cannot be
NULL. The bi t vect or protocol does not use a linked list
so this invariant cannot be applied to that protocol. In addi-
tion, the invariants may change depending on what aspects
of the protocol are modeled. The ability to specify protocol

specific invariants allows the user to provide very specific
correctness conditions. However, as we see here, out of 15
invariants, 11 apply to all cases. Thus, in our FLASH verifi-
cation, the invariants are largely independent of the protocol
model.

Finally, a starting state must be provided. For FLASH,
this is the state of the machine at power-on, meaning that all
valid memory is at its home node and the directory entries
are all blank.

6 Results

With an extracted Mury model, we found a total of eight
bugs in two of the four FLASH protocols modeled. We
found six errors in dyn- pt r (four network header bugs,
two counter overflows) and two in bi t vect or. In con-
trast, the manual verification of dyn- pt r found no bugs.

The results of the verification are given in Table 2.
The size of the manually built component, which includes
the hardware model, invariants, and starting state, changes
slightly between protocols because of the different invari-
ants and needs of each model. Note that the automatic ex-
traction reduces the number of manually written lines by a
factor of two or more. What is even more significant is that
since our method faithfully extracts a model, the user need
not understand every detail of the protocols to produce one.

The automatically inserted assertions described in Sec-

Protocol Errors | Protocol Size | Extracted Model | Manual Model | Metal Size
(Max Processors) | found | (lines) (lines) (lines) (lines)
Dyn-Ptr(n=4) 6 12K 1100 1000 99
Bitvector(n=4) 2 8K 700 1000 100
RAC(n=4) 0 10K 1500 1200 119
Coma(n=4) 0 15K 2800 1400 159

Table 2. The results of verifying four protocols.

tion 2 found four bugs in dyn- pt r. To improve perfor-
mance, the protocol speculatively sets the field to optimize
for the common case. The extractor was able to determine
what kind of message the protocol was sending and asser-
tions were automatically placed before each send operation
to ensure that the data length field was set correctly. Be-
cause Murg exhaustively exercises all paths, it detected the
four uncommon cases where the speculation was false, but
there was no correction code.

After fixing the preceding bugs, two subtle counter over-
flow errors were found. Both errors involved miscalcula-
tions of the maximum number of sharers that a counter had
to record. They are particularly malicious in that they only
manifest themselves as a result of a single rare interleaving
of events.

The first bug involves a performance optimization, limit
search, used in the dyn- pt r protocol. The problem with
using a linked list, as dyn- pt r does, is that the worst case
overhead of searching for a single sharer becomes linear
with the number of sharers. Such a search occurs when a
node n is already on the list and evicts the cache line due
to a capacity or conflict cache miss. As a result, n should
no longer be on the sharing list and needs to be removed.
In practice, a linked list traversal on every cache line evic-
tion is far too costly. However, the sharer must be removed
from the list or repeated evictions and requests can cause
the list to grow without bound. The limit search optimiza-
tion makes the cost of cache line eviction independent of
list length. If the sharer that is to be removed is not found
after searching a fixed number of list entries (the limit), a
counter, St al ePt r s, is incremented to indicate that there
is a “stale” sharer in the list. When St al ePt r s reaches its
maximum value, all sharers on the list are invalidated to re-
move the duplicate sharers. A second counter Real Ptrs
is used to keep track of the list size. It is incremented on ev-
ery sharer addition and decremented on every sharer dele-
tion. As a result, Real Pt r s must be large enough to hold
the maximum number of sharers on a list, which is the max-
imum value of St al ePt r s plus the number of nodes on
the system?.

Unfortunately, due to the reallocation of bits in the struc-
ture used to hold these counters, the size of Real Pt r s was

LActudlly, thisis not really true because of the next bug.

7 bits while St al ePt r s was 10 bits, causing Real Ptrs
to overflow on the actual machine. The model checker
detects a clear sequence of events that leads to the to the
counter overflow.

