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ABSTRACT:

Vagueness is often considered as an inherent gyopespatiotemporal phenomena. In order to redhée vagueness, integrity
constraints should be defined to improve logicahsistency of spatiotemporal databases. Howevestiegi constraints are not
adaptedto control logical consistency efiguespatiotemporal objects because they are initiddifined for crisp (omon—fuzzy
objects. When applied teague spatiotemporal objects or relatiprssich constraints would reject a large amountadé decause
they don't authorizgartial consistencyn the database. In this paper, we present arpapprto define integrity constraints which
would be able to take into account spatiotempoagjueness. We define three categories of constraisgsnantic, temporal and
spatial - accordingly to the nature of vaguenessifip to each one. Then, we explain how these tcaim$s could permit partial
consistency of vague spatiotemporal objects aradiogls by using fuzzy logic

1. INTRODUCTION propose a definition of vague spatiotemporal oBject

respectively in the sections 4, 5 and 6. In secTipwe explain

In spatial databases, integrity constraints arel &g to insure
logical consistency, (2) inform about quality levef the

database and (3) reduce vagueness. Different giepsuch as
topological criteria (e.dine simplicity, semantic aspects (ea.

the link between partial consistency and integeitypstraints in
the context of vague spatiotemporal phenomena. ,Then
propose a categorization of integrity constraintsoading to
our vagueness taxonomy. Section 8 presents thelusiomts

house has one level at lepsind spatiotemporal relationships
(e.g. ‘agricultural spreading parcels should be disjoint o
adjacent in a spreading period”fan agricultural spreading
parcel is an agricultural area in which manures were stovn
improve t agricultural productivity) should be caoiled
through these constraints (Souris, 2006). In génertegrity
constraints arebinary rules based on a crisp (oon—fuzzy
description of the space. In effect, all data whidbn't

and perspectives of this work.

2. RELATED WORKS

Smith (1994) distinguishes two categories of spatigects:fiat
objects (i.e.ill-defined objecty (e.g. forest stand, pollution
zong and bona fide objects (i.e.well-defined objec)s (e.qg.
completely respect a rule defined by an integrionstraint  building, road). For bona fide objects, the vagueness problem
should be rejected. For ill-defined spatiotempaiajects (e.g. has a probabilistic nature and refers the erroteénposition or
air pollution zone forest standetc.), vagueness is an inherentin the values of some attributes. However, vaguehesfiats
property which may characterize every data stomedthe  objects can also correspond to imprecision andifiess in the
database. For example, let an integrity constisaging that “a  boundaries (e.gpollution zong or in the classification (e.g.
vague spatial obje@& shouldoverlapa vague spatial obje&'. different components of an historic build)ngriats objects are
In this constraint, spatial objects can overlapheatter a little conventionally approximated in the databases tocepeesented
bit', ‘ somewhator ‘completelybecause there is an uncertainty like bona fide objects (e.dpy tracing crisp boundaries for an
about the total or a part of the object geomdigary integrity  air pollution zong. This approximation is a sufficient solution

constraints are not appropriate to control logaatsistency of
this kind of data because they are not able to tifyathis
uncertainty. Frank (2001) introduces the conceptpaftial
consistency to deal with inherently vague data.(a.dorest

when data will be used to satisfy simple transaetioneeds
(e.g. displaying cartographic and thematic dataywabays,
spatial data are used in decisional informatiortesys where
the need is to analyse a great size of data irr eodenprove the

stang. Basing on this concept, our main objective is toquality of decisions in very sensible domains léeological

categorize integrity constraints in the context wdgue
spatiotemporal databases. In order to achieve gha, we
propose a taxonomy of spatial and temporal vagseies
section 6).

The paper is organised as follows. In section 2, briefly
present some related works to the problem of isimgaogical
consistency of vague spatiotemporal objects. Iti@edS, we
present fuzzy logic principles. Then, we presentmeo
definitions related to vagueness and its diffeteméls and we

problems. Thus, the reliability of data is verylit on the
decision quality. Therefore, the approximation ofgue
spatiotemporal objects and relations is not appabprin
particular when decisional needs should be achielved that,
specific models, especially for geometric and terapaspects,
should be used to manage vague spatiotemporal ptesrzo

The geometry is the spatial description of the farmd position
of an object (i.e. an entity of the world). An offjecan be
represented by a point, a line, a region or a coatlin of these
primitives. The position of the object can be ezpesl in
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latitude/longitude or any other coordinate systdror fiat

objects, crisp forms cannot be used because th&y plesent a
reliable description of the reality. For exampleere is a need
to store transition zone offarest standn order to improve its
management. When crisp forms are used, it is aissiple to
have the need to manage vagueness of object positi@an
instantt.

