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There are at least two kinds of similarity. Relational similarity is correspondence between re-
lations, in contrast with attributional similarity, which is correspondence between attributes.
When two words have a high degree of attributional similarity, we call them synonyms. When
two pairs of words have a high degree of relational similarity, we say that their relations are
analogous. For example, the word pair mason:stone is analogous to the pair carpenter:wood.
This article introduces Latent Relational Analysis (LRA), a method for measuring relational
similarity. LRA has potential applications in many areas, including information extraction,
word sense disambiguation, and information retrieval. Recently the Vector Space Model (VSM)
of information retrieval has been adapted to measuring relational similarity, achieving a score
of 47% on a collection of 374 college-level multiple-choice word analogy questions. In the
VSM approach, the relation between a pair of words is characterized by a vector of frequencies
of predefined patterns in a large corpus. LRA extends the VSM approach in three ways: (1)
The patterns are derived automatically from the corpus, (2) the Singular Value Decomposition
(SVD) is used to smooth the frequency data, and (3) automatically generated synonyms are
used to explore variations of the word pairs. LRA achieves 56% on the 374 analogy questions,
statistically equivalent to the average human score of 57%. On the related problem of classifying
semantic relations, LRA achieves similar gains over the VSM.

1. Introduction

There are at least two kinds of similarity.Attributional similarity is correspondence be-
tween attributes and relational similarity is correspondence between relations (Medin,
Goldstone, and Gentner 1990). When two words have a high degree of attributional
similarity, we call them synonyms. When two word pairs have a high degree of relational
similarity, we say they are analogous.

Verbal analogies are often written in the form A:B::C:D, meaning A is to B as C is to
D; for example, traffic:street::water:riverbed. Traffic flows over a street; water flows over
a riverbed. A street carries traffic; a riverbed carries water. There is a high degree of
relational similarity between the word pair traffic:street and the word pair water:riverbed.
In fact, this analogy is the basis of several mathematical theories of traffic flow (Daganzo
1994).

In Section 2, we look more closely at the connections between attributional and
relational similarity. In analogies such as mason:stone::carpenter:wood, it seems that
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relational similarity can be reduced to attributional similarity, since mason and carpen-
ter are attributionally similar, as are stone and wood. In general, this reduction fails.
Consider the analogy traffic:street::water:riverbed. Traffic andwater are not attributionally
similar. Street and riverbed are only moderately attributionally similar.

Many algorithms have been proposed for measuring the attributional similar-
ity between two words (Lesk 1969; Resnik 1995; Landauer and Dumais 1997; Jiang
and Conrath 1997; Lin 1998b; Turney 2001; Budanitsky and Hirst 2001; Banerjee and
Pedersen 2003). Measures of attributional similarity have been studied extensively, due
to their applications in problems such as recognizing synonyms (Landauer and Dumais
1997), information retrieval (Deerwester et al. 1990), determining semantic orientation
(Turney 2002), grading student essays (Rehder et al. 1998), measuring textual cohesion
(Morris and Hirst 1991), and word sense disambiguation (Lesk 1986).

On the other hand, since measures of relational similarity are not as well developed
as measures of attributional similarity, the potential applications of relational similarity
are not as well known. Many problems that involve semantic relations would benefit
from an algorithm for measuring relational similarity. We discuss related problems in
natural language processing, information retrieval, and information extraction in more
detail in Section 3.

This article builds on the Vector Space Model (VSM) of information retrieval. Given
a query, a search engine produces a ranked list of documents. The documents are
ranked in order of decreasing attributional similarity between the query and each
document. Almost all modern search engines measure attributional similarity using
the VSM (Baeza-Yates and Ribeiro-Neto 1999). Turney and Littman (2005) adapt the
VSM approach to measuring relational similarity. They used a vector of frequencies of
patterns in a corpus to represent the relation between a pair of words. Section 4 presents
the VSM approach to measuring similarity.

In Section 5, we present an algorithm for measuring relational similarity, which
we call Latent Relational Analysis (LRA). The algorithm learns from a large corpus
of unlabeled, unstructured text, without supervision. LRA extends the VSM approach
of Turney and Littman (2005) in three ways: (1) The connecting patterns are derived
automatically from the corpus, instead of using a fixed set of patterns. (2) Singular Value
Decomposition (SVD) is used to smooth the frequency data. (3) Given a word pair such
as traffic:street, LRA considers transformations of the word pair, generated by replacing
one of the words by synonyms, such as traffic:road or traffic:highway.

Section 6 presents our experimental evaluation of LRA with a collection of 374
multiple-choice word analogy questions from the SAT college entrance exam.1 An ex-
ample of a typical SAT question appears in Table 1. In the educational testing literature,
the first pair (mason:stone) is called the stem of the analogy. The correct choice is called the
solution and the incorrect choices are distractors. We evaluate LRA by testing its ability
to select the solution and avoid the distractors. The average performance of college-
bound senior high school students on verbal SAT questions corresponds to an accuracy
of about 57%. LRA achieves an accuracy of about 56%. On these same questions, the
VSM attained 47%.

1 The College Board eliminated analogies from the SAT in 2005, apparently because it was believed that
analogy questions discriminate against minorities, although it has been argued by liberals (Goldenberg
2005) that dropping analogy questions has increased discrimination against minorities and by
conservatives (Kurtz 2002) that it has decreased academic standards. Analogy questions remain an
important component in many other tests, such as the GRE.
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Table 1
An example of a typical SAT question, from the collection of 374 questions.

Stem: mason:stone

Choices: (a) teacher:chalk
(b) carpenter:wood
(c) soldier:gun
(d) photograph:camera
(e) book:word

Solution: (b) carpenter:wood

One application for relational similarity is classifying semantic relations in noun-
modifier pairs (Turney and Littman 2005). In Section 7, we evaluate the performance
of LRA with a set of 600 noun-modifier pairs from Nastase and Szpakowicz (2003).
The problem is to classify a noun-modifier pair, such as “laser printer,” according to
the semantic relation between the head noun (printer) and the modifier (laser). The
600 pairs have beenmanually labeled with 30 classes of semantic relations. For example,
“laser printer” is classified as instrument; the printer uses the laser as an instrument for
printing.

We approach the task of classifying semantic relations in noun-modifier pairs as a
supervised learning problem. The 600 pairs are divided into training and testing sets
and a testing pair is classified according to the label of its single nearest neighbor in the
training set. LRA is used to measure distance (i.e., similarity, nearness). LRA achieves
an accuracy of 39.8% on the 30-class problem and 58.0% on the 5-class problem. On the
same 600 noun-modifier pairs, the VSM had accuracies of 27.8% (30-class) and 45.7%
(5-class) (Turney and Littman 2005).

We discuss the experimental results, limitations of LRA, and future work in Sec-
tion 8 and we conclude in Section 9.

2. Attributional and Relational Similarity

In this section, we explore connections between attributional and relational similarity.

2.1 Types of Similarity

Medin, Goldstone, and Gentner (1990) distinguish attributes and relations as follows:

Attributes are predicates taking one argument (e.g., X is red, X is large), whereas
relations are predicates taking two or more arguments (e.g., X collides with Y, X is
larger than Y). Attributes are used to state properties of objects; relations express
relations between objects or propositions.

Gentner (1983) notes that what counts as an attribute or a relation can depend on the
context. For example, large can be viewed as an attribute of X, LARGE(X), or a relation
between X and some standard Y, LARGER THAN(X, Y).

The amount of attributional similarity between two words, A and B, depends
on the degree of correspondence between the properties of A and B. A measure of
attributional similarity is a function that maps two words, A and B, to a real number,
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sima(A,B) ∈ �. The more correspondence there is between the properties of A and B,
the greater their attributional similarity. For example, dog and wolf have a relatively
high degree of attributional similarity.

The amount of relational similarity between two pairs of words, A:B and C:D,
depends on the degree of correspondence between the relations between A and B
and the relations between C and D. A measure of relational similarity is a function
that maps two pairs, A:B and C:D, to a real number, simr(A :B,C :D) ∈ �. The more
correspondence there is between the relations ofA:B and C:D, the greater their relational
similarity. For example, dog:bark and cat:meow have a relatively high degree of relational
similarity.

Cognitive scientists distinguish words that are semantically associated (bee–honey)
from words that are semantically similar (deer–pony), although they recognize that some
words are both associated and similar (doctor–nurse) (Chiarello et al. 1990). Both of these
are types of attributional similarity, since they are based on correspondence between
attributes (e.g., bees and honey are both found in hives; deer and ponies are both
mammals).

Budanitsky and Hirst (2001) describe semantic relatedness as follows:

Recent research on the topic in computational linguistics has emphasized the
perspective of semantic relatedness of two lexemes in a lexical resource, or its inverse,
semantic distance. It’s important to note that semantic relatedness is a more general
concept than similarity; similar entities are usually assumed to be related by virtue of
their likeness (bank–trust company), but dissimilar entities may also be semantically
related by lexical relationships such as meronymy (car–wheel) and antonymy (hot–cold),
or just by any kind of functional relationship or frequent association (pencil–paper,
penguin–Antarctica).

As these examples show, semantic relatedness is the same as attributional similarity
(e.g., hot and cold are both kinds of temperature, pencil and paper are both used for
writing). Here we prefer to use the term attributional similarity because it emphasizes the
contrast with relational similarity. The term semantic relatedness may lead to confusion
when the term relational similarity is also under discussion.

Resnik (1995) describes semantic similarity as follows:

Semantic similarity represents a special case of semantic relatedness: for example, cars
and gasoline would seem to be more closely related than, say, cars and bicycles, but the
latter pair are certainly more similar. Rada et al. (1989) suggest that the assessment of
similarity in semantic networks can in fact be thought of as involving just taxonomic
(IS-A) links, to the exclusion of other link types; that view will also be taken here,
although admittedly it excludes some potentially useful information.

Thus semantic similarity is a specific type of attributional similarity. The term semantic
similarity is misleading, because it refers to a type of attributional similarity, yet rela-
tional similarity is not any less semantic than attributional similarity.

To avoid confusion, we will use the terms attributional similarity and relational
similarity, following Medin, Goldstone, and Gentner (1990). Instead of semantic sim-
ilarity (Resnik 1995) or semantically similar (Chiarello et al. 1990), we prefer the term
taxonomical similarity, which we take to be a specific type of attributional similarity. We
interpret synonymy as a high degree of attributional similarity. Analogy is a high degree
of relational similarity.
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2.2 Measuring Attributional Similarity

Algorithms for measuring attributional similarity can be lexicon-based (Lesk 1986;
Budanitsky and Hirst 2001; Banerjee and Pedersen 2003), corpus-based (Lesk 1969;
Landauer and Dumais 1997; Lin 1998a; Turney 2001), or a hybrid of the two (Resnik
1995; Jiang and Conrath 1997; Turney et al. 2003). Intuitively, we might expect
that lexicon-based algorithms would be better at capturing synonymy than corpus-
based algorithms, since lexicons, such as WordNet, explicitly provide synonymy in-
formation that is only implicit in a corpus. However, experiments do not support this
intuition.