The second overflow error also occurred on the
Real Pt r s counter, which maintains a count of the num-
ber of sharers. In the absence of limit search (maximum
value of Stal ePtrs is zero), the maximum value of
Real Pt rs was thought to be the maximum number of
physical nodes that can be supported on a system. How-
ever, a specific interleaving of messages can result in a
Real Pt r s count of one greater than the number of nodes,
thus breaking the rule. Because the implementation of the
protocol has space allocated to Real Pt r s for 128 nodes
regardless of the number of nodes on the system, this bug
never occurs, even after extensive use of the machine, be-
cause only 72 nodes exist and thus the Real Ptrs limit
is never tested. However, in the future if the width of
Real Pt rs decreases or a larger machine is built, this
would cause failures.

Finally, there were two errors found in the bi t vect or
protocol. We found one case where a message was sent on
the wrong network lane. Neither the simulator nor the hard-
ware checks that the messages are on the correct lanes, and
there is no manually built model of the bi t vect or proto-
col that would have caught this error. A false assertion was
also discovered in the bi t vect or protocol. It checked an
incorrect invariant about the 1/0 state. It was not caught ear-
lier because assertions are usually disabled on the hardware
and 1/O is not modeled in simulation.

7 Imposing Model Descriptions

We also studied the extent to which manually described
models can be inaccurate either due to translation errors or
“drift.” While it is not clear which results in more errors, it
is immaterial since the end result is the same — bugs may be
missed if a model is specified incorrectly. We use xg++ to
create an automatic “checker” that looks for semantic dif-
ferences between a model and the matching protocol code.
To collect data, we apply this xg++ extension to the model
of the dyn- pt r protocol created by Park and Dill and the
current FLASH protocol code [19]. This data will give us

an idea of how faithful manually written model descriptions
are to their underlying implementations.

Rules in Mury contain a precondition that guards ac-
tions. We extract each rule’s actions and precondition us-
ing a modified version of the Mury front-end parser. In-
cluded in this process is converting strongly typed Muryp
variables to C’s weak type system. To translate semantics
from the model to the protocol code, we provide a table
that maps each model variable to its FLASH equivalent.
For each rule, the extension uses a heuristic on the name
of the rule to determine the corresponding FLASH han-
dler. A xg++ extension uses this mapping to attempt to
match the actions of each rule to those in its handler. It
searches for a path in the FLASH handler that will satisfy
the rule’s preconditions by observing all conditionals, as-
signments, and assertions. For example, given the precon-
dition! DH. Pendi ng & DH. Di rty, it searches for a se-
quence that implies DH. Pendi ngtobeOandDH. Di rty
to be 1. This can be inferred by tracking “if” statements, as-
sertions, and assignments in the code. If no such mapping
exists, the extension emits an error message.

After a path satisfying the precondition has been found,
the extension attempts to match all actions associated with
that rule along that path. The manual model description
is simple enough that there are only four types of actions
to find: assignments, assertions, decrements, and message
sends. Assignments and decrements can be transliterated
from Mury to FLASH. Note that conditionals that check
that the variable has the value assigned in the Murp model
also implied that the assignment is matched. This condition
arises when the model omits details. Assertions in Mury are
simple binary boolean operations consisting of one operator
(equal, not-equal) and two operands. They can be matched
by either an assertion in the implementation or a conditional
that implies that they are true. Message sends on the other
hand require special treatment since their operations can be
more diffuse in the FLASH code. For example, the mes-
sage send at line 8 in Figure 3 encompasses three separate
statements in Figure 2. For a send, the message opcode and
outgoing lane arguments are checked as well as outgoing
interface. Note that the extension only maps elements in
the model onto elements in the protocol code.

Every action in the manual model description was
checked against the implementation. This found 14 differ-
ences between the model and the implementation. These
differences fall into four categories: semantically non-
equivalent code rearrangement, hard errors in the translation
of the model, semantically equivalent syntactic differences,
and incidental differences resulting from modeling a subset
of the implementation. We consider the first two categories
to be translation errors that could hide potential bugs.