In general, vagueness in geometry can be represémteugh
three categories of models. First, exacts modetsgmt an
extension of crisp description of space (Clemenéind Di

Felice, 1997; Cohn and Gotts, 1996; Erwig and Sdangi
1997). Second, fuzzy models are those based owy fagc to

quantify vagueness (e.g. (Burrough, 1996; Diloakf 2005;

Edwards, 1994)). Third, probabilistic models aresdzhon a
probabilistic approach to model position and attiés errors
(Burrough, 1996; Pfoser atl., 2005). In order to allow
modelling of spatiotemporal vagueness, Shuakt (2003)

extend MADS specifications to model two kinds ofgue

4. VAGUENESS TAXONOMY

Cohn and Gotts (1996) considered the concept ofersggs as
the root of different kinds of imperfection that utd
characterise a spatiotemporal phenomenon. The pbrmfe
vagueness is sometimes used as a synonym &izhimesge.qg.
(Duckam etal., 2003)) which could characterise boundaries of
some spatial objects. However, the vocation of them
“vagueness is more general and cannot be reduced to
boundaries fuzziness (Cohn and Gotts, 1996). Foresom
composed geometries, existence of some component®ie
certain than some others. For example, the existeficome
road segments in the itinerary of an historic pesage is
uncertain. In addition, the vagueness can charsetguist the
position and not the form of the object. For exanph historic
monument has a known form but its position is vaglueown.
Thus, it can be represented in different positisite different
possibilities. For that, vagueness is the root wf @mxonomy

spatial objects: (1)andom spatial object (i.e. vagueness is justand it corresponds to an inherent property of thddwor of the

about the position of the objeaihd (2)fuzzy spatial object (i.e.
the form of the object is fuzzy and it presentédabgundaries)

knowledge about this world. In the rest of papée term
uncertaintycan be used as a synonym of the teagueness

Yazici etal. (2001) propose a more developed extension oDifferent forms of vagueness could characteriseicigmporal

UML formalism by modelling spatial and temporal uagess
of an object. In the same way, spatial relatiowben crisp or
vague spatial objects can be vague (e.g. “near”, fa the
north of”, ect.). Dubois «il. (2003) studied the modelization of
fuzzy temporal and spatial relations through fulzgjic. Pfoser

data such as imprecision, inaccuracy, fuzziness and
inconsistency. First, imprecision results from cdewjiy of
geographic phenomena and/or limitations of measemém
instruments. It corresponds to dispersion aroumdean value
(Mowrer, 1999). Second, accuracy is the differdnesveen the

etal. (2005); Dilo etal. (2005) presented respectively different stored value and another value admitted as truehird,T

methodologies based on fuzzy logic to store andipuodate
vague spatial objects and relations. However, nliogeVague
spatiotemporal relations requires the control gbotogical
properties, semantic aspects and temporal propeofiesuch
objects and relations through adapted integrity staints.
Therefore, we interest to the control of logicahsistency of
data in such models in order to increase theiabdity and
utility.

3. FUZZY LOGIC

Fuzzy logic (Zadeh, 1965) is a rigorous mathemafiproach
useful to model ill-defined concepts, such gsuhg persohor
“small persoh This theory is anextensionof boolean logic
where the adherence of universe elements is biftarg}. In
the contrast to binary logic, the elements of thiverse do not
have a strict membership (i@.or 1) to the concept of interest
but rather onanembership degreg.e. a value betweed and
1): more this value is close to 1, more the memberdagree is
high. A fuzzy subset is formally expressed as next:

,&={(x,,u;(x))/xD X} 1)

Where ,uA X o [0,1] is the membership function permitting

to compute membership degree of an element of therseX

fuzziness is an inherent property of some of objedtich don't

have well-defined boundaries (efgrest standlake etc) or

the existence of some of its components is uncerfaig.

components of a historic monumenFinally, inconsistency
arises when the data violates spatial (e.g. amsersects itself)
or temporal model (e.g. an instant is placed odheftime axis)
properties. Most inconsistency problems have a sémaature
and refer two or more incoherent values in the datge.g. the
following observations are incoherettié population of a great
town should be greater than 5 millionsMontreal contains
three millions personsaand ‘Montreal is a great towih The

notion of inconsistency is fundamental in this wbdcause we
study its specificities for inherently vague sptmporal

phenomena where the spatial, the temporal and ehmargic

aspects are modeled differently to the crisp case.