Several algorithms have been evaluated using 80 multiple-choice synonym ques-
tions taken from the Test of English as a Foreign Language (TOEFL). An example of
one of the 80 TOEFL questions appears in Table 2. Table 3 shows the best performance
on the TOEFL questions for each type of attributional similarity algorithm. The results
support the claim that lexicon-based algorithms have no advantage over corpus-based
algorithms for recognizing synonymy.

2.3 Using Attributional Similarity to Solve Analogies

We may distinguish near analogies (mason:stone::carpenter:wood) from far anal-
ogies (traffic:street::water:riverbed) (Gentner 1983; Medin, Goldstone, and Gentner 1990).
In an analogy A:B::C:D, where there is a high degree of relational similarity between
A:B and C:D, if there is also a high degree of attributional similarity between A
and C, and between B and D, then A:B::C:D is a near analogy; otherwise, it is a far
analogy.

It seems possible that SAT analogy questionsmight consist largely of near analogies,
in which case they can be solved using attributional similarity measures. We could score
each candidate analogy by the average of the attributional similarity, sima, between A
and C and between B and D:

score(A :B ::C :D) = 1
2
(sima(A,C)+ sima(B,D)) (1)

This kind of approach was used in two of the thirteen modules in Turney et al. (2003)
(see Section 3.1).

Table 2
An example of a typical TOEFL question, from the collection of 80 questions.

Stem: Levied

Choices: (a) imposed
(b) believed
(c) requested
(d) correlated

Solution: (a) imposed
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Table 3
Performance of attributional similarity measures on the 80 TOEFL questions. (The average
non-English US college applicant’s performance is included in the bottom row, for comparison.)

Reference Description Percent correct

Jarmasz and Szpakowicz (2003) Best lexicon-based algorithm 78.75
Terra and Clarke (2003) Best corpus-based algorithm 81.25
Turney et al. (2003) Best hybrid algorithm 97.50
Landauer and Dumais (1997) Average human score 64.50

To evaluate this approach, we applied several measures of attributional similarity to
our collection of 374 SAT questions. The performance of the algorithms was measured
by precision, recall, and F, defined as follows:

precision =
number of correct guesses

total number of guesses made
(2)

recall =
number of correct guesses

maximum possible number correct
(3)

F =
2× precision× recall
precision+ recall

(4)

Note that recall is the same as percent correct (for multiple-choice questions, with only
zero or one guesses allowed per question, but not in general).

Table 4 shows the experimental results for our set of 374 analogy questions. For
example, using the algorithm of Hirst and St-Onge (1998), 120 questions were answered
correctly, 224 incorrectly, and 30 questions were skipped. When the algorithm assigned
the same similarity to all of the choices for a given question, that question was skipped.
The precision was 120/(120+ 224) and the recall was 120/(120+ 224+ 30).

The first five algorithms in Table 4 are implemented in Pedersen’s WordNet-
Similarity package.2 The sixth algorithm (Turney 2001) used the Waterloo MultiText
System (WMTS), as described in Terra and Clarke (2003).

The difference between the lowest performance (Jiang and Conrath 1997) and ran-
dom guessing is statistically significant with 95% confidence, according to the Fisher
Exact Test (Agresti 1990). However, the difference between the highest performance
(Turney 2001) and the VSM approach (Turney and Littman 2005) is also statistically
significant with 95% confidence. We conclude that there are enough near analogies
in the 374 SAT questions for attributional similarity to perform better than random
guessing, but not enough near analogies for attributional similarity to perform as well
as relational similarity.

2 See http://www.d.umn.edu/∼tpederse/similarity.html.
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3. Related Work

This section is a brief survey of the many problems that involve semantic relations and
could potentially make use of an algorithm for measuring relational similarity.

3.1 Recognizing Word Analogies

The problem of recognizing word analogies is, given a stemword pair and a finite list of
choice word pairs, selecting the choice that is most analogous to the stem. This problem
was first attempted by a system called Argus (Reitman 1965), using a small hand-built
semantic network. Argus could only solve the limited set of analogy questions that its
programmer had anticipated. Argus was based on a spreading activation model and
did not explicitly attempt to measure relational similarity.

Turney et al. (2003) combined 13 independent modules to answer SAT questions.
The final output of the system was based on a weighted combination of the outputs of
each individual module. The best of the 13 modules was the VSM, which is described
in detail in Turney and Littman (2005). The VSM was evaluated on a set of 374 SAT
questions, achieving a score of 47%.

In contrast with the corpus-based approach of Turney and Littman (2005), Veale
(2004) applied a lexicon-based approach to the same 374 SAT questions, attaining a score
of 43%. Veale evaluated the quality of a candidate analogyA:B::C:D by looking for paths
in WordNet, joining A to B and C to D. The quality measure was based on the similarity
between the A:B paths and the C:D paths.

Turney (2005) introduced Latent Relational Analysis (LRA), an enhanced version
of the VSM approach, which reached 56% on the 374 SAT questions. Here we go
beyond Turney (2005) by describing LRA in more detail, performing more extensive
experiments, and analyzing the algorithm and related work in more depth.

3.2 Structure Mapping Theory

French (2002) cites Structure Mapping Theory (SMT) (Gentner 1983) and its imple-
mentation in the Structure Mapping Engine (SME) (Falkenhainer, Forbus, and Gentner
1989) as the most influential work on modeling of analogy making. The goal of com-
putational modeling of analogy making is to understand how people form complex,

Table 4
Performance of attributional similarity measures on the 374 SAT questions. Precision, recall, and
F are reported as percentages. (The bottom two rows are not attributional similarity measures.
They are included for comparison.)

Algorithm Type Precision Recall F

Hirst and St-Onge (1998) Lexicon-based 34.9 32.1 33.4
Jiang and Conrath (1997) Hybrid 29.8 27.3 28.5
Leacock and Chodorow (1998) Lexicon-based 32.8 31.3 32.0
Lin (1998b) Hybrid 31.2 27.3 29.1
Resnik (1995) Hybrid 35.7 33.2 34.4
Turney (2001) Corpus-based 35.0 35.0 35.0
Turney and Littman (2005) Relational (VSM) 47.7 47.1 47.4
Random Random 20.0 20.0 20.0
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structured analogies. SME takes representations of a source domain and a target domain
and produces an analogical mapping between the source and target. The domains
are given structured propositional representations, using predicate logic. These de-
scriptions include attributes, relations, and higher-order relations (expressing relations
between relations). The analogical mapping connects source domain relations to target
domain relations.

For example, there is an analogy between the solar system and Rutherford’s model
of the atom (Falkenhainer, Forbus, and Gentner 1989). The solar system is the source
domain and Rutherford’s model of the atom is the target domain. The basic objects in
the source model are the planets and the sun. The basic objects in the target model are
the electrons and the nucleus. The planets and the sun have various attributes, such
as mass(sun) and mass(planet), and various relations, such as revolve(planet, sun) and
attracts(sun, planet). Likewise, the nucleus and the electrons have attributes, such as
charge(electron) and charge(nucleus), and relations, such as revolve(electron, nucleus)
and attracts(nucleus, electron). SME maps revolve(planet, sun) to revolve(electron, nu-
cleus) and attracts(sun, planet) to attracts(nucleus, electron).

Each individual connection (e.g., from revolve(planet, sun) to revolve(electron, nu-
cleus)) in an analogical mapping implies that the connected relations are similar; thus,
SMT requires a measure of relational similarity in order to form maps. Early versions
of SME only mapped identical relations, but later versions of SME allowed similar,
nonidentical relations to match (Falkenhainer 1990). However, the focus of research in
analogy making has been on the mapping process as a whole, rather than measuring
the similarity between any two particular relations; hence, the similarity measures used
in SME at the level of individual connections are somewhat rudimentary.

We believe that a more sophisticated measure of relational similarity, such as LRA,
may enhance the performance of SME. Likewise, the focus of our work here is on the
similarity between particular relations, and we ignore systematic mapping between sets
of relations, so LRA may also be enhanced by integration with SME.

3.3 Metaphor

Metaphorical language is very common in our daily life, so common that we are usually
unaware of it (Lakoff and Johnson 1980). Gentner et al. (2001) argue that novelmetaphors
are understood using analogy, but conventional metaphors are simply recalled from
memory. A conventional metaphor is a metaphor that has become entrenched in our
language (Lakoff and Johnson 1980). Dolan (1995) describes an algorithm that can
recognize conventional metaphors, but is not suited to novel metaphors. This suggests
that it may be fruitful to combine Dolan’s (1995) algorithm for handling conventional
metaphorical language with LRA and SME for handling novel metaphors.

Lakoff and Johnson (1980) give many examples of sentences in support of their
claim that metaphorical language is ubiquitous. The metaphors in their sample sen-
tences can be expressed using SAT-style verbal analogies of the form A:B::C:D. The first
column in Table 5 is a list of sentences from Lakoff and Johnson (1980) and the second
column shows how the metaphor that is implicit in each sentence may be made explicit
as a verbal analogy.

3.4 Classifying Semantic Relations

The task of classifying semantic relations is to identify the relation between a pair
of words. Often the pairs are restricted to noun-modifier pairs, but there are many
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Table 5
Metaphorical sentences from Lakoff and Johnson (1980), rendered as SAT-style verbal analogies.

Metaphorical sentence SAT-style verbal analogy

He shot down all of my arguments. aircraft:shoot down::argument:refute
I demolished his argument. building:demolish::argument:refute
You need to budget your time. money:budget::time:schedule
I’ve invested a lot of time in her. money:invest::time:allocate
My mind just isn’t operating today. machine:operate::mind:think
Life has cheatedme. charlatan:cheat::life:disappoint
Inflation is eating up our profits. animal:eat::inflation:reduce

interesting relations, such as antonymy, that do not occur in noun-modifier pairs. How-
ever, noun-modifier pairs are interesting due to their high frequency in English. For
instance, WordNet 2.0 contains more than 26,000 noun-modifier pairs, although many
common noun-modifiers are not in WordNet, especially technical terms.

Rosario and Hearst (2001) and Rosario, Hearst, and Fillmore (2002) classify noun-
modifier relations in the medical domain, using Medical Subject Headings (MeSH) and
Unified Medical Language System (UMLS) as lexical resources for representing each
noun-modifier pair with a feature vector. They trained a neural network to distinguish
13 classes of semantic relations. Nastase and Szpakowicz (2003) explore a similar ap-
proach to classifying general noun-modifier pairs (i.e., not restricted to a particular
domain, such as medicine), using WordNet and Roget’s Thesaurus as lexical resources.
Vanderwende (1994) used hand-built rules, together with a lexical knowledge base, to
classify noun-modifier pairs.

None of these approaches explicitly involved measuring relational similarity, but
any classification of semantic relations necessarily employs some implicit notion of re-
lational similarity since members of the same class must be relationally similar to some
extent. Barker and Szpakowicz (1998) tried a corpus-based approach that explicitly used
a measure of relational similarity, but their measure was based on literal matching,
which limited its ability to generalize. Moldovan et al. (2004) also used a measure of
relational similarity based on mapping each noun and modifier into semantic classes
in WordNet. The noun-modifier pairs were taken from a corpus, and the surrounding
context in the corpus was used in a word sense disambiguation algorithm to improve
the mapping of the noun and modifier into WordNet. Turney and Littman (2005) used
the VSM (as a component in a single nearest neighbor learning algorithm) to measure
relational similarity. We take the same approach here, substituting LRA for the VSM, in
Section 7.