There were two cases in the first category. These con-
sisted of cases where assertions that were guarded by “if”

statements in the model had been hoisted past the corre-
sponding “if” statements in the protocol code. Guarding the
assertions with an extraneous conditional made the manual
model description weaker than the implementation since the
assertions are only checked on that path.

There were two errors in translation, which could mask
errors in the model itself. In one, the model of the NI Lo-
cal Get XDel ayed handler first checks that is legal to
assign the value 0 to the variable DH. Real before mak-
ing the assignment. In the actual protocol implementation,
Real Pt rs is a counter for the number of sharers on the
linked list. Thus, setting it to zero is a violation of the way
this counter should have been used. The other error involves
the assertion shown in line 12 of Figure 2 and Figure 3. This
assertion is incorrect, but survived verification because the
manual model description lacked the details to trigger it.

There were six cases where implementation code was
translated to semantically equivalent but syntactically dis-
similar model code. For example, inthe NI | nval AckDe-
| ayed, the protocol decrements the counter Real Pt rs
and then tests for equality to 0. The model tests if
Real Pt r s equals 1 and then decrements. Since handlers
on the same node run sequentially, these actions are equiv-
alent.

Finally, there were four incidental differences. In one,
the model indicates that an | NVAL_ACK message should
be sent, but the implementation sends an | NVAL message
instead. In reality, the two opcodes have the same under-
lying bit encoding so they are equivalent even though they
are syntactically different. Other examples arose because
the model only partially describes the protocol, and so must
make assumptions about the modeled state.

In summary, 14 differences were found: two rearrange-
ments, one translation error that weakened the model, one
false assertion that was hidden by a simplified hardware
model, and ten incidental differences. These differences il-
lustrate the problems caused by manual modeling both in
its initial construction and in its modification to track im-
plementation changes.

8 Related Work

In previous work, xg++ was used to build a set of static
checkers for both the FLASH protocols [7] and for general
systems code [10]. This paper’s use of model checking and
slicing-based model construction is a fundamentally differ-
ent approach to finding errors. The methods of both papers
are largely complementary. The errors found in this paper
require dynamic information and can catch very convoluted
race conditions. In contrast, the static checkers are shal-
lower, but more light-weight and do not need to simulate
any protocol code.

We could have potentially used other open compilers to

extract models. These include Lord’s ctool [16], Crew’s
ASTLOG [9], Shigeru Chiba’s Open C++ [5, 6], and Sri-
vastava and Eustace’s ATOM [20] object-code modifica-
tion system. However, it appears that the first three would
have required extensive retooling to support the analysis we
needed. ATOM, on the other hand, works at too low a level
for our purposes.

There is one published example of model checking be-
ing used on an implementation of a cache coherence proto-
col [11]. In this case, the implementation is in hardware.
The model checking technique was to use refinement in Ca-
dence SMV. So far as we know, no one else has been able
to apply this verification approach.

There have only been a few systems to do computer-
assisted model extraction. The Bandera system is a so-
phisticated model extractor for Java programs [8]. Ban-
dera has two methods for extraction. The first is a program
slicer that accepts temporal properties as slicing criteria and
uses sophisticated static analysis algorithms to do accurate
slicing. Effective slicing in Java requires new slicing al-
gorithms for multi-threaded programs. The slicer removes
irrelevant code and variables that could otherwise blow up
the state space during model checking. The second tech-
nique is data abstraction. The user maps data types to a
small set of abstract values. Abstract versions of operations
applied to these data types are defined. Since the number of
states visited by a model checker is a function of the number
of distinct values each variable can have, this also has the
potential for greatly reducing the state space during model
checking.

Our approach is more pragmatic than Bandera’s. Our
method permits the use of an open-ended collection of ad
hoc extraction methods, and is optimized for finding bugs.
It would be difficult to imagine handling the FLASH proto-
col implementation without this flexibility. Bandera has not
been successfully applied to examples comparable in com-
plexity to the FLASH protocols.