According to Bédard (1987), vagueness appears eliftiyr

depending on the abstraction level and the spafgéct

property. The next section presents these diffetemtls of

vagueness.

5. VAGUENESSLEVELS

Bédard (1987) classified vagueness which affecttadpdata-
bases in four fundamental levels. First, vaguemesenceptual
level (or first order)refers the object or relation definition
fuzziness (e.g. being or not being such an objemt?he cate-

to the fuzzy subseA. In spatial databases domain, several apdrisation fuzziness (e.g. being a hodsef typeA or typeB?).

proaches (e.g. (Dilo eal.,

Yongming and Sanjiang, 20043dopted the theory of the fuzzy

subsets to resolve different modelling problems. &ample,

Dilo et al. (2005) used the fuzzy subsets to define the vagu

geometric primitivesgoint, lineandregion) and to express the
topological relations between vague spatial objdotshe same
way, fuzzy logic can be used to control partial sistency of

data. In the next section, we present vaguenesmaoaxy and

kinds of inconsistencies in spatiotemporal datahase

2005; Hwang and Thill, 2005; Second, vagueness d@escriptive level (or second ordesgcurs

when the definition of a thematic attribute is fy4e.g. a de-
scriptive attribute Vulnerability’ has the next fuzzy definition:
“the degree of sensibility of an object to the"Jiend/or some
e . . L

values taken by this attribute are vague (i.e. @ujsion for
quantitative values and fuzziness for qualitatie¢ues). Third,
the vagueness ispatiotemporal level (third order) ariseghen
the object has (1) a fuzzy geometry (adgorest stanjl (2) a
fuzzy temporality (e.ga precipitation periodl or (3) qualitative
values for some spatial attributes (e.g. thehatte called “sur-
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face” can have the following valueslittle”, “mediuni and
“great’). In addition, vagueness can correspond to imipi@c
for quantitative values describing spatiotemporaject refer-

and some cases of lines (i.e. lines in a partitbduzzy re-
gions), these primitives are called fuzzy whettheytbelong to
the broad boundaries of fuzzy modeled objectsfigaire 3 and

ence (e.garea or perimetej. In this level, we can also speak figure 4 (case b)). Also, a fuzzy geometry can apge as an
aboutpositional vaguenesshen there is a difficulty to localise aggregationof conventional points, lines or regions distriltlite

the object in the space or/and in the time (#hg.position of a
moving object at an instan).tFourth, meta-uncertainty(or

on two subsets: (1) kernel(i.e. certain part of the geometry
and (2) aruncertain part(cf. figure 3). Aggregative configura-

fourth orde) refers the degree of knowledge about the precedtion expresses another kind of fuzziness wheregdumetry of

ing vagueness and it can be callethCertainty about uncer-
tainty”. For example, the information saying thtte' precision

the object is made up by a set of primitives wisenme of them
don't surely represent the object (e.g. the menhiyeref one

of data is +-3m reduces the ignorance about the precision ofsegment to the itinerary of a criminal is infertorl (cf. figure

data and helps to improve use of data. Basing ancthssifica-
tion, we propose a definition of vague spatioterapobject or
relation.

6. WHAT ISA VAGUE SPATIOTEMPORAL OBJECT?

Three aspects of vagueness could characteriseetiogition of
any spatiotemporal object. Indeed, ttescriptionvaguenessf
a spatiotemporal object is the combination of vagss occur-
ring in conceptual descriptiveand spatiotemporal leveld-irst,
conceptual vagueness refers the fuzziness ofdimtification

4)). Positional vague geometriesccur when the vagueness
characterises only the position (i.e. and not trenj of the ob-
ject because there is a measurement imprecisica lack of
knowledge about thpreciselocation of the object (Cohn and
Gotts, 1996; Yazici etl., 2001). Since forms of objects are
well-known (e.g. an historic building), a positibneague ge-
ometry is stored in the database with the same fikencrisp
geometry. However, positional vague geometshould be as-
sociated to a possibility which reflects the unaieity of the ob-
ject position. For example, the position of a vihat an instant

t can be modeled aspositional vague pointFuzzy and posi-
tional vague primitives can be used isimple multiple alter-