Lauer (1995) used a corpus-based approach (using the BNC) to paraphrase noun–
modifier pairs by inserting the prepositions of, for, in, at, on, from, with, and about. For
example, reptile haven was paraphrased as haven for reptiles. Lapata and Keller (2004)
achieved improved results on this task by using the database of AltaVista’s search
engine as a corpus.

3.5 Word Sense Disambiguation

We believe that the intended sense of a polysemous word is determined by its semantic
relations with the other words in the surrounding text. If we can identify the semantic
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relations between the given word and its context, then we can disambiguate the given
word. Yarowsky’s (1993) observation that collocations are almost always monosemous
is evidence for this view. Federici, Montemagni, and Pirrelli (1997) present an analogy-
based approach to word sense disambiguation.

For example, consider the word plant. Out of context, plant could refer to an in-
dustrial plant or a living organism. Suppose plant appears in some text near food. A
typical approach to disambiguating plant would compare the attributional similarity
of food and industrial plant to the attributional similarity of food and living organism
(Lesk 1986; Banerjee and Pedersen 2003). In this case, the decision may not be clear,
since industrial plants often produce food and living organisms often serve as food. It
would be very helpful to know the relation between food and plant in this example. In
the phrase “food for the plant,” the relation between food and plant strongly suggests
that the plant is a living organism, since industrial plants do not need food. In the
text “food at the plant,” the relation strongly suggests that the plant is an industrial
plant, since living organisms are not usually considered as locations. Thus, an algorithm
for classifying semantic relations (as in Section 7) should be helpful for word sense
disambiguation.

3.6 Information Extraction

The problem of relation extraction is, given an input document and a specific relation R,
to extract all pairs of entities (if any) that have the relation R in the document. The prob-
lem was introduced as part of the Message Understanding Conferences (MUC) in 1998.
Zelenko, Aone, and Richardella (2003) present a kernel method for extracting the
relations person–affiliation and organization–location. For example, in the sentence John
Smith is the chief scientist of the Hardcom Corporation, there is a person–affiliation relation
between John Smith and Hardcom Corporation (Zelenko, Aone, and Richardella 2003).
This is similar to the problem of classifying semantic relations (Section 3.4), except
that information extraction focuses on the relation between a specific pair of entities
in a specific document, rather than a general pair of words in general text. There-
fore an algorithm for classifying semantic relations should be useful for information
extraction.

In the VSM approach to classifying semantic relations (Turney and Littman 2005),
we would have a training set of labeled examples of the relation person–affiliation,
for instance. Each example would be represented by a vector of pattern frequencies.
Given a specific document discussing John Smith and Hardcom Corporation, we could
construct a vector representing the relation between these two entities and then mea-
sure the relational similarity between this unlabeled vector and each of our labeled
training vectors. It would seem that there is a problem here because the training
vectors would be relatively dense, since they would presumably be derived from
a large corpus, but the new unlabeled vector for John Smith and Hardcom Corpora-
tion would be very sparse, since these entities might be mentioned only once in the
given document. However, this is not a new problem for the VSM; it is the standard
situation when the VSM is used for information retrieval. A query to a search en-
gine is represented by a very sparse vector, whereas a document is represented by
a relatively dense vector. There are well-known techniques in information retrieval
for coping with this disparity, such as weighting schemes for query vectors that
are different from the weighting schemes for document vectors (Salton and Buckley
1988).
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3.7 Question Answering

In their article on classifying semantic relations, Moldovan et al. (2004) suggest that an
important application of their work is question answering (QA). As defined in the Text
Retrieval Conference (TREC) QA track, the task is to answer simple questions, such as
“Where have nuclear incidents occurred?”, by retrieving a relevant document from a
large corpus and then extracting a short string from the document, such as The Three
Mile Island nuclear incident caused a DOE policy crisis. Moldovan et al. (2004) propose to
map a given question to a semantic relation and then search for that relation in a corpus
of semantically tagged text. They argue that the desired semantic relation can easily be
inferred from the surface form of the question. A question of the form “Where. . . ?” is
likely to be looking for entities with a location relation and a question of the form “What
did ... make?” is likely to be looking for entities with a product relation. In Section 7, we
show how LRA can recognize relations such as location and product (see Table 19).

3.8 Automatic Thesaurus Generation

Hearst (1992) presents an algorithm for learning hyponym (type of ) relations from a
corpus and Berland and Charniak (1999) describe how to learn meronym (part of )
relations from a corpus. These algorithms could be used to automatically generate a
thesaurus or dictionary, but we would like to handle more relations than hyponymy
and meronymy. WordNet distinguishes more than a dozen semantic relations between
words (Fellbaum 1998) and Nastase and Szpakowicz (2003) list 30 semantic relations for
noun-modifier pairs. Hearst and Berland and Charniak (1999) use manually generated
rules to mine text for semantic relations. Turney and Littman (2005) also use a manually
generated set of 64 patterns.

LRA does not use a predefined set of patterns; it learns patterns from a large corpus.
Instead of manually generating new rules or patterns for each new semantic relation,
it is possible to automatically learn a measure of relational similarity that can handle
arbitrary semantic relations. A nearest neighbor algorithm can then use this relational
similarity measure to learn to classify according to any set of classes of relations, given
the appropriate labeled training data.

Girju, Badulescu, and Moldovan (2003) present an algorithm for learning meronym
relations from a corpus. Like Hearst (1992) and Berland and Charniak (1999), they
use manually generated rules to mine text for their desired relation. However, they
supplement their manual rules with automatically learned constraints, to increase the
precision of the rules.

3.9 Information Retrieval

Veale (2003) has developed an algorithm for recognizing certain types of word analo-
gies, based on information in WordNet. He proposes to use the algorithm for analog-
ical information retrieval. For example, the query Muslim church should return
mosque and the query Hindu bible should return the Vedas. The algorithm was de-
signed with a focus on analogies of the form adjective:noun::adjective:noun, such as
Christian:church::Muslim:mosque.

A measure of relational similarity is applicable to this task. Given a pair of words,
A and B, the task is to return another pair of words, X and Y, such that there is
high relational similarity between the pair A:X and the pair Y:B. For example, given

389



Computational Linguistics Volume 32, Number 3

A =Muslim and B = church, returnX =mosque and Y = Christian. (The pairMuslim:mosque
has a high relational similarity to the pair Christian:church.)

Marx et al. (2002) developed an unsupervised algorithm for discovering analogies
by clustering words from two different corpora. Each cluster of words in one corpus
is coupled one-to-one with a cluster in the other corpus. For example, one experiment
used a corpus of Buddhist documents and a corpus of Christian documents. A cluster of
words such as {Hindu, Mahayana, Zen, ...} from the Buddhist corpus was coupled with
a cluster of words such as {Catholic, Protestant, ...} from the Christian corpus. Thus the
algorithm appears to have discovered an analogical mapping between Buddhist schools
and traditions and Christian schools and traditions. This is interesting work, but it is not
directly applicable to SAT analogies, because it discovers analogies between clusters of
words rather than individual words.

3.10 Identifying Semantic Roles

A semantic frame for an event such as judgement contains semantic roles such as judge,
evaluee, and reason, whereas an event such as statement contains roles such as speaker,
addressee, and message (Gildea and Jurafsky 2002). The task of identifying semantic roles
is to label the parts of a sentence according to their semantic roles. We believe that it
may be helpful to view semantic frames and their semantic roles as sets of semantic
relations; thus, a measure of relational similarity should help us to identify semantic
roles. Moldovan et al. (2004) argue that semantic roles are merely a special case of
semantic relations (Section 3.4), since semantic roles always involve verbs or predicates,
but semantic relations can involve words of any part of speech.

4. The Vector Space Model

This section examines past work on measuring attributional and relational similarity
using the VSM.

4.1 Measuring Attributional Similarity with the Vector Space Model

The VSM was first developed for information retrieval (Salton and McGill 1983; Salton
and Buckley 1988; Salton 1989) and it is at the core of most modern search engines
(Baeza-Yates and Ribeiro-Neto 1999). In the VSM approach to information retrieval,
queries and documents are represented by vectors. Elements in these vectors are based
on the frequencies of words in the corresponding queries and documents. The frequen-
cies are usually transformed by various formulas and weights, tailored to improve the
effectiveness of the search engine (Salton 1989). The attributional similarity between a
query and a document is measured by the cosine of the angle between their correspond-
ing vectors. For a given query, the search engine sorts the matching documents in order
of decreasing cosine.

The VSM approach has also been used to measure the attributional similarity of
words (Lesk 1969; Ruge 1992; Pantel and Lin 2002). Pantel and Lin (2002) clustered
words according to their attributional similarity, as measured by a VSM. Their algo-
rithm is able to discover the different senses of polysemous words, using unsupervised
learning.

Latent Semantic Analysis enhances the VSM approach to information retrieval by
using the Singular Value Decomposition (SVD) to smooth the vectors, which helps
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to handle noise and sparseness in the data (Deerwester et al. 1990; Dumais 1993;
Landauer and Dumais 1997). SVD improves both document-query attributional sim-
ilarity measures (Deerwester et al. 1990; Dumais 1993) and word–word attributional
similarity measures (Landauer and Dumais 1997). LRA also uses SVD to smooth vec-
tors, as we discuss in Section 5.

4.2 Measuring Relational Similarity with the Vector Space Model

Let R1 be the semantic relation (or set of relations) between a pair of words, A and B,
and let R2 be the semantic relation (or set of relations) between another pair, C and D.
We wish to measure the relational similarity between R1 and R2. The relations R1 and R2
are not given to us; our task is to infer these hidden (latent) relations and then compare
them.

In the VSM approach to relational similarity (Turney and Littman 2005), we create
vectors, rrr1 and rrr2, that represent features of R1 and R2, and then measure the similarity
of R1 and R2 by the cosine of the angle θ between r1 and r2:

rrr1 = 〈r1,1, . . . , r1,n〉 (5)

rrr2 = 〈r2,1, . . . r2,n〉 (6)

cosine(θ) =

n∑
i=1

r1,i · r2,i√
n∑
i=1
(r1,i)2 ·

n∑
i=1
(r2,i)2

=
rrr1 · rrr2√

rrr1 · rrr1 ·
√
rrr2 · rrr2

=
rrr1 · rrr2

‖rrr1‖ · ‖rrr2‖
(7)

We create a vector, rrr, to characterize the relationship between two words, X and Y,
by counting the frequencies of various short phrases containing X and Y. Turney and
Littman (2005) use a list of 64 joining terms, such as of, for, and to, to form 128 phrases
that contain X and Y, such as X of Y, Y of X, X for Y, Y for X, X to Y, and Y to X. These
phrases are then used as queries for a search engine and the number of hits (matching
documents) is recorded for each query. This process yields a vector of 128 numbers.
If the number of hits for a query is x, then the corresponding element in the vector rrr
is log(x+ 1). Several authors report that the logarithmic transformation of frequencies
improves cosine-based similarity measures (Salton and Buckley 1988; Ruge 1992; Lin
1998b).

