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Abstract

In antagonistic control we find an input sequence that maximizes (or at least makes
large) an objective that is minimized in typical control. Applications include designing
inputs to attack a control system, worst-case analysis of a control system, and security
assessment of a control system. The antagonistic control problem is not convex, and
so cannot be efficiently solved. We present here a powerful convex-optimization-based
heuristic for antagonistic control, based on the convex-concave procedure, which can
be used to find bad, if not the global worst-case, inputs. We also give an S-procedure-
based upper bound for antagonistic control, applicable in cases when the objective
and constraints can be described by quadratic inequalities, and use this to verify on
examples that our method yields inputs very close to the (global) worst-case.

1 Introduction

More and more of the world’s control systems, from irrigation systems to the power grid,
are transitioning to control by supervisory control and data acquisition (SCADA) systems
that transmit their measurements from remote locations over networks. This vast increase
in points of entry, and sometimes public nature of these networks, has increased the risk of
attack on these systems. Much research has gone into how to protect against various types of
attacks including stealthy deception [Smi11, ALSB12], false data injection [MS10, XMS10],
denial of service [KCLG14], and replay data attacks [MS09]. It has been demonstrated how
these attacks can occur and proposals have been made for how to protect against these
attacks [STJ10, CAL+11, MKB+12, PDB13]. While the approaches above are typically
concerned with monitoring and detecting attacks, there is an alternative approach which at-
tempts to constrain the system so that a catastrophic event cannot occur [DST+12, AGJT14].
Another branch of inquiry models the problem from a game theoretic perspective, often ask-
ing how best to invest resources to defend a system [ASH13, ASS13].

We concern ourselves here with a different set of questions. We simply assume that an
aggressor has taken control of (parts of) a system, and ask how much damage are they capable
of inflicting, or the related question of how quickly can they inflict this damage. Knowing
the answers to these questions allows for the design of better protections for the system
by showing which vulnerabilities are the most dangerous and therefore deserving of the
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most protection. Knowing how quickly a catastrophic event can occur post-intrusion gives
information about how often monitoring systems need to run and how quickly a response
must be taken.

2 Antagonistic control

We consider a discrete-time linear dynamical system with state xt ∈ Rn, input ut ∈ Rm,
and affine dynamics

xt+1 = Atxt + Btut + ct, t = 1, . . . , T − 1,

where t denotes (discrete) time, and At ∈ Rn×n, Bt ∈ Rn×m, ct ∈ Rn. The states and inputs
are constrained, (xt, ut) ∈ Ct, t = 1, . . . , T , where Ct ⊆ Rn × Rm is convex. The objective
has the traditional time-separable form

J = ℓ1(x1, u1) + · · ·+ ℓT (xT , uT ),

where ℓt, t = 1, . . . , T are the stage cost functions, which we assume are convex. This leads
to the standard control problem

minimize J

subject to xt+1 = Atxt + Btut + ct, t = 1, . . . , T − 1
(xt, ut) ∈ Ct, t = 1, . . . , T,

(1)

where xt and ut are optimization variables. (A known or fixed initial state x1 can be incor-
porated into C1.) This is a convex optimization problem that is easily solved, indeed with a
complexity that grows only linearly in T . This gives us the best input and state trajectory.

The antagonistic control problem is simply the problem of maximizing rather than mini-
mizing J ,

maximize J

subject to xt+1 = Atxt + Btut + ct, t = 1, . . . , T − 1
(xt, ut) ∈ Ct, t = 1, . . . , T,

(2)

with variables xt and ut. This gives us the worst input and state trajectory. We let p⋆ be
the optimal value of (2), i.e., the worst possible objective value. This problem is evidently
not convex, and simple versions of it can be shown to be NP-hard.

In this paper we present a heuristic for approximately solving the antagonistic control
problem (2). Our goal is to efficiently find bad, if not necessarily worst case, feasible input
and state trajectories.