or thecategorizationof the object or relation. Second, descrip- native or complexgeometries (Bédard etl., 2004) (cf. figure

tive vagueness arises when there is fuzzinesdribuwtes defi-

nition or in attributes values (i.ér qualitative valuesor also

an imprecisiorof quantitative valuegcf. figure 1). Third, spa-
tiotemporal vagueness refers (1) the fuzzinessi®fférm (e.qg.
fuzziness boundaries or uncertainty about the exigt of some
components of the object), (2) the vagueness optisition of

the object or the relation (i.e. the imprecisiortlor uncertainty
about the spatial extension of the object at atams), (3) the
temporal fuzziness (i.e. the existence of the dbjannot be
precisely known) or (4) the vagueness of the tealfigrposi-

tion (i.e. the problem to localise the temporatifithe object on
the time axis).

‘ Drescriptive vagueness

£

‘ Attribute values vagueness ‘ ‘ Attribute definition fuzziness

—=

‘ Cualitative fuzziness

‘ Imprecision ‘

Figure 1. Descriptive vagueness
6.1 Spatiotemporal vagueness

At the spatiotemporal level, vagueness can chaisetgeome-
try or temporality of the object or relation. Acdarg to the
definition of the object geometry, we distinguistotcategories
of geometry vaguenestizzy geometries angbsitional vague

2). Formally, the geometry of a vague spatiotemipmiogect can
be defined as a fuzzy subset (cf. section 3).

Spatial vagueness

L‘A

[ ]
Fuzzy geometry

Lll

[ I
Aggregative configuration Concentric configuration

Alk

[ I [ |
Multiple Alternative

Positional vague geometry

Simple Complex

Figure 2. Spatial Vagueness

6.1.1 Vague point: a crisp point is the 0-dimesional geometric
primitive which represents a known position (OG002). A
crisp point doesn’'t have any boundary but it caralgart of a
line boundaries. According to the categorizatioespnted in
the figure 2 a vague point can bgositional vaguefuzzy con-
centric or fuzzy aggregative-irst, a positional vague poinmay
model an uncertain position of an object (e.g.ghssibility of
the vehicle to be at the positiéti is 0.6). Second, &uzzy point
could exist in two configurations presented in fg@. First, the
fuzzy concentric configuratiorefers the situation where an in-
stance of the object is an ill-known point in a @fie zone.
Secondfuzzy aggregative configuraticefers a set of conven-
tional points subdivided into two subsetise kernel(i.e. black
points in the exampleand theuncertain part For example, the

geometriesFor fuzziness case, we distinguish three fuzzy geoset of places visited by an historic personagenitown can be

metric primitives:fuzzy pointfuzzy lineandfuzzy regionSince
fuzziness can be a problem of boundaries or ofsifleation
(i.e. membership of some components to an objeatngéy),
then fuzzy geometries can exist in (1x@ncentric configura-
tion or in (2) anaggregative configuratianFor regions and
some cases of lines (cf. figure 4 (the casasdc)), concentric
configurationis made up by kernelsurrounded by transition
zonewhich replaces conventional limits. In the casepoints

modeled as an aggregative fuzzy point (e.g. irsdw®nd raw of

figure 3, theblack pointsrefer places explicitly cited in historic
references whereas the other points corresponthte$ possi-

bly visited).
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Fuzzy concentric configuration

-

xxx

Fuzzy agavesative conflguration

Fuzzy concentric corfiguration

@)
O @

@ O

Fuzzy aggre zative configuration

Figure 3. Fuzzy point

6.1.2 Vague line: a vague line can bgositional vagugefuzzy

concentricor fuzzy aggregativeAccording to the properties of

positional vague geometriea, positional vague linés a con-

Figure 5. Fuzzy region

6.2 Temporal vagueness

A spatial object or relation can have principallyot

ventional line whicthas a possibility to exist in a specific posi- temporality aspects to be managedistenceand geometric

tion. The figure 4 presents different cases of zyuine. The
first raw of figure 4 shows three casedudzy concentric lines
The cases (a) and (c) show two lines for which espectively
ill know the two extremities and the start poinar Fexample,
this configuration can be used to represent areriiry for
which the source and/or destination are ill-definedthe case
(b), all of the line is ill-defined and is represesh here as an el-
lipsoid. This kind of lines can model the fuzzinedsborder
lines in a collection of ill-defined regions. Thecend raw pre-
sents the fuzzy aggregative configuration of a.limethe sec-
ond raw of figure 4, the discontinuity reflects aertainty of
each line segment. The continuous segments représeker-
nel of the line (i.ethe certain part of the geome}rywhereas the
rest of segments correspond to the uncertain paheogeome-
try. This kind of lines can model an historic perage itinerary.