Turney and Littman (2005) evaluated the VSM approach by its performance on 374
SAT analogy questions, achieving a score of 47%. Since there are five choices for each
question, the expected score for random guessing is 20%. To answer a multiple-choice
analogy question, vectors are created for the stem pair and each choice pair, and then
cosines are calculated for the angles between the stem pair and each choice pair. The
best guess is the choice pair with the highest cosine. We use the same set of analogy
questions to evaluate LRA in Section 6.
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The VSM was also evaluated by its performance as a distance (nearness) measure
in a supervised nearest neighbor classifier for noun-modifier semantic relations (Turney
and Littman 2005). The evaluation used 600 hand-labeled noun-modifier pairs from
Nastase and Szpakowicz (2003). A testing pair is classified by searching for its single
nearest neighbor in the labeled training data. The best guess is the label for the training
pair with the highest cosine. LRA is evaluated with the same set of noun-modifier pairs
in Section 7.

Turney and Littman (2005) used the AltaVista search engine to obtain the frequency
information required to build vectors for the VSM. Thus their corpus was the set of all
Web pages indexed by AltaVista. At the time, the English subset of this corpus consisted
of about 5× 1011 words. Around April 2004, AltaVista made substantial changes to
their search engine, removing their advanced search operators. Their search engine no
longer supports the asterisk operator, which was used by Turney and Littman (2005)
for stemming and wild-card searching. AltaVista also changed their policy toward
automated searching, which is now forbidden.3

Turney and Littman (2005) used AltaVista’s hit count, which is the number of
documents (Web pages) matching a given query, but LRA uses the number of passages
(strings) matching a query. In our experiments with LRA (Sections 6 and 7), we use a lo-
cal copy of theWaterloo MultiText System (WMTS) (Clarke, Cormack, and Palmer 1998;
Terra and Clarke 2003), running on a 16 CPU Beowulf Cluster, with a corpus of about
5× 1010 English words. The WMTS is a distributed (multiprocessor) search engine,
designed primarily for passage retrieval (although document retrieval is possible, as a
special case of passage retrieval). The text and index require approximately one terabyte
of disk space. Although AltaVista only gives a rough estimate of the number of match-
ing documents, the WMTS gives exact counts of the number of matching passages.

Turney et al. (2003) combine 13 independent modules to answer SAT questions. The
performance of LRA significantly surpasses this combined system, but there is no real
contest between these approaches, because we can simply add LRA to the combination,
as a fourteenth module. Since the VSM module had the best performance of the 13
modules (Turney et al. 2003), the following experiments focus on comparing VSM and
LRA.

5. Latent Relational Analysis

LRA takes as input a set of word pairs and produces as output a measure of the
relational similarity between any two of the input pairs. LRA relies on three resources, a
search engine with a very large corpus of text, a broad-coverage thesaurus of synonyms,
and an efficient implementation of SVD.

We first present a short description of the core algorithm. Later, in the following
subsections, we will give a detailed description of the algorithm, as it is applied in the
experiments in Sections 6 and 7.

� Given a set of word pairs as input, look in a thesaurus for synonyms for
each word in each word pair. For each input pair, make alternate pairs by
replacing the original words with their synonyms. The alternate pairs are

3 See http://www.altavista.com/robots.txt for AltaVista’s current policy toward “robots” (software for
automatically gathering Web pages or issuing batches of queries). The protocol of the “robots.txt” file is
explained in http://www.robotstxt.org/wc/robots.html.
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intended to form near analogies with the corresponding original pairs (see
Section 2.3).

� Filter out alternate pairs that do not form near analogies by dropping
alternate pairs that co-occur rarely in the corpus. In the preceding step, if a
synonym replaced an ambiguous original word, but the synonym captures
the wrong sense of the original word, it is likely that there is no significant
relation between the words in the alternate pair, so they will rarely
co-occur.

� For each original and alternate pair, search in the corpus for short phrases
that begin with one member of the pair and end with the other. These
phrases characterize the relation between the words in each pair.

� For each phrase from the previous step, create several patterns, by
replacing words in the phrase with wild cards.

� Build a pair–pattern frequency matrix, in which each cell represents the
number of times that the corresponding pair (row) appears in the corpus
with the corresponding pattern (column). The number will usually be
zero, resulting in a sparse matrix.

� Apply the SVD to the matrix. This reduces noise in the matrix and helps
with sparse data.

� Suppose that we wish to calculate the relational similarity between any
two of the original pairs. Start by looking for the two row vectors in the
pair–pattern frequency matrix that correspond to the two original pairs.
Calculate the cosine of the angle between these two row vectors. Then
merge the cosine of the two original pairs with the cosines of their
corresponding alternate pairs, as follows. If an analogy formed with
alternate pairs has a higher cosine than the original pairs, we assume that
we have found a better way to express the analogy, but we have not
significantly changed its meaning. If the cosine is lower, we assume that
we may have changed the meaning by inappropriately replacing words
with synonyms. Filter out inappropriate alternates by dropping all
analogies formed of alternates, such that the cosines are less than the
cosine for the original pairs. The relational similarity between the two
original pairs is then calculated as the average of all of the remaining
cosines.

The motivation for the alternate pairs is to handle cases where the original pairs co-
occur rarely in the corpus. The hope is that we can find near analogies for the original
pairs, such that the near analogies co-occur more frequently in the corpus. The danger
is that the alternates may have different relations from the originals. The filtering steps
above aim to reduce this risk.

5.1 Input and Output

In our experiments, the input set contains from 600 to 2,244 word pairs. The output
similarity measure is based on cosines, so the degree of similarity can range from −1
(dissimilar; θ = 180◦) to +1 (similar; θ = 0◦). Before applying SVD, the vectors are
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completely non-negative, which implies that the cosine can only range from 0 to+1, but
SVD introduces negative values, so it is possible for the cosine to be negative, although
we have never observed this in our experiments.

5.2 Search Engine and Corpus

In the following experiments, we use a local copy of the WMTS (Clarke, Cormack, and
Palmer 1998; Terra and Clarke 2003).4 The corpus consists of about 5× 1010 English
words, gathered by a Web crawler, mainly from US academic Web sites. The Web pages
cover a very wide range of topics, styles, genres, quality, and writing skill. TheWMTS is
well suited to LRA, because the WMTS scales well to large corpora (one terabyte, in our
case), it gives exact frequency counts (unlikemostWeb search engines), it is designed for
passage retrieval (rather than document retrieval), and it has a powerful query syntax.

5.3 Thesaurus

As a source of synonyms, we use Lin’s (1998a) automatically generated thesaurus. This
thesaurus is available through an on-line interactive demonstration or it can be down-
loaded.5 We used the on-line demonstration, since the downloadable version seems to
contain fewer words. For each word in the input set of word pairs, we automatically
query the on-line demonstration and fetch the resulting list of synonyms. As a cour-
tesy to other users of Lin’s on-line system, we insert a 20-second delay between each
two queries.

Lin’s thesaurus was generated by parsing a corpus of about 5× 107 English words,
consisting of text from the Wall Street Journal, San Jose Mercury, and AP Newswire (Lin
1998a). The parser was used to extract pairs of words and their grammatical relations.
Words were then clustered into synonym sets, based on the similarity of their grammat-
ical relations. Two words were judged to be highly similar when they tended to have
the same kinds of grammatical relations with the same sets of words. Given a word and
its part of speech, Lin’s thesaurus provides a list of words, sorted in order of decreasing
attributional similarity. This sorting is convenient for LRA, since it makes it possible
to focus on words with higher attributional similarity and ignore the rest. WordNet, in
contrast, given a word and its part of speech, provides a list of words grouped by the
possible senses of the given word, with groups sorted by the frequencies of the senses.
WordNet’s sorting does not directly correspond to sorting by degree of attributional
similarity, although various algorithms have been proposed for deriving attributional
similarity from WordNet (Resnik 1995; Jiang and Conrath 1997; Budanitsky and Hirst
2001; Banerjee and Pedersen 2003).

5.4 Singular Value Decomposition

We use Rohde’s SVDLIBC implementation of the SVD, which is based on SVDPACKC
(Berry 1992).6 In LRA, SVD is used to reduce noise and compensate for sparseness.

4 See http://multitext.uwaterloo.ca/.
5 The online demonstration is at http://www.cs.ualberta.ca/∼lindek/demos/depsim.htm and the
downloadable version is at http://armena.cs.ualberta.ca/lindek/downloads/sims.lsp.gz.

6 SVDLIBC is available at http://tedlab.mit.edu/∼dr/SVDLIBC/ and SVDPACKC is available at
http://www.netlib.org/svdpack/.
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5.5 The Algorithm

We will go through each step of LRA, using an example to illustrate the steps. Assume
that the input to LRA is the 374 multiple-choice SAT word analogy questions of Turney
and Littman (2005). Since there are six word pairs per question (the stem and five
choices), the input consists of 2,244 word pairs. Let’s suppose that we wish to calculate
the relational similarity between the pair quart:volume and the pair mile:distance, taken
from the SAT question in Table 6. The LRA algorithm consists of the following 12 steps:

1. Find alternates: For each word pair A:B in the input set, look in Lin’s
(1998a) thesaurus for the top num simwords (in the following experiments,
num sim is 10) that are most similar to A. For each A′ that is similar to A,
make a new word pair A′:B. Likewise, look for the top num simwords that
are most similar to B, and for each B′, make a new word pair A:B′. A:B is
called the original pair and each A′:B or A:B′ is an alternate pair. The intent
is that alternates should have almost the same semantic relations as the
original. For each input pair, there will now be 2× num sim alternate pairs.
When looking for similar words in Lin’s (1998a) thesaurus, avoid words
that seem unusual (e.g., hyphenated words, words with three characters or
less, words with non-alphabetical characters, multiword phrases, and
capitalized words). The first column in Table 7 shows the alternate pairs
that are generated for the original pair quart:volume.

2. Filter alternates: For each original pair A:B, filter the 2× num sim
alternates as follows. For each alternate pair, send a query to the WMTS, to
find the frequency of phrases that begin with one member of the pair and
end with the other. The phrases cannot have more than max phrase words
(we use max phrase = 5). Sort the alternate pairs by the frequency of their
phrases. Select the top num filtermost frequent alternates and discard the
remainder (we use num filter = 3, so 17 alternates are dropped). This step
tends to eliminate alternates that have no clear semantic relation. The third
column in Table 7 shows the frequency with which each pair co-occurs in a
window of max phrase words. The last column in Table 7 shows the pairs
that are selected.

3. Find phrases: For each pair (originals and alternates), make a list of
phrases in the corpus that contain the pair. Query the WMTS for all
phrases that begin with one member of the pair and end with the other
(in either order). We ignore suffixes when searching for phrases that match

Table 6
This SAT question, from Claman (2000), is used to illustrate the steps in the LRA algorithm.

Stem: quart:volume

Choices: (a) day:night
(b) mile:distance
(c) decade:century
(d) friction:heat
(e) part:whole

Solution: (b) mile:distance
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Table 7
Alternate forms of the original pair quart:volume. The first column shows the original pair and
the alternate pairs. The second column shows Lin’s similarity score for the alternate word
compared to the original word. For example, the similarity between quart and pint is 0.210. The
third column shows the frequency of the pair in the WMTS corpus. The fourth column shows the
pairs that pass the filtering step (i.e., step 2).