The antagonistic control problem arises in a variety of situations. In the simplest case,
it can be used by an aggressor who has taken control of (parts of) a control system and
wishes to do maximum (or at least very much) damage. In this case, what we call the
input ut is not necessarily the actual control system input, but rather the signal injection
points that the aggressor has access to, e.g., a sensor signal that can be manipulated. The
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dynamics are then not the open-loop dynamics of the control system, but rather the closed-
loop dynamics. The constraints Ct can include not only actual constraints, like actuator
limits, but also constraints that an alarm not be triggered, or that the intrusion is unlikely
to be detected. (This idea of adding stealth constraints will be addressed in more detail
later, when we discuss ambush control.) Thus the problem (2) asks us to find a sequence
of actions (which can include modified sensor measurements) that do the most damage (in
terms of the objective), while respecting constraints that can include maintaining stealth (to
the extent possible).

From the defender’s point of view, it is very useful to have a method that can (approx-
imately) solve the antagonistic control problem (2). This can be used to do (approximate)
worst-case analysis, or to analyze or improve defenses. For example, we can solve the an-
tagonistic control problem, starting from the current state (with some specific set of inputs
taken over by the attacker) and use p⋆ as a measure of the current system vulnerability. This
can be displayed in real-time, with a warning issued if the value of p⋆ gets too large.

We will approximately solve the antagonistic control problem using the convex-concave
procedure, which we describe in §4. This is a standard method for approximately solving a
problem in which the objective is a sum of a convex and concave function. This gives us a
bad sequence of inputs, if not necessarily the worst, i.e., a lower bound on p⋆. This is useful
even if it is not optimal; for example, when it is large, it tells us that an attacker can indeed
do grave damage.

For cases in which the objective is quadratic and the constraints are described by quadratic
inequalities, we develop an upper bound on p⋆ using the S-procedure, which we present in
§5. Numerical examples show that our two dual methods—the convex-concave procedure
for lower bounds and the S-procedure for upper bounds—often yield bounds that are close
to each other, which implies that they are each (nearly) globally optimal.

3 Applications

In this section we elaborate on more specific applications of antagonistic control.

3.1 Vulnerability monitoring

Antagonistic control can be used to monitor the current safety or vulnerability of the system.
For example, at each time step we solve problem (2) to determine how large J can be. This
analysis can be carried out for different values of T (the horizon), and different assumptions
about which subsystems have been taken over by the attacker. All of the values can be
monitored in real-time.

In one variation on this, we can take ℓt = 0 for t = 1, . . . , T − 1, and ℓT is such that
ℓT (xT , uT ) ≥ 1 (say) corresponds to system failure or destruction. By solving the antagonistic
control problem for different values of T , we can find the smallest value T ⋆ for which p⋆ ≥ 1,
and this tells us the minimum time it would take an attacker to destroy the system. This is
of course a function of the current state. If T ⋆ is large, we have time (to react) if an attack
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occurs; if T ⋆ is small, an attack could destroy the system quickly. We can interpret T ⋆ as
the vulnerability time of the current state.

3.2 Security assessment

Rather than actively monitoring the system, antagonistic control can be used a priori to
detect the vulnerabilities in a system and drive the focus of defenses to the appropriate sub-
systems. A typical system will consist of many sensors and actuators many of which are on
subsystems that are isolated from each other. The cost to the aggressor of controlling addi-
tional sensors and actuators increases as more and more subsystems are involved. Therefore
the aggressor would like to gain control of as few sensors and actuators as possible. We can
help secure our systems by identifying subsets of critical systems from which an aggressor
can easily do much damage, and defending them robustly or isolating them to force the
aggressor to gain control of several subsystems.