Fuzzy
oetez | o— | C D P—p
@ ) ©
z;;zggﬂﬁve _\——-——-. ‘—_____———Uﬂwﬂmpaﬂ
configuration f S
_._._._._______._.—-——"'_
Femel

Figure 4. Fuzzy line

6.1.3 Vague region: a vague region can hgositional vague
fuzzy concentricor fuzzy aggregativeFirst, positional vague
region refers the situation where the region is geomnedtyic
well-defined but there is an uncertainty about etdstence
and/or position (e.gan historic building. In effect, the geome-
try corresponds to a conventional polygon which daa®ssibil-
ity calculated through a firstly defined memberslimction
(e.g.a petroleum pollution zone,Ras the possibility 0.7 to be
in this position at the instan}.tSecondfuzzy concentric region
(cf. figure 5) refers the situation where the regas ill-defined
boundaries (e.gan air pollution zoné&. In this case, th&ernel
(the grey polygons in the second raw of figures4$irrounded

by broad boundariesnvhich represent the zone of vagueness.

Fuzzy regions can also exist in aggregative configuration
(cf. figure 5) (i.e. grey polygons represent #ernelwhereas
white polygons correspond to the uncertain pany. éxample,
fuzzy aggregative regions might be used to modeltware ex-
ploitation petroleum zone where tkernel represents the sub-
regions to beertainly exploited. In the contrast, thencertain
part groups the sub-regionsossibly exploitable according to
the costs, the company budget and resources, etc.

evolution In general, two temporal primitives are used to
model these aspects: insta®dimensiongl and period 1-
dimensiongl. However, this temporality can be vague for
many reasons (Pfoser and Tryfona, 2001) like dating
techniques or future planning. For example, ththliate of an
historic personage or the period of constructioa afonument

is often vague. Indeed, temporal vagueness caesgond to
positional vague temporalityor to fuzzy temporality A
positional vague temporalitarises when it is difficult to
precisely localise the temporal event or periodhmntime axis.
For example, it is sure that a persémvas died at a given day
but we don't have the sufficient knowledge to lomalthis
event on the time axis. Nevertheles$uzzy temporalitarises
when the event or the period is inherently vague.éxample,

a precipitation period and the start instant ofyalane are
respectively examples of a fuzzy period and a fuagtant (cf.
figure 7). A fuzzy instant is represented bymimal instanta
maximal instantand a membership functionFor a fuzzy
period, one of extremities, at least, should bezzy instant.
According to (Bédard edl., 2004), these temporal primitives
can exist in simple multiple alternative or complex
temporalities.

Temporal vagueness

A'L

Fuzzy temporality Positional vague temporality
[ I
I |
Instant Perind
[ I
[ | [ |
Simple Dultiple Alternative Complex

Figure 6. Temporal vagueness
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Positional waguae instant
(T as)

I;
I Y I I A

Positional wvaguae petiod
¢ [0 Igf 06l

I a— Iz

Fuzzy instant

Tmin

Fuzzy instant

1 Kernel of the period

= =

Imin

Tmax

Figure 7. Vague temporal primitives

7. INTEGRITY CONSTRAINTS AND PARTIAL
CONSISTENCY

In environmental information systems, there is a&ddo
consider vagueness in order to improve decisiontadhifferent
ill-defined problems like pollution or land coveFo achieve
this purpose, data introduced in the database dhwailuseful
although it is inherently vague. It is the role iftegrity
constraints which we present in this section.

7.1 What is an integrity constraint in spatiotemporal
databases?

Integrity constraints are important rules that ddtauld verify.
Checking these rules at each database update aldmsure
semantic coherency of data. In general, these @ntst are
defined at the conceptual level via specific td@édard eal.,
2004) and data inconsistency results from integritystraints
violation. In spatiotemporal databases, integripnstraints
should, in addition, allow insuring spatial and paral
consistencies of the objects (Souris, 2006). Aispmahporal
object has also a temporality which should be test
according to a temporal model and a specific seimant