Word pair Similarity Frequency Filtering step

quart:volume NA 632 Accept (original pair)
pint:volume 0.210 372
gallon:volume 0.159 1500 Accept (top alternate)
liter:volume 0.122 3323 Accept (top alternate)
squirt:volume 0.084 54
pail:volume 0.084 28
vial:volume 0.084 373
pumping:volume 0.073 1386 Accept (top alternate)
ounce:volume 0.071 430
spoonful:volume 0.070 42
tablespoon:volume 0.069 96
quart:turnover 0.229 0
quart:output 0.225 34
quart:export 0.206 7
quart:value 0.203 266
quart:import 0.186 16
quart:revenue 0.185 0
quart:sale 0.169 119
quart:investment 0.161 11
quart:earnings 0.156 0
quart:profit 0.156 24

a given pair. The phrases cannot have more than max phrase words and
there must be at least one word between the two members of the word
pair. These phrases give us information about the semantic relations
between the words in each pair. A phrase with no words between the two
members of the word pair would give us very little information about the
semantic relations (other than that the words occur together with a certain
frequency in a certain order). Table 8 gives some examples of phrases in
the corpus that match the pair quart:volume.

4. Find patterns: For each phrase found in the previous step, build patterns
from the intervening words. A pattern is constructed by replacing any or
all or none of the intervening words with wild cards (one wild card can

Table 8
Some examples of phrases that contain quart:volume. Suffixes are ignored when searching for
matching phrases in the WMTS corpus. At least one word must occur between quart and
volume. At most max phrasewords can appear in a phrase.

quarts liquid volume volume in quarts
quarts of volume volume capacity quarts
quarts in volume volume being about two quarts
quart total volume volume of milk in quarts
quart of spray volume volume include measures like quart
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replace only one word). If a phrase is nwords long, there are n− 2
intervening words between the members of the given word pair (e.g.,
between quart and volume). Thus a phrase with nwords generates 2(n−2)

patterns. (We use max phrase = 5, so a phrase generates at most eight
patterns.) For each pattern, count the number of pairs (originals and
alternates) with phrases that match the pattern (a wild card must match
exactly one word). Keep the top num patternsmost frequent patterns and
discard the rest (we use num patterns = 4, 000). Typically there will be
millions of patterns, so it is not feasible to keep them all.

5. Map pairs to rows: In preparation for building the matrix X, create a
mapping of word pairs to row numbers. For each pair A:B, create a row for
A:B and another row for B:A. This will make the matrix more symmetrical,
reflecting our knowledge that the relational similarity between A:B and
C:D should be the same as the relational similarity between B:A and D:C.
This duplication of rows is examined in Section 6.6.

6. Map patterns to columns: Create a mapping of the top num patterns
patterns to column numbers. For each pattern P, create a column for
“word1 P word2” and another column for “word2 P word1.” Thus there will
be 2× num patterns columns in X. This duplication of columns is
examined in Section 6.6.

7. Generate a sparse matrix: Generate a matrix X in sparse matrix format,
suitable for input to SVDLIBC. The value for the cell in row i and column j
is the frequency of the jth pattern (see step 6) in phrases that contain the
ith word pair (see step 5). Table 9 gives some examples of pattern
frequencies for quart:volume.

8. Calculate entropy: Apply log and entropy transformations to the sparse
matrix (Landauer and Dumais 1997). These transformations have been
found to be very helpful for information retrieval (Harman 1986; Dumais
1990). Let xi,j be the cell in row i and column j of the matrix X from step 7.
Let m be the number of rows in X and let n be the number of columns. We
wish to weight the cell xi,j by the entropy of the jth column. To calculate
the entropy of the column, we need to convert the column into a vector of
probabilities. Let pi,j be the probability of xi,j, calculated by normalizing the
column vector so that the sum of the elements is one, pi,j = xi,j/

∑m
k=1 xk,j.

The entropy of the jth column is then Hj = −
∑m

k=1 pk,j log(pk,j). Entropy is
at its maximum when pi,j is a uniform distribution, pi,j = 1/m, in which
case Hj = log(m). Entropy is at its minimum when pi,j is 1 for some value
of i and 0 for all other values of i, in which case Hj = 0. We want to give

Table 9
Frequencies of various patterns for quart:volume. The asterisk “*” represents the wildcard.
Suffixes are ignored, so quartmatches quarts. For example, quarts in volume is one
of the four phrases that match quart P volumewhen P is in.

P = “in” P = “* of” P = “of *” P = “* *”

freq(“quart P volume”) 4 1 5 19
freq(“volume P quart”) 10 0 2 16
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more weight to columns (patterns) with frequencies that vary substantially
from one row (word pair) to the next, and less weight to columns that
are uniform. Therefore we weight the cell xi,j by wj = 1−Hj/ log(m),
which varies from 0 when pi,j is uniform to 1 when entropy is minimal.
We also apply the log transformation to frequencies, log(xi,j + 1).
(Entropy is calculated with the original frequency values, before the
log transformation is applied.) For all i and all j, replace the original
value xi,j in X by the new value wj log(xi,j + 1). This is an instance of the
Term Frequency-Inverse Document Frequency (TF-IDF) family of
transformations, which is familiar in information retrieval (Salton and
Buckley 1988; Baeza-Yates and Ribeiro-Neto 1999): log(xi,j + 1) is the TF
term and wj is the IDF term.

9. Apply SVD: After the log and entropy transformations have been applied
to the matrix X, run SVDLIBC. SVD decomposes a matrix X into a product
of three matrices UΣVT, where U and V are in column orthonormal form
(i.e., the columns are orthogonal and have unit length: UTU = VTV = I)
and Σ is a diagonal matrix of singular values (hence SVD) (Golub and Van
Loan 1996). If X is of rank r, then Σ is also of rank r. Let Σk, where k < r,
be the diagonal matrix formed from the top k singular values, and let Uk

and Vk be the matrices produced by selecting the corresponding columns
from U and V. The matrix UkΣkV

T
k is the matrix of rank k that best

approximates the original matrix X, in the sense that it minimizes the
approximation errors. That is, X̂ = UkΣkV

T
k minimizes

∥∥X̂− X
∥∥
F over all

matrices X̂ of rank k, where ‖. . .‖F denotes the Frobenius norm (Golub and
Van Loan 1996). We may think of this matrix UkΣkV

T
k as a “smoothed” or

“compressed” version of the original matrix. In the subsequent steps, we
will be calculating cosines for row vectors. For this purpose, we can
simplify calculations by dropping V. The cosine of two vectors is
their dot product, after they have been normalized to unit length. The
matrix XXT contains the dot products of all of the row vectors. We
can find the dot product of the ith and jth row vectors by looking at
the cell in row i, column j of the matrix XXT. Since VTV = I, we have
XXT = UΣVT(UΣVT )T = UΣVTVΣTUT = UΣ(UΣ)T, which means that
we can calculate cosines with the smaller matrix UΣ, instead of using
X = UΣVT (Deerwester et al. 1990).

10. Projection: Calculate UkΣk (we use k = 300). This matrix has the same
number of rows as X, but only k columns (instead of 2× num patterns
columns; in our experiments, that is 300 columns instead of 8,000). We can
compare two word pairs by calculating the cosine of the corresponding
row vectors in UkΣk. The row vector for each word pair has been projected
from the original 8,000 dimensional space into a new 300 dimensional
space. The value k = 300 is recommended by Landauer and Dumais (1997)
for measuring the attributional similarity between words. We investigate
other values in Section 6.4.

11. Evaluate alternates: Let A:B and C:D be any two word pairs in the input
set. From step 2, we have (num filter+ 1) versions of A:B, the original and
num filter alternates. Likewise, we have (num filter+ 1) versions of C:D.
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Therefore we have (num filter+ 1)2 ways to compare a version of A:Bwith
a version of C:D. Look for the row vectors in UkΣk that correspond to the
versions of A:B and the versions of C:D and calculate the (num filter+ 1)2

cosines (in our experiments, there are 16 cosines). For example, suppose
A:B is quart:volume and C:D is mile:distance. Table 10 gives the cosines for
the sixteen combinations.

12. Calculate relational similarity: The relational similarity between A:B and
C:D is the average of the cosines, among the (num filter+ 1)2 cosines from
step 11, that are greater than or equal to the cosine of the original pairs,
A:B and C:D. The requirement that the cosine must be greater than or
equal to the original cosine is a way of filtering out poor analogies, which
may be introduced in step 1 and may have slipped through the filtering in
step 2. Averaging the cosines, as opposed to taking their maximum, is
intended to provide some resistance to noise. For quart:volume and
mile:distance, the third column in Table 10 shows which alternates are
used to calculate the average. For these two pairs, the average of the
selected cosines is 0.677. In Table 7, we see that pumping:volume has
slipped through the filtering in step 2, although it is not a good alternate
for quart:volume. However, Table 10 shows that all four analogies that
involve pumping:volume are dropped here, in step 12.

Steps 11 and 12 can be repeated for each two input pairs that are to be compared. This
completes the description of LRA.

Table 11 gives the cosines for the sample SAT question. The choice pair with the
highest average cosine (the choice with the largest value in column 1), choice (b), is
the solution for this question; LRA answers the question correctly. For comparison,
column 2 gives the cosines for the original pairs and column 3 gives the highest cosine.

Table 10
The 16 combinations and their cosines. A:B::C:D expresses the analogy A is to B as C is to D. The
third column indicates those combinations for which the cosine is greater than or equal
to the cosine of the original analogy, quart:volume::mile:distance.

Word pairs Cosine Cosine ≥ original pairs

quart:volume::mile:distance 0.525 Yes (original pairs)
quart:volume::feet:distance 0.464
quart:volume::mile:length 0.634 Yes
quart:volume::length:distance 0.499
liter:volume::mile:distance 0.736 Yes
liter:volume::feet:distance 0.687 Yes
liter:volume::mile:length 0.745 Yes
liter:volume::length:distance 0.576 Yes
gallon:volume::mile:distance 0.763 Yes
gallon:volume::feet:distance 0.710 Yes
gallon:volume::mile:length 0.781 Yes (highest cosine)
gallon:volume::length:distance 0.615 Yes
pumping:volume::mile:distance 0.412
pumping:volume::feet:distance 0.439
pumping:volume::mile:length 0.446
pumping:volume::length:distance 0.491
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For this particular SAT question, there is one choice that has the highest cosine for all
three columns, choice (b), although this is not true in general. Note that the gap between
the first choice (b) and the second choice (d) is largest for the average cosines (column
1). This suggests that the average of the cosines (column 1) is better at discriminating the
correct choice than either the original cosine (column 2) or the highest cosine (column 3).

6. Experiments with Word Analogy Questions

This section presents various experiments with 374 multiple-choice SAT word analogy
questions.

6.1 Baseline LRA System

Table 12 shows the performance of the baseline LRA system on the 374 SAT questions,
using the parameter settings and configuration described in Section 5. LRA correctly
answered 210 of the 374 questions; 160 questions were answered incorrectly and 4
questions were skipped, because the stem pair and its alternates were represented by
zero vectors. The performance of LRA is significantly better than the lexicon-based
approach of Veale (2004) (see Section 3.1) and the best performance using attributional
similarity (see Section 2.3), with 95% confidence, according to the Fisher Exact Test
(Agresti 1990).