To carry out this assessment, we simply use antagonistic control using an appropriate
model for each specific subset of subsystems that are taken over by an attacker, or for different
configurations of alarms or warning systems that we might install. We derive the dynamics
for the system with various actuators and sensors made available to the aggressor (that is
represented in u) and determine the relative values of J that can be achieved under different
configurations. Knowing which configurations allow for small and large values of J reveals
which subsets of injection points it would be detrimental for an aggressor to take control of,
and which subsets of points give the aggressor limited control authority. Resources can then
be allocated to defending those systems (or subsets of systems) which are critical, freeing
resources from those systems whose loss would be less harmful.

3.3 Ambush control

We now take on the role of the aggressor and consider a specific instance of the antagonistic
problem (2), which we call ambush control. In ambush control an aggressor manipulates
the system by choosing the inputs ut, with the requirement that these manipulations remain
undetected (or probably undetected) until time T det < T (the detection time). We include
these stealth constraints in the constraints C1, . . . , CTdet .

The inputs designed in this case can be interpreted as an ambush that occurs at time
t = T det. Actions taken before that time are required to be (probably) undetectable; they
are used to set the system state up so that once the attack is detected, at time t = T det,
much damage can be done quickly.

4 Convex-concave procedure

The convex-concave procedure is a powerful heuristic that can be used to find bad controls
(ut that give J near p⋆), although not necessarily worst case control. CCP is an iterative
procedure which addresses difference of convex problems [YR03]. Much more about the
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algorithm and its variations and the related difference of convex algorithms can be found in
[LB14, PDLT14].

To simplify the notation we introduce the variable

z = (x1, u1, . . . , xT , uT ) ∈ RT (n+m),

and write the problem (2) as

maximize J(z)
subject to Fz = g, z ∈ C,

(3)

where F ∈ Rn(T−1)×T (n+m), g ∈ Rn(T−1), and C = C1 × · · · × CT . (The matrix F has block
banded structure, but this won’t be needed in the following description of the method.)

To apply the convex-concave procedure to problem (3) we solve a series of convex op-
timization problems created by linearizing the objective function J at the current value of
z.

Algorithm 4.1 CCP algorithm.

given an initial point z(0).
k := 0.

repeat

1. Convexify. Form Ĵ(z; z(k)) , J(z(k)) +∇J(z(k))T (z − z(k)).

2. Solve. Set z(k+1) to be a solution of the (convex) problem, with variable z,

maximize Ĵ(z; z(k))
subject to Fz = g, z ∈ C.

3.Update iteration. k := k + 1.
until stopping criterion is satisfied.

The convex-concave procedure does not guarantee convergence to a global maximum, but
it is an ascent algorithm, i.e., we have J(z(k+1)) ≥ J(z(k)). This is readily derived from the
inequality Ĵ(z; z(k)) ≤ J(z) which holds for all z and all z(k), which follows from concavity
of J . The stopping criterion can be as simple as J(x(k)) − J(x(k−1)) ≤ ǫ, where ǫ > 0 is a
tolerance. The final result can depend on the initial choice of z(k). It is typical to run the
CCP algorithm several times with different initial conditions, and take the value of z with
the largest final value of J as our approximate solution. But for antagonistic control, this
does not seem to be needed.

5 S-procedure upper bounds

In this section we assume that J is convex quadratic,

J(z) =
[

z 1
]

Q0

[

z

1

]

,
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where Q0 is positive semidefinite. (The bounds we describe here can also be derived for
problems when J is not convex quadratic, but we can find a convex quadratic upper bound
on J .)

We will also assume that the constraints are described by (or covered by) quadratic
inequalities. Let f1, . . . , fk be a set of quadratic functions for which

z ∈ C =⇒ fi(z) =
[

z 1
]

Qi

[

z

1

]

≤ 0, i = 1, . . . , k. (4)

In other words, fi(z) ≤ 0 are valid quadratic inequalities over C. The quadratic functions fi
do not need to be convex.