7.2 Partial consistency in spatiotemporal databases

In the case of crisp modelling, the vagueness isattowed in
the database and it should be eliminated throbghary
integrity constraints. However, in some cases iteguired to
manage vagueness in a database and to quanEfyriexample,
the management of beach nourishment (i.e. an gctilowing
to increase the volume of sand in the beaches where is an
erosion problem) in Netherlands requires the camatibn of
spatial and temporal vagueness (Van de Vlag, 2088) that,

data which describes the phenomenon should be sepue
through specific model and their logical consistesbould be
managed differently. According to section 6, thisra need to
reduce meta-uncertainty In this way, spatiotemporal objects
can be accepted in the database without completsijying
some properties of the class whether their vagseiseknown
(e.g.the possibility of a vague position of a vehjclEhus, we
propose a specific type of integrity constraintsiolhcan
quantify vagueness of accepted data in order tovatepartial
consistency We call these constraints fuzzy integrity
constraintd because they are based on fuzzy logic in order to
allow partial consistency of vague spatiotempoedhd

7.3 Fuzzy subsetsand partial consistency

Integrity constraints for vague spatiotemporal otgemust al-
low a gradual membership and insurepartial consistency
(Frank, 2001). In this context, fuzzy subsets thé®ma rigorous
mathematic approach to model vagueness and péart@dl-
edge. Generally, a spatiotemporal integrity coistraan be
represented by a formal expression which defingandition on
thematicattributes the geometryor thetemporalityof the spa-
tiotemporal object or relation. We model every \aguioperty
or vague relation (e.gn¢ar’, “far”, “in the north df, etc.) as a
fuzzy subset (cf. section 3). Consequently, an hitiegon-
straint is the set of fuzzy subsets where each roodels a
vague property of object or relation. In the needt®n, we pre-
sent existing classifications of integrity consttaiand we pro-
pose a new one adapted to the vagueness issue

7.4 Classification of integrity constraints

Hendrik, Andreas eal. (1997) classified constraints into two
main groups: (1) those referring to an object ladties and (2)
those defining on relationships between objectssels. In the
same way, Fahrner al. (1995) classified integrity constraints
in terms of influence on the states of the datablaseffect, an
integrity constraint can bstatic when it must be checked on a
single state of the database. For exampiee ‘surface of an
administrative area must be larger than those sfitunicipali-
ties’. However, a constraint isansitional whether it is used to
restrict the number of possible transitions frostate of the da-
tabase to another. For example, it is possibleetuire that
“when updating the administrative region relatiors iudget
should not be decreasedFinally, dynamicconstraints serve to
restrict the possible sequences of transitions dmtwpossible
states of the database. The classification of Cécki®97) is
typically referenced by most of recent works (€Rpodriguez,
2005; Shu eal., 2003)) on spatial logical consistency. Cockroft
(1997) distinguishes three categories of conssaifit) Topo-
logical integrity constraintsconcern geometrical properties of
the objects and relations without considering teemantic. For
example, & polygon should be closedr “an arc should be
simplé. (2) Semanticintegrity constraintsare defined to con-
trol semantic consistency of the geographical iestitFor ex-
ample, ‘a road network must be connectetiowever, Cock-
roft(1997) doesn’t distinguish the cases where ititegrity
constraint defines a metric, an order or a diogati condition
or when it is purely semantic. (®)ser-definedintegrity con-
straintsrefer the rules defined by the experts of the iappbn
domain. For example, environmental rules are cemsil as
user-defined integrity constraints (etbe distance between an
agricultural spreading parcel and any stream shooidgreater
than 500m’). Semantically, $emanti¢ and “user-definetl in-
tegrity constraints are very close and it is vaffiadilt to make
the distinction between them. For temporal intggranstraints,
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Brusoni etal, (1999) distinguishedjualitative temporal con-
straints (i.e. those controlling topological redais between
temporal primitives:meet before start...) based on Allen
model (Allen, 1983) anduantitativetemporal constraints (i.e.
those controlling metric relations between tempgrahitives:
“the temporal distance between P1 and P2 is five t@&iu

All of previous classifications have been propofmccrisp ob-
jects. Indeed, they don't consider the differemteass of vague-
ness. For example, there is a difficulty to clas#iife constraint
saying that“an air pollution zonecertainly overlaps a big
city”. The existing constraints classes don't suppatiipity

of the term“certainly” (i.e. the kernel of the fuzzy geometry
should participate in the relation (cf. figure 8por that, we
present, in the following, a new categorizatiorimégrity con-
straints based on the vague spatiotemporal defmitnd
vagueness levels (cf. section 5).

4+—Big city
Kernel
Air pollution zone

Figure 8. Invalid intersection