As another point of reference, consider the simple strategy of always guessing the
choice with the highest co-occurrence frequency. The idea here is that the words in
the solution pair may occur together frequently, because there is presumably a clear
and meaningful relation between the solution words, whereas the distractors may only
occur together rarely because they have no meaningful relation. This strategy is signif-
cantly worse than random guessing. The opposite strategy, always guessing the choice
pair with the lowest co-occurrence frequency, is also worse than random guessing (but
not significantly). It appears that the designers of the SAT questions deliberately chose
distractors that would thwart these two strategies.

Table 11
Cosines for the sample SAT question given in Table 6. Column 1 gives the averages of the cosines
that are greater than or equal to the original cosines (e.g., the average of the cosines that are
marked Yes in Table 10 is 0.677; see choice (b) in column 1). Column 2 gives the cosine for the
original pairs (e.g., the cosine for the first pair in Table 10 is 0.525; see choice (b) in column 2).
Column 3 gives the maximum cosine for the 16 possible analogies (e.g., the maximum cosine in
Table 10 is 0.781; see choice (b) in column 3).

Stem: quart:volume Average Original Highest
cosines cosines cosines
1 2 3

Choices: (a) day:night 0.374 0.327 0.443
(b) mile:distance 0.677 0.525 0.781
(c) decade:century 0.389 0.327 0.470
(d) friction:heat 0.428 0.336 0.552
(e) part:whole 0.370 0.330 0.408

Solution: (b) mile:distance 0.677 0.525 0.781
Gap: (b)−(d) 0.249 0.189 0.229
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Table 12
Performance of LRA on the 374 SAT questions. Precision, recall, and F are reported as
percentages. (The bottom five rows are included for comparison.)

Algorithm Precision Recall F

LRA 56.8 56.1 56.5
Veale (2004) 42.8 42.8 42.8
Best attributional similarity 35.0 35.0 35.0
Random guessing 20.0 20.0 20.0
Lowest co-occurrence frequency 16.8 16.8 16.8
Highest co-occurrence frequency 11.8 11.8 11.8

With 374 questions and six word pairs per question (one stem and five choices),
there are 2,244 pairs in the input set. In step 2, introducing alternate pairs multiplies
the number of pairs by four, resulting in 8,976 pairs. In step 5, for each pair A:B, we add
B:A, yielding 17,952 pairs. However, some pairs are dropped because they correspond
to zero vectors (they do not appear together in a window of five words in the WMTS
corpus). Also, a few words do not appear in Lin’s thesaurus, and some word pairs
appear twice in the SAT questions (e.g., lion:cat). The sparse matrix (step 7) has 17,232
rows (word pairs) and 8,000 columns (patterns), with a density of 5.8% (percentage of
nonzero values).

Table 13 gives the time required for each step of LRA, a total of almost 9 days. All of
the steps used a single CPU on a desktop computer, except step 3, finding the phrases
for each word pair, which used a 16 CPU Beowulf cluster. Most of the other steps are
parallelizable; with a bit of programming effort, they could also be executed on the
Beowulf cluster. All CPUs (both desktop and cluster) were 2.4 GHz Intel Xeons. The
desktop computer had 2 GB of RAM and the cluster had a total of 16 GB of RAM.

6.2 LRA versus VSM

Table 14 compares LRA to the VSM with the 374 analogy questions. VSM-AV refers
to the VSM using AltaVista’s database as a corpus. The VSM-AV results are taken

Table 13
LRA elapsed run time.

Step Description Time H:M:S Hardware

1 Find alternates 24:56:00 1 CPU
2 Filter alternates 0:00:02 1 CPU
3 Find phrases 109:52:00 16 CPUs
4 Find patterns 33:41:00 1 CPU
5 Map pairs to rows 0:00:02 1 CPU
6 Map patterns to columns 0:00:02 1 CPU
7 Generate a sparse matrix 38:07:00 1 CPU
8 Calculate entropy 0:11:00 1 CPU
9 Apply SVD 0:43:28 1 CPU
10 Projection 0:08:00 1 CPU
11 Evaluate alternates 2:11:00 1 CPU
12 Calculate relational similarity 0:00:02 1 CPU
Total 209:49:36

401



Computational Linguistics Volume 32, Number 3

from Turney and Littman (2005). As mentioned in Section 4.2, we estimate this corpus
contained about 5× 1011 English words at the time the VSM-AV experiments took place.
VSM-WMTS refers to the VSM using the WMTS, which contains about 5× 1010 English
words. We generated the VSM-WMTS results by adapting the VSM to the WMTS.
The algorithm is slightly different from Turney and Littman’s (2005), because we used
passage frequencies instead of document frequencies.

All three pairwise differences in recall in Table 14 are statistically significant with
95% confidence, using the Fisher Exact Test (Agresti 1990). The pairwise differences in
precision between LRA and the two VSM variations are also significant, but the differ-
ence in precision between the two VSM variations (42.4% vs. 47.7%) is not significant.
Although VSM-AV has a corpus 10 times larger than LRA’s, LRA still performs better
than VSM-AV.

Comparing VSM-AV to VSM-WMTS, the smaller corpus has reduced the score of
the VSM, but much of the drop is due to the larger number of questions that were
skipped (34 for VSM-WMTS versus 5 for VSM-AV).With the smaller corpus, manymore
of the input word pairs simply do not appear together in short phrases in the corpus.
LRA is able to answer as many questions as VSM-AV, although it uses the same corpus
as VSM-WMTS, because Lin’s thesaurus allows LRA to substitute synonyms for words
that are not in the corpus.

VSM-AV required 17 days to process the 374 analogy questions (Turney and Littman
2005), compared to 9 days for LRA. As a courtesy to AltaVista, Turney and Littman
(2005) inserted a 5-second delay between each two queries. Since the WMTS is running
locally, there is no need for delays. VSM-WMTS processed the questions in only one day.

6.3 Human Performance

The average performance of college-bound senior high school students on verbal SAT
questions corresponds to a recall (percent correct) of about 57% (Turney and Littman
2005). The SAT I test consists of 78 verbal questions and 60 math questions (there is
also an SAT II test, covering specific subjects, such as chemistry). Analogy questions are
only a subset of the 78 verbal SAT questions. If we assume that the difficulty of our 374
analogy questions is comparable to the difficulty of the 78 verbal SAT I questions, then
we can estimate that the average college-bound senior would correctly answer about
57% of the 374 analogy questions.

Of our 374 SAT questions, 190 are from a collection of ten official SAT tests (Claman
2000). On this subset of the questions, LRA has a recall of 61.1%, compared to a recall
of 51.1% on the other 184 questions. The 184 questions that are not from Claman (2000)
seem to be more difficult. This indicates that we may be underestimating how well
LRA performs, relative to college-bound senior high school students. Claman (2000)
suggests that the analogy questions may be somewhat harder than other verbal SAT

Table 14
LRA versus VSM with 374 SAT analogy questions.

Algorithm Correct Incorrect Skipped Precision Recall F

VSM-AV 176 193 5 47.7 47.1 47.4
VSM-WMTS 144 196 34 42.4 38.5 40.3
LRA 210 160 4 56.8 56.1 56.5
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questions, so we may be slightly overestimating the mean human score on the analogy
questions.

Table 15 gives the 95% confidence intervals for LRA, VSM-AV, and VSM-WMTS,
calculated by the Binomial Exact Test (Agresti 1990). There is no significant difference
between LRA and human performance, but VSM-AV and VSM-WMTS are significantly
below human-level performance.

6.4 Varying the Parameters in LRA

There are several parameters in the LRA algorithm (see Section 5.5). The parameter
values were determined by trying a small number of possible values on a small set of
questions that were set aside. Since LRA is intended to be an unsupervised learning
algorithm, we did not attempt to tune the parameter values to maximize the precision
and recall on the 374 SAT questions. We hypothesized that LRA is relatively insensitive
to the values of the parameters.

Table 16 shows the variation in the performance of LRA as the parameter values
are adjusted. We take the baseline parameter settings (given in Section 5.5) and vary
each parameter, one at a time, while holding the remaining parameters fixed at their
baseline values. None of the precision and recall values are significantly different from
the baseline, according to the Fisher Exact Test (Agresti 1990), at the 95% confidence
level. This supports the hypothesis that the algorithm is not sensitive to the parameter
values.

Although a full run of LRA on the 374 SAT questions takes 9 days, for some of
the parameters it is possible to reuse cached data from previous runs. We limited the
experiments with num sim and max phrase because caching was not as helpful for these
parameters, so experimenting with them required several weeks.

6.5 Ablation Experiments

As mentioned in the introduction, LRA extends the VSM approach of Turney and
Littman (2005) by (1) exploring variations on the analogies by replacing words with
synonyms (step 1), (2) automatically generating connecting patterns (step 4), and (3)
smoothing the data with SVD (step 9). In this subsection, we ablate each of these three
components to assess their contribution to the performance of LRA. Table 17 shows the
results.

Table 15
Comparison with human SAT performance. The last column in the table indicates whether (YES)
or not (NO) the average human performance (57%) falls within the 95% confidence interval of
the corresponding algorithm’s performance. The confidence intervals are calculated using the
Binomial Exact Test (Agresti 1990).

System Recall 95% confidence Human-level
(% correct) interval for recall (57%)

VSM-AV 47.1 42.2–52.5 NO
VSM-WMTS 38.5 33.5–43.6 NO
LRA 56.1 51.0–61.2 YES
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Table 16
Variation in performance with different parameter values. The Baseline column marks the
baseline parameter values. The Step column gives the step number in Section 5.5 where each
parameter is discussed.

Parameter Baseline Value Step Precision Recall F

num sim 5 1 54.2 53.5 53.8
num sim ⇒ 10 1 56.8 56.1 56.5
num sim 15 1 54.1 53.5 53.8
max phrase 4 2 55.8 55.1 55.5
max phrase ⇒ 5 2 56.8 56.1 56.5
max phrase 6 2 56.2 55.6 55.9
num filter 1 2 54.3 53.7 54.0
num filter 2 2 55.7 55.1 55.4
num filter ⇒ 3 2 56.8 56.1 56.5
num filter 4 2 55.7 55.1 55.4
num filter 5 2 54.3 53.7 54.0
num patterns 1000 4 55.9 55.3 55.6
num patterns 2000 4 57.6 57.0 57.3
num patterns 3000 4 58.4 57.8 58.1
num patterns ⇒ 4000 4 56.8 56.1 56.5
num patterns 5000 4 57.0 56.4 56.7
num patterns 6000 4 57.0 56.4 56.7
num patterns 7000 4 58.1 57.5 57.8
k 100 10 55.7 55.1 55.4
k ⇒ 300 10 56.8 56.1 56.5
k 500 10 57.6 57.0 57.3
k 700 10 56.5 55.9 56.2
k 900 10 56.2 55.6 55.9

Without SVD (compare column 1 to 2 in Table 17), performance drops, but the
drop is not statistically significant with 95% confidence, according to the Fisher Exact
Test (Agresti 1990). However, we hypothesize that the drop in performance would be
significant with a larger set of word pairs. More word pairs would increase the sample
size, which would decrease the 95% confidence interval, which would likely show that
SVD is making a significant contribution. Furthermore, more word pairs would increase
the matrix size, which would give SVD more leverage. For example, Landauer and
Dumais (1997) apply SVD to a matrix of 30,473 columns by 60,768 rows, but our matrix

Table 17
Results of ablation experiments.