The S-procedure is a well known method that provides a sufficient condition under which
nonnegativity of a set of quadratic functions implies nonnegativity of another quadratic
function [BEGFB94, §2.6.3]. In the current application, it has the following form. If there
exist τ1, . . . , τk ≥ 0 and W = W T for which

J(z)− γ ≤ τ1f1(z) + · · ·+ τkfk(z) + (Fz − g)TW (Fz − g), (5)

holds for all z, then γ ∈ R is an upper bound on p⋆. This assertion is easily verified, noting
that the last term on the righthand side is zero for any z that satisfies Fz = g, and the first
k terms are nonpositive for any z ∈ C. The condition (5) states that a quadratic inequality
holds, and is equivalent to the linear matrix inequality (LMI)

Q0 −

[

0 0
0 γ

]

�

k
∑

i=1

τiQi +

[

F T

−gT

]

W
[

F −g
]

with variables τi, W .
Since γ is an upper bound on p⋆, we can find the best such upper bound by minimizing

γ subject to the LMI above. This leads to the (readily solved) semidefinite program (SDP)
[BV96, BV04, §4.6.2]

minimize γ

subject to Q0 −

[

0 0
0 γ

]

�
∑

k

i=1 τiQi +

[

F T

−gT

]

W
[

F −g
]

τi ≥ 0, i = 1, . . . , k
W = W T ,

where γ, τi, and W are optimization variables. The optimal value of this SDP is an upper
bound on p⋆. It depends on the choice of the valid quadratic inequalities fi(x) ≤ 0.
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6 Examples

6.1 Ambush control

Here we consider an instance of the ambush control problem

maximize xT

T
Q0xT

subject to xt+1 = Atxt + Btut, t = 1, . . . , T − 1
x1 = xinit

‖ut‖∞ ≤ 1, t = 1, . . . , T − 1
xT

t
Q0xt ≤ q, t = 1, . . . , T det,

(6)

were n = 4, m = 2, T = 26, T det = 20, q = 0.1, and Q0 is a randomly generated positive
definite matrix. We generate an A matrix by perturbing the entries of the identity by values
drawn from a Gaussian normal distributions with mean 0 and variance 0.015. A B matrix is
drawn from the same distribution. The Ai and Bi matrices are formed by further perturbing
the entries of A and B with values drawn from a Gaussian distribution with mean 0 and
variance 0.0015.

For the first 30 time steps the system runs model predictive control feedback to respond
to random disturbances. We use the state after 30 time steps as xinit. We apply the convex-
concave procedure to problem (6) and plot the results in figure 1. The dotted line shows
the value q that xTQ0x stays beneath until T det. The black line in the xTQ0x plot is an S-
procedure bound using all of the constraints except x1 = xinit. Including the initial condition
shows the CCP solution is optimal.

6.2 Ambush control with monitoring

On the same system presented in §6.1 we run two different monitors. The first monitor
depicted in figure 2 finds bad controls by applying CCP to (6) with detection constraints
removed and T = 5, and reports how large it is possible for p⋆ (in this case xTQ0xT ) to
become. The green line is the S-procedure upper bound on this value.

The second monitor solves a series of antagonistic control problems and reports T ⋆ (the
minimum T required for xT

T
Q0xT > pfailure, represented by the dotted red line). The green

line is the S-procedure lower bound on this value.
In both instances, our S-procedure bounds do not include a constraint x1 = xinit, but

rather xT

1Q0x1 ≤ xinitQ0xinit. This gives looser bounds, but means our monitor only needs
xTQ0x. If this were a time invariant system, then all of the bounds could be computed offline
once, and the monitor could be implemented as a look up table.

In the first monitor, T could be determined by the known response time of the system
once the aggressor is detected. The slower the system is to respond, the larger T would be.
Similarly, the second monitor could sound an alarm when T ⋆ reaches a threshold near the
response time.
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Figure 1: Ambush control example where the system is taken over at t = 30, and reveals
itself at t = 50.
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Figure 2: Two monitors for the system in figure 1
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