The SLAM project at Microsoft Research extracts a pro-
gram with only boolean variables from C code [2, 3]. These
variables represent boolean conditions in the original code.
This program is model checked, and the resulting coun-
terexamples are verified using symbolic execution and deci-
sion procedures. If a counterexample is found to be a false
alarm, constraints are added to the boolean program to im-
prove the model. The goal of the project is to check asser-
tions in the code. In contrast, we are extracting a model,
then using Mur to check higher-level properties of several
instances of the models running concurrently. It is difficult
to imagine solving this problem with SLAM because of lim-
itations on the properties it can check and the scale of the
model checking problem they would have.

An approach that is similar to ours in philosophy was
used to check Lucent’s PathStar system [14]. A “control

skeleton,” which consists of only the control constructs of a
system, was extracted using a simplified C parser, and then
selected constructs (such as message sends and receives)
were extracted from the original source using a collection
of pattern matching rules. The result was checked using
the SPIN model checker, which is an explicit state model
checker somewhat like Mure.

An alternative approach to ours is the Teapot system,
which is a programming environment for software im-
plementations of multiprocessor cache coherence proto-
cols [4]. Teapot couples a domain-specification language
for writing cache coherence protocols with Mur¢p, which is
used to verify the protocols. The protocols are automati-
cally translated to C after verification. Program generation,
as in Teapot, is a good approach when applicable. How-
ever, it relies on the availability of adequate compilation
techniques for the highly specialized hardware used in the
multiprocessor interconnect. There are numerous examples
in the FLASH protocol where hand optimization was nec-
essary because the compiler was inadequate. The customiz-
able extraction methods described in this paper can be ap-
plied in the majority of cases when program generation is
impractical.

9 Conclusion

We have demonstrated a simple approach to automati-
cally extracting models from protocol code. Our method
both reduces the effort of using model checking and makes
it more effective by ensuring that the extracted model is
more faithful to the original protocol code. We were able
to apply model checking to four protocols in less time than
it took to manually verify just one. One of the great bene-
fits is that the amount of manual labor required is reduced
by a significant amount. In addition, our models are more
complete and found errors that eluded the manual verifica-
tion process. The automatic nature of the extraction also
reduces the problem of drift, ensuring that the model that is
checked closely tracks the underlying implementation. In
total, our method found eight protocol bugs that were not
found by the manual verification. We also found four dis-
crepancies between the manually described model and the
implementation that may have accounted for some of the
missed bugs. Our method, though automatic, does not im-
pact the state space of the model created.

The core of our approach is the use of an extensible
compiler. Compilers understand code at a programming
language level. We leverage this understanding to build a
model from the implementation code. This is accomplished
through two facilities provided to us by xg++. One is the
metal slicer, which is used to select features in the imple-
mentation to extract. The other is the metal printer, which
allows the user both to specify additional checks to tighten

the criteria for correctness and to specify rules for recog-
nizing opportunities to perform abstraction. In combina-
tion with a model checker that takes imperative language
input such as Muryp, models can be quickly and easily con-
structed. The benefit here is that a greater amount of a sys-
tem can be checked by extracting many orthogonal models
and checking each separately. While the method is not fully
automatic, some of the verification tasks which are both te-
dious and error prone have been automated.

We feel that this method is applicable to a range of prob-
lems encountered while debugging and verifying low level
systems. It seems particularly effective on code found on
embedded applications where the code is easily analyzed
by tools but difficult for humans to read.

Acknowledgements

We thank Mark Heinrich and Vijayaraghavan (Ravi)
Soundararajan for enlightening us on the mysteries of
FLASH. We also thank Mark Horowitz for his help and
guidance. Finally, we thank Diane Tang for contributing
valuable advice on the writing of this paper. This research
was supported in part by DARPA contract MDA904-98-C-
A933, by SAL contract NAS1-98139, and by a grant from
the Stanford Networking Research Center.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading,
Massachusetts, 1986.

[2] T. Ball and S. K. Rajamani. Bebop: A symbolic model
checker for boolean programs. In Proc. of the SPIN 2000
Workshop on Model Checking of Software (LNCS 1885,
Springer), pages 242-252, Aug. 2000.