LRA LRA
Baseline LRA LRA No SVD,
system No SVD No synonyms no synonyms VSM-WMTS
1 2 3 4 5

Correct 210 198 185 178 144
Incorrect 160 172 167 173 196
Skipped 4 4 22 23 34
Precision 56.8 53.5 52.6 50.7 42.4
Recall 56.1 52.9 49.5 47.6 38.5
F 56.5 53.2 51.0 49.1 40.3
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here is 8,000 columns by 17,232 rows. We are currently gathering more SAT questions
to test this hypothesis.

Without synonyms (compare column 1 to 3 in Table 17), recall drops significantly
(from 56.1% to 49.5%), but the drop in precision is not significant. When the synonym
component is dropped, the number of skipped questions rises from 4 to 22, which
demonstrates the value of the synonym component of LRA for compensating for sparse
data.

When both SVD and synonyms are dropped (compare column 1 to 4 in Table 17),
the decrease in recall is significant, but the decrease in precision is not significant.
Again, we believe that a larger sample size would show that the drop in precision is
significant.

If we eliminate both synonyms and SVD from LRA, all that distinguishes LRA from
VSM-WMTS is the patterns (step 4). The VSM approach uses a fixed list of 64 patterns
to generate 128 dimensional vectors (Turney and Littman 2005), whereas LRA uses a
dynamically generated set of 4,000 patterns, resulting in 8,000 dimensional vectors. We
can see the value of the automatically generated patterns by comparing LRA without
synonyms and SVD (column 4) to VSM-WMTS (column 5). The difference in both
precision and recall is statistically significant with 95% confidence, according to the
Fisher Exact Test (Agresti 1990).

The ablation experiments support the value of the patterns (step 4) and synonyms
(step 1) in LRA, but the contribution of SVD (step 9) has not been proven, although
we believe more data will support its effectiveness. Nonetheless, the three components
together result in a 16% increase in F (compare column 1 to 5).

6.6 Matrix Symmetry

We know a priori that, if A:B::C:D, then B:A::D:C. For example, mason is to stone as
carpenter is to wood implies stone is to mason as wood is to carpenter. Therefore, a good
measure of relational similarity, simr, should obey the following equation:

simr(A :B,C :D) = simr(B :A,D :C) (8)

In steps 5 and 6 of the LRA algorithm (Section 5.5), we ensure that the matrix X is
symmetrical, so that equation (8) is necessarily true for LRA. The matrix is designed so
that the row vector forA:B is different from the row vector for B:A only by a permutation
of the elements. The same permutation distinguishes the row vectors for C:D and D:C.
Therefore the cosine of the angle between A:B and C:D must be identical to the cosine
of the angle between B:A and D:C (see equation (7)).

To discover the consequences of this design decision, we altered steps 5 and 6 so
that symmetry is no longer preserved. In step 5, for each word pair A:B that appears in
the input set, we only have one row. There is no row for B:A unless B:A also appears in
the input set. Thus the number of rows in the matrix dropped from 17,232 to 8,616.

In step 6, we no longer have two columns for each pattern P, one for “word1 P word2”
and another for “word2 P word1.” However, to be fair, we kept the total number of
columns at 8,000. In step 4, we selected the top 8,000 patterns (instead of the top 4,000),
distinguishing the pattern “word1 P word2” from the pattern “word2 P word1” (instead of
considering them equivalent). Thus a pattern Pwith a high frequency is likely to appear
in two columns, in both possible orders, but a lower frequency pattern might appear in
only one column, in only one possible order.
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These changes resulted in a slight decrease in performance. Recall dropped from
56.1% to 55.3% and precision dropped from 56.8% to 55.9%. The decrease is not sta-
tistically significant. However, the modified algorithm no longer obeys equation (8).
Although dropping symmetry appears to cause no significant harm to the performance
of the algorithm on the SAT questions, we prefer to retain symmetry, to ensure that
equation (8) is satisfied.

Note that, if A:B::C:D, it does not follow that B:A::C:D. For example, it is false that
“stone is to mason as carpenter is to wood.” In general (except when the semantic
relations between A and B are symmetrical), we have the following inequality:

simr(A :B,C :D) �= simr(B :A,C :D) (9)

Therefore we do not want A:B and B:A to be represented by identical row vectors,
although it would ensure that equation (8) is satisfied.

6.7 All Alternates versus Better Alternates

In step 12 of LRA, the relational similarity between A:B and C:D is the average of the
cosines, among the (num filter+ 1)2 cosines from step 11, that are greater than or equal
to the cosine of the original pairs, A:B and C:D. That is, the average includes only those
alternates that are “better” than the originals. Taking all alternates instead of the better
alternates, recall drops from 56.1% to 40.4% and precision drops from 56.8% to 40.8%.
Both decreases are statistically significant with 95% confidence, according to the Fisher
Exact Test (Agresti 1990).

6.8 Interpreting Vectors

Suppose a word pair A:B corresponds to a vector r in the matrix X. It would be con-
venient if inspection of r gave us a simple explanation or description of the relation
between A and B. For example, suppose the word pair ostrich:bird maps to the row
vector r. It would be pleasing to look in r and find that the largest element corresponds
to the pattern “is the largest” (i.e., “ostrich is the largest bird”). Unfortunately, inspection
of r reveals no such convenient patterns.

We hypothesize that the semantic content of a vector is distributed over the whole
vector; it is not concentrated in a few elements. To test this hypothesis, we modified
step 10 of LRA. Instead of projecting the 8,000 dimensional vectors into the 300 dimen-
sional space UkΣk, we use the matrix UkΣkV

T
k . This matrix yields the same cosines as

UkΣk, but preserves the original 8,000 dimensions, making it easier to interpret the row
vectors. For each row vector in UkΣkV

T
k , we select the N largest values and set all other

values to zero. The idea here is that we will only pay attention to the N most important
patterns in r; the remaining patterns will be ignored. This reduces the length of the
row vectors, but the cosine is the dot product of normalized vectors (all vectors are
normalized to unit length; see equation (7)), so the change to the vector lengths has no
impact; only the angle of the vectors is important. If most of the semantic content is in
the N largest elements of r, then setting the remaining elements to zero should have
relatively little impact.

Table 18 shows the performance asN varies from 1 to 3,000. The precision and recall
are significantly below the baseline LRA until N ≥ 300 (95% confidence, Fisher Exact
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Test). In other words, for a typical SAT analogy question, we need to examine the top
300 patterns to explain why LRA selected one choice instead of another.

We are currently working on an extension of LRA that will explain with a single
pattern why one choice is better than another. We have had some promising results, but
this work is not yet mature. However, we can confidently claim that interpreting the
vectors is not trivial.

6.9 Manual Patterns versus Automatic Patterns

Turney and Littman (2005) used 64 manually generated patterns, whereas LRA uses
4,000 automatically generated patterns.We know from Section 6.5 that the automatically
generated patterns are significantly better than the manually generated patterns. It may
be interesting to see how many of the manually generated patterns appear within the
automatically generated patterns. If we require an exact match, 50 of the 64 manual
patterns can be found in the automatic patterns. If we are lenient about wildcards, and
count the pattern not the as matching * not the (for example), then 60 of the 64 manual
patterns appear within the automatic patterns. This suggests that the improvement in
performance with the automatic patterns is due to the increased quantity of patterns,
rather than a qualitative difference in the patterns.

Turney and Littman (2005) point out that some of their 64 patterns have been used
by other researchers. For example, Hearst (1992) used the pattern such as to discover hy-
ponyms and Berland and Charniak (1999) used the pattern of the to discover meronyms.
Both of these patterns are included in the 4,000 patterns automatically generated by
LRA.

The novelty in Turney and Littman (2005) is that their patterns are not used to
mine text for instances of word pairs that fit the patterns (Hearst 1992; Berland and
Charniak 1999); instead, they are used to gather frequency data for building vectors
that represent the relation between a given pair of words. The results in Section 6.8
show that a vector contains more information than any single pattern or small set of
patterns; a vector is a distributed representation. LRA is distinct from Hearst (1992) and
Berland and Charniak (1999) in its focus on distributed representations, which it shares
with Turney and Littman (2005), but LRA goes beyond Turney and Littman (2005) by
finding patterns automatically.

Riloff and Jones (1999) and Yangarber (2003) also find patterns automatically, but
their goal is to mine text for instances of word pairs; the same goal as Hearst (1992) and

Table 18
Performance as a function of N.

N Correct Incorrect Skipped Precision Recall F

1 114 179 81 38.9 30.5 34.2
3 146 206 22 41.5 39.0 40.2
10 167 201 6 45.4 44.7 45.0
30 174 196 4 47.0 46.5 46.8
100 178 192 4 48.1 47.6 47.8
300 192 178 4 51.9 51.3 51.6
1000 198 172 4 53.5 52.9 53.2
3000 207 163 4 55.9 55.3 55.6
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Berland and Charniak (1999). Because LRA uses patterns to build distributed vector
representations, it can exploit patterns that would be much too noisy and unreliable for
the kind of text mining instance extraction that is the objective of Hearst (1992), Berland
and Charniak (1999), Riloff and Jones (1999), and Yangarber (2003). Therefore LRA can
simply select the highest frequency patterns (step 4 in Section 5.5); it does not need the
more sophisticated selection algorithms of Riloff and Jones (1999) and Yangarber (2003).

7. Experiments with Noun-Modifier Relations

This section describes experiments with 600 noun-modifier pairs, hand-labeled with
30 classes of semantic relations (Nastase and Szpakowicz 2003). In the following ex-
periments, LRA is used with the baseline parameter values, exactly as described in
Section 5.5. No adjustments were made to tune LRA to the noun-modifier pairs. LRA is
used as a distance (nearness) measure in a single nearest neighbor supervised learning
algorithm.

7.1 Classes of Relations

The following experiments use the 600 labeled noun-modifier pairs of Nastase and
Szpakowicz (2003). This data set includes information about the part of speech and
WordNet synset (synonym set; i.e., word sense tag) of each word, but our algorithm
does not use this information.

Table 19 lists the 30 classes of semantic relations. The table is based on Appendix A
of Nastase and Szpakowicz (2003), with some simplifications. The original table listed
several semantic relations for which there were no instances in the data set. These were
relations that are typically expressed with longer phrases (three or more words), rather
than noun-modifier word pairs. For clarity, we decided not to include these relations in
Table 19.

In this table, H represents the head noun andM represents the modifier. For exam-
ple, in flu virus, the head noun (H) is virus and the modifier (M) is flu (*). In English,
the modifier (typically a noun or adjective) usually precedes the head noun. In the
description of purpose, V represents an arbitrary verb. In concert hall, the hall is for
presenting concerts (V is present) or holding concerts (V is hold) (†).

Nastase and Szpakowicz (2003) organized the relations into groups. The five capi-
talized terms in the Relation column of Table 19 are the names of five groups of semantic
relations. (The original table had a sixth group, but there are no examples of this group
in the data set.) We make use of this grouping in the following experiments.

