
Chapter 7

Software
Engineering

© 2007 Pearson Addison-Wesley.
All rights reserved

© 2007 Pearson Addison-Wesley. All rights reserved 0-2

Chapter 7: Software Engineering

• 7.1 The Software Engineering Discipline
• 7.2 The Software Life Cycle
• 7.3 Software Engineering Methodologies
• 7.4 Modularity
• 7.5 Tools of the Trade
• 7.6 Testing
• 7.7 Documentation
• 7.8 Software Ownership and Liability

© 2007 Pearson Addison-Wesley. All rights reserved 0-3

The Software Engineering Discipline

• Distinct from other engineering fields
– Prefabricated components
– Metrics

• Practitioners versus Theoreticians
• Professional Organizations: ACM, IEEE, etc.

– Codes of professional ethics
– Standards

© 2007 Pearson Addison-Wesley. All rights reserved 0-4

Computer Aided Software
Engineering (CASE) tools

• Project planning
• Project management
• Documentation
• Prototyping and simulation
• Interface design
• Programming

© 2007 Pearson Addison-Wesley. All rights reserved 0-5

Figure 7.1 The software life cycle

© 2007 Pearson Addison-Wesley. All rights reserved 0-6

Figure 7.2 The development
phase of the software life cycle

© 2007 Pearson Addison-Wesley. All rights reserved 0-7

Analysis Stage

• Requirements
– Application oriented

• Specifications
– Technically oriented

• Software requirements document

© 2007 Pearson Addison-Wesley. All rights reserved 0-8

Design Stage

• Methodologies and tools (discussed later)
• Human interface (psychology and ergonomics)

© 2007 Pearson Addison-Wesley. All rights reserved 0-9

Implementation Stage

• Create system from design
– Write programs
– Create data files
– Develop databases

• Role of “software analyst” versus
“programmer”

© 2007 Pearson Addison-Wesley. All rights reserved 0-10

Testing Stage

• Validation testing
– Confirm that system meets specifications

• Defect testing
– Find bugs

© 2007 Pearson Addison-Wesley. All rights reserved 0-11

Software Engineering Methodologies

• Waterfall Model
• Incremental Model

– Prototyping (Evolutionary vs. Throwaway)
• Open-source Development
• Extreme Programming

© 2007 Pearson Addison-Wesley. All rights reserved 0-12

Modularity

• Procedures -- Imperative paradigm
– Structure charts

• Objects -- Object-oriented paradigm
– Collaboration diagrams

• Components -- Component architecture

© 2007 Pearson Addison-Wesley. All rights reserved 0-13

Figure 7.3 A simple structure
chart

© 2007 Pearson Addison-Wesley. All rights reserved 0-14

Figure 7.4 The structure of
PlayerClass and its instances

© 2007 Pearson Addison-Wesley. All rights reserved 0-15

Figure 7.5 A simple collaboration
diagram

© 2007 Pearson Addison-Wesley. All rights reserved 0-16

Figure 7.6 A structure chart
including data coupling

© 2007 Pearson Addison-Wesley. All rights reserved 0-17

Coupling versus Cohesion

• Coupling
– Control coupling
– Data coupling

• Cohesion
– Logical cohesion
– Functional cohesion

© 2007 Pearson Addison-Wesley. All rights reserved 0-18

Figure 7.7 Logical and functional cohesion
within an object

© 2007 Pearson Addison-Wesley. All rights reserved 0-19

Tools of the Trade

• Data Flow Diagram
• Entity-Relationship Diagram

– One-to-one relation
– One-to-many relation
– Many-to-many relation

• Data Dictionary

© 2007 Pearson Addison-Wesley. All rights reserved 0-20

Figure 7.8 A simple dataflow
diagram

© 2007 Pearson Addison-Wesley. All rights reserved 0-21

Figure 7.9 A simple entity-
relationship diagram

© 2007 Pearson Addison-Wesley. All rights reserved 0-22

Figure 7.10 One-to-one, one-to-many,
and many-to-many relationships between
entities of types X and Y

© 2007 Pearson Addison-Wesley. All rights reserved 0-23

Unified Modeling Language

• Use Case Diagram
– Use cases
– Actors

• Class Diagram

© 2007 Pearson Addison-Wesley. All rights reserved 0-24

Figure 7.11 A simple use case
diagram

© 2007 Pearson Addison-Wesley. All rights reserved 0-25

Figure 7.12 A simple class
diagram

© 2007 Pearson Addison-Wesley. All rights reserved 0-26

Figure 7.13 A class diagram
depicting generalizations

© 2007 Pearson Addison-Wesley. All rights reserved 0-27

Structured Walkthoughs

• “Theatrical” experiment
• Class-responsibility-collaboration cards

© 2007 Pearson Addison-Wesley. All rights reserved 0-28

Design Patterns

• Well designed “templates” for solving recurring
problems

• Examples:
– Adapter pattern: Used to adapter a module’s interface to

current needs
– Decorator pattern: Used to control the complexity involved

when many different combinations of the same activities are
required

• Inspired by the work of Christopher Alexander in
architecture

© 2007 Pearson Addison-Wesley. All rights reserved 0-29

Software Testing Strategies

• Glass-box testing
– Pareto principle
– Basis path testing

• Black-box testing
– Boundary value analysis
– Redundancy testing
– Beta testing

© 2007 Pearson Addison-Wesley. All rights reserved 0-30

Documentation

• User Documentation
– Printed book for all customers
– On-line help modules

• System Documentation
– Source code
– Design documents

• Technical Documentation
– For installing, customizing, updating, etc.

© 2007 Pearson Addison-Wesley. All rights reserved 0-31

Software Ownership

• Copyright
– The “substantial similarity” test
– Filtration criteria: what is not copyrightable

• Features covered by standards
• Characteristics dictated by software purpose
• Components in the public domain

– The “look and feel” argument

© 2007 Pearson Addison-Wesley. All rights reserved 0-32

Software Ownership (continued)

• Patents
– “Natural laws” are traditionally not patentable

• Trade secrets
– Non-disclosure agreements are legally enforceable

	幻灯片编号 1
	Chapter 7: Software Engineering
	The Software Engineering Discipline
	Computer Aided Software Engineering (CASE) tools
	Figure 7.1 The software life cycle
	Figure 7.2 The development phase of the software life cycle
	Analysis Stage
	Design Stage
	Implementation Stage
	Testing Stage
	Software Engineering Methodologies
	Modularity
	Figure 7.3 A simple structure chart
	Figure 7.4 The structure of PlayerClass and its instances
	Figure 7.5 A simple collaboration diagram
	Figure 7.6 A structure chart including data coupling
	Coupling versus Cohesion
	Figure 7.7 Logical and functional cohesion within an object
	Tools of the Trade
	Figure 7.8 A simple dataflow diagram
	Figure 7.9 A simple entity-relationship diagram
	Figure 7.10 One-to-one, one-to-many, �and many-to-many relationships between entities of types X and Y
	Unified Modeling Language
	Figure 7.11 A simple use case diagram
	Figure 7.12 A simple class diagram
	Figure 7.13 A class diagram depicting generalizations
	Structured Walkthoughs
	Design Patterns
	Software Testing Strategies
	Documentation
	Software Ownership
	Software Ownership (continued)

