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The Software Engineering Discipline

• Distinct from other engineering fields
– Prefabricated components
– Metrics

• Practitioners versus Theoreticians
• Professional Organizations: ACM, IEEE, etc.

– Codes of professional ethics
– Standards
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Computer Aided Software 
Engineering (CASE) tools

• Project planning
• Project management
• Documentation
• Prototyping and simulation
• Interface design
• Programming
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Figure 7.1 The software life cycle
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Figure 7.2 The development 
phase of the software life cycle
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Analysis Stage

• Requirements
– Application oriented

• Specifications
– Technically oriented

• Software requirements document
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Design Stage

• Methodologies and tools (discussed later)
• Human interface (psychology and ergonomics)
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Implementation Stage

• Create system from design
– Write programs
– Create data files
– Develop databases

• Role of “software analyst” versus 
“programmer”
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Testing Stage

• Validation testing
– Confirm that system meets specifications

• Defect testing
– Find bugs
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Software Engineering Methodologies

• Waterfall Model
• Incremental Model

– Prototyping (Evolutionary vs. Throwaway)
• Open-source Development
• Extreme Programming
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Modularity

• Procedures -- Imperative paradigm
– Structure charts

• Objects -- Object-oriented paradigm
– Collaboration diagrams

• Components -- Component architecture
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Figure 7.3 A simple structure 
chart
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Figure 7.4 The structure of 
PlayerClass and its instances
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Figure 7.5 A simple collaboration 
diagram
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Figure 7.6 A structure chart 
including data coupling
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Coupling versus Cohesion

• Coupling 
– Control coupling
– Data coupling

• Cohesion
– Logical cohesion
– Functional cohesion



© 2007 Pearson Addison-Wesley. All rights reserved 0-18

Figure 7.7 Logical and functional cohesion 
within an object
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Tools of the Trade

• Data Flow Diagram
• Entity-Relationship Diagram

– One-to-one relation
– One-to-many relation
– Many-to-many relation

• Data Dictionary
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Figure 7.8 A simple dataflow 
diagram
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Figure 7.9 A simple entity- 
relationship diagram



© 2007 Pearson Addison-Wesley. All rights reserved 0-22

Figure 7.10 One-to-one, one-to-many, 
and many-to-many relationships between 
entities of types X and Y
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Unified Modeling Language

• Use Case Diagram
– Use cases
– Actors

• Class Diagram
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Figure 7.11 A simple use case 
diagram
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Figure 7.12 A simple class 
diagram
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Figure 7.13 A class diagram 
depicting generalizations
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Structured Walkthoughs

• “Theatrical” experiment
• Class-responsibility-collaboration cards
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Design Patterns

• Well designed “templates” for solving recurring 
problems

• Examples:
– Adapter pattern: Used to adapter a module’s interface to 

current needs
– Decorator pattern: Used to control the complexity involved 

when many different combinations of the same activities are 
required

• Inspired by the work of Christopher Alexander in 
architecture
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Software Testing Strategies

• Glass-box testing
– Pareto principle
– Basis path testing

• Black-box testing
– Boundary value analysis
– Redundancy testing
– Beta testing
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Documentation

• User Documentation
– Printed book for all customers
– On-line help modules

• System Documentation
– Source code
– Design documents

• Technical Documentation
– For installing, customizing, updating, etc.
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Software Ownership

• Copyright
– The “substantial similarity” test
– Filtration criteria: what is not copyrightable

• Features covered by standards
• Characteristics dictated by software purpose
• Components in the public domain

– The “look and feel” argument
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Software Ownership (continued)

• Patents
– “Natural laws” are traditionally not patentable

• Trade secrets
– Non-disclosure agreements are legally enforceable
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