7.2 Baseline LRA with Single Nearest Neighbor

The following experiments use single nearest neighbor classification with leave-one-out
cross-validation. For leave-one-out cross-validation, the testing set consists of a single
noun-modifier pair and the training set consists of the 599 remaining noun-modifiers.
The data set is split 600 times, so that each noun-modifier gets a turn as the testing word
pair. The predicted class of the testing pair is the class of the single nearest neighbor
in the training set. As the measure of nearness, we use LRA to calculate the relational
similarity between the testing pair and the training pairs. The single nearest neighbor
algorithm is a supervised learning algorithm (i.e., it requires a training set of labeled
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Table 19
Classes of semantic relations, from Nastase and Szpakowicz (2003).

Relation Abbr. Example phrase Description

CAUSALITY

cause cs flu virus (*) H makesM occur or exist, H is
necessary and sufficient

effect eff exam anxiety Mmakes H occur or exist,M is
necessary and sufficient

purpose prp concert hall (†) H is for V-ingM,M does not
necessarily occur or exist

detraction detr headache pill H opposesM, H is not sufficient
to preventM

TEMPORALITY

frequency freq daily exercise H occurs every timeM occurs
time at tat morning exercise H occurs whenM occurs
time through tthr six-hour meeting H existed whileM existed,M is

an interval of time

SPATIAL

direction dir outgoing mail H is directed towardsM,M is
not the final point

location loc home town H is the location ofM
location at lat desert storm H is located atM
location from lfr foreign capital H originates atM

PARTICIPANT

agent ag student protest M performs H,M is animate or
natural phenomenon

beneficiary ben student discount M benefits from H
instrument inst laser printer H usesM
object obj metal separator M is acted upon by H
object property obj prop sunken ship H underwentM
part part printer tray H is part ofM
possessor posr national debt M has H
property prop blue book H isM
product prod plum tree H producesM
source src olive oil M is the source of H
stative st sleeping dog H is in a state ofM
whole whl daisy chain M is part of H

QUALITY

container cntr film music M contains H
content cont apple cake M is contained in H
equative eq player coach H is alsoM
material mat brick house H is made ofM
measure meas expensive book M is a measure of H
topic top weather report H is concerned withM
type type oak tree M is a type of H
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data), but we are using LRA to measure the distance between a pair and its potential
neighbors, and LRA is itself determined in an unsupervised fashion (i.e., LRA does not
need labeled data).

Each SAT question has five choices, so answering 374 SAT questions required cal-
culating 374× 5× 16 = 29, 920 cosines. The factor of 16 comes from the alternate pairs,
step 11 in LRA. With the noun-modifier pairs, using leave-one-out cross-validation,
each test pair has 599 choices, so an exhaustive application of LRA would require
calculating 600× 599× 16 = 5, 750, 400 cosines. To reduce the amount of computation
required, we first find the 30 nearest neighbors for each pair, ignoring the alternate pairs
(600× 599 = 359, 400 cosines), and then apply the full LRA, including the alternates, to
just those 30 neighbors (600× 30× 16 = 288, 000 cosines), which requires calculating
only 359, 400+ 288, 000 = 647, 400 cosines.

There are 600 word pairs in the input set for LRA. In step 2, introducing alternate
pairs multiplies the number of pairs by four, resulting in 2,400 pairs. In step 5, for each
pair A:B, we add B:A, yielding 4,800 pairs. However, some pairs are dropped because
they correspond to zero vectors and a few words do not appear in Lin’s thesaurus. The
sparse matrix (step 7) has 4,748 rows and 8,000 columns, with a density of 8.4%.

Following Turney and Littman (2005), we evaluate the performance by accuracy
and also by the macroaveraged F measure (Lewis 1991). Macroaveraging calculates
the precision, recall, and F for each class separately, and then calculates the average
across all classes. Microaveraging combines the true positive, false positive, and false
negative counts for all of the classes, and then calculates precision, recall, and F from the
combined counts. Macroaveraging gives equal weight to all classes, but microaveraging
gives more weight to larger classes. We use macroaveraging (giving equal weight to all
classes), because we have no reason to believe that the class sizes in the data set reflect
the actual distribution of the classes in a real corpus.

Classification with 30 distinct classes is a hard problem. To make the task easier, we
can collapse the 30 classes to 5 classes, using the grouping that is given in Table 19. For
example, agent and beneficiary both collapse to participant. On the 30 class problem, LRA
with the single nearest neighbor algorithm achieves an accuracy of 39.8% (239/600)
and a macroaveraged F of 36.6%. Always guessing the majority class would result in
an accuracy of 8.2% (49/600). On the 5 class problem, the accuracy is 58.0% (348/600)
and the macroaveraged F is 54.6%. Always guessing the majority class would give an
accuracy of 43.3% (260/600). For both the 30 class and 5 class problems, LRA’s accuracy
is significantly higher than guessing the majority class, with 95% confidence, according
to the Fisher Exact Test (Agresti 1990).

7.3 LRA versus VSM

Table 20 shows the performance of LRA and VSM on the 30 class problem. VSM-AV
is VSM with the AltaVista corpus and VSM-WMTS is VSM with the WMTS corpus.
The results for VSM-AV are taken from Turney and Littman (2005). All three pairwise
differences in the three Fmeasures are statistically significant at the 95% level, according
to the Paired t-Test (Feelders and Verkooijen 1995). The accuracy of LRA is signifi-
cantly higher than the accuracies of VSM-AV and VSM-WMTS, according to the Fisher
Exact Test (Agresti 1990), but the difference between the two VSM accuracies is not
significant.

Table 21 compares the performance of LRA and VSM on the 5 class problem.
The accuracy and F measure of LRA are significantly higher than the accuracies and
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Table 20
Comparison of LRA and VSM on the 30 class problem.

VSM-AV VSM-WMTS LRA

Correct 167 148 239
Incorrect 433 452 361
Total 600 600 600
Accuracy 27.8 24.7 39.8
Precision 27.9 24.0 41.0
Recall 26.8 20.9 35.9
F 26.5 20.3 36.6

Table 21
Comparison of LRA and VSM on the 5 class problem.

VSM-AV VSM-WMTS LRA

Correct 274 264 348
Incorrect 326 336 252
Total 600 600 600
Accuracy 45.7 44.0 58.0
Precision 43.4 40.2 55.9
Recall 43.1 41.4 53.6
F 43.2 40.6 54.6

F measures of VSM-AV and VSM-WMTS, but the differences between the two VSM
accuracies and Fmeasures are not significant.

8. Discussion

The experimental results in Sections 6 and 7 demonstrate that LRA performs signifi-
cantly better than the VSM, but it is also clear that there is room for improvement. The
accuracy might not yet be adequate for practical applications, although past work has
shown that it is possible to adjust the trade-off of precision versus recall (Turney and
Littman 2005). For some of the applications, such as information extraction, LRA might
be suitable if it is adjusted for high precision, at the expense of low recall.

Another limitation is speed; it took almost 9 days for LRA to answer 374 analogy
questions. However, with progress in computer hardware, speed will gradually become
less of a concern. Also, the software has not been optimized for speed; there are several
places where the efficiency could be increased and many operations are parallelizable.
It may also be possible to precompute much of the information for LRA, although this
would require substantial changes to the algorithm.

The difference in performance between VSM-AV and VSM-WMTS shows that VSM
is sensitive to the size of the corpus. Although LRA is able to surpass VSM-AVwhen the
WMTS corpus is only about one tenth the size of the AV corpus, it seems likely that LRA
would perform better with a larger corpus. The WMTS corpus requires one terabyte of
hard disk space, but progress in hardware will likely make 10 or even 100 terabytes
affordable in the relatively near future.

For noun-modifier classification, more labeled data should yield performance im-
provements. With 600 noun-modifier pairs and 30 classes, the average class has only
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20 examples. We expect that the accuracy would improve substantially with 5 or
10 times more examples. Unfortunately, it is time consuming and expensive to acquire
hand-labeled data.

Another issue with noun-modifier classification is the choice of classification
scheme for the semantic relations. The 30 classes of Nastase and Szpakowicz (2003)
might not be the best scheme. Other researchers have proposed different schemes
(Vanderwende 1994; Barker and Szpakowicz 1998; Rosario and Hearst 2001; Rosario,
Hearst, and Fillmore 2002). It seems likely that some schemes are easier for machine
learning than others. For some applications, 30 classes may not be necessary; the 5 class
scheme may be sufficient.

LRA, like VSM, is a corpus-based approach to measuring relational similarity. Past
work suggests that a hybrid approach, combining multiple modules, some corpus-
based, some lexicon-based, will surpass any purebred approach (Turney et al. 2003).
In future work, it would be natural to combine the corpus-based approach of LRA with
the lexicon-based approach of Veale (2004), perhaps using the combination method of
Turney et al. (2003).

SVD is only one of many methods for handling sparse, noisy data. We have also
experimented with Non-negative Matrix Factorization (NMF) (Lee and Seung 1999),
Probabilistic Latent Semantic Analysis (PLSA) (Hofmann 1999), Kernel Principal Com-
ponents Analysis (KPCA) (Scholkopf, Smola, and Muller 1997), and Iterative Scaling
(IS) (Ando 2000). We had some interesting results with small matrices (around 2,000
rows by 1,000 columns), but none of these methods seemed substantially better than
SVD and none of them scaled up to the matrix sizes we are using here (e.g., 17,232 rows
and 8,000 columns; see Section 6.1).

In step 4 of LRA, we simply select the top num patterns most frequent patterns
and discard the remaining patterns. Perhaps a more sophisticated selection algorithm
would improve the performance of LRA. We have tried a variety of ways of selecting
patterns, but it seems that the method of selection has little impact on performance. We
hypothesize that the distributed vector representation is not sensitive to the selection
method, but it is possible that future work will find a method that yields significant
improvement in performance.

9. Conclusion

This article has introduced a new method for calculating relational similarity, Latent
Relational Analysis. The experiments demonstrate that LRA performs better than the
VSM approach, when evaluated with SAT word analogy questions and with the task
of classifying noun-modifier expressions. The VSM approach represents the relation be-
tween a pair of words with a vector, in which the elements are based on the frequencies
of 64 hand-built patterns in a large corpus. LRA extends this approach in three ways:
(1) The patterns are generated dynamically from the corpus, (2) SVD is used to smooth
the data, and (3) a thesaurus is used to explore variations of the word pairs. With the
WMTS corpus (about 5× 1010 English words), LRA achieves an F of 56.5%, whereas the
F of VSM is 40.3%.

We have presented several examples of the many potential applications for mea-
sures of relational similarity. Just as attributional similarity measures have proven
to have many practical uses, we expect that relational similarity measures will soon
become widely used. Gentner et al. (2001) argue that relational similarity is essential
to understanding novel metaphors (as opposed to conventional metaphors). Many
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researchers have argued that metaphor is the heart of human thinking (Lakoff and
Johnson 1980; Hofstadter and the Fluid Analogies Research Group 1995; Gentner
et al. 2001; French 2002). We believe that relational similarity plays a fundamental role
in the mind and therefore relational similarity measures could be crucial for artificial
intelligence.

In future work, we plan to investigate some potential applications for LRA. It
is possible that the error rate of LRA is still too high for practical applications, but
the fact that LRA matches average human performance on SAT analogy questions is
encouraging.
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