[3] T.BallandS. K. Rajamani. Checking temporal properties of
software with boolean programs. In Proc. of the Workshop
on Advances in Verification (with CAV 2000), 2000.

[4] S. Chandra, B. Richards, and J. Larus. Teapot: a domain-
specific language for writing cache coherence protocols.
IEEE Transactions on Software Engineering, 25(3):317-33,
May 1999.

[5] S. Chiba. Open C++ programmer’s guide. Technical Re-
port TR93-93-3, Dept. of information science, University of
Tokyo, 1993.

[6] S. Chiba. A metaobject protocol for C++. In Conf. Proc.
Object-oriented Programming Systems, Languages, and Ap-
plications (OOPSLA95), pages 285-299, Oct. 1995.

[7] A.Chou, B. Chelf, D. Engler, and M. Heinrich. Using meta-
level compilation to check FLASH protocol code. In Proc.
of the Ninth Intl. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, Nov. 2000.

[8] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng. Bandera: Extracting
finite-state models from java source code. In Proc. of the

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Intl. Conf. On Software Engineering (ICSE 2000), pages
263-276, Nov. 2000.

R. F. Crew. ASTLOG: A language for examining abstract
syntax trees. In Proc. of the First Conf. on Domain Specific
Languages, pages 229-242, Oct. 1997.

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-
tem rules using system-specific, programmer-written com-
piler extensions. In Proc. of the 4th Symp. on Operating Sys-
tems Design and Implementation (OSDI 2000), pages 23—
25, Sept. 2000.

A. T. Eriksson and K. L. McMillan. Using formal verifica-
tion analysis methods on the critical path in systems design:
A case study. In Proc. of the 7th Intl. Conf. on Computer
Aided Verification (CAV95), pages 367-380, July 1995.

J. Ferrante, K. Ottenstein, and J. Warren. The program de-
pendence graph and its use in optimization. ACM Trans.
Prog. Lang. Syst., 9(3):319-349, July 1987.

M. Heinrich. The Performance and Scalability of Dis-
tributed Shared Memory Cache Coherence Protocols. PhD
thesis, Stanford University, Oct. 1998.

G. Holzmann and M. Smith. Software model checking: Ex-
tracting verification models from source code. In Invited
Paper in the Proc. PSTV/FORTE99 Publ. Kluwer, 1999.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein R. Simoni,
K. Gharachorloo, J. Chapin D. Nakahira, J. Baxter, M. H.
A. Gupta, M. Rosenblum, and J. Hennessy. The Stanford
FLASH multiprocessor. In Proc. of the 21st Intl. Symp. on
Computer Architecture, Apr. 1994.

T. Lord. Application specific static code checking for C pro-
grams: Ctool. In “twaddle: A Digital Zine (version 1.0),
1997.

K. McMillan and J. Schwalbe. Formal verification of
the gigamax cache consistency protocol. In Proc. of the
Intl. Symp. on Shared Memory Multiprocessing (ISSMM91),
pages 242-251. Tokyo, Japan Inf. Process. Soc., 1991.

G. Nelson. Techniques for program verification. Available
as Xerox PARC Research Report CSL-81-10, June, 1981,
Stanford University, 1981.

S. Park and D. L. Dill. Verification of FLASH cache co-
herence protocol by aggregation of distributed transactions.
In Proc. of the 8th ACM Symp. on Parallel Algorithsm and
Architectures, pages 288-296, June 1996.

A. Srivastava and A. Eustace. Atom - a system for build-
ing customized program analysis tools. In Proc. of the SIG-
PLAN 94 Conf. on Programming Language Design and Im-
plementation, 1994.

U. Stern and D. L. Dill. Automatic verification of the SCI
cache coherence protocol. In Correct Hardware Design
and Verification Methods: IFIP WG10.5 Advanced Research
Working Conf. Proc., 1995.

F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121-189, September 1995.
M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352-357, July 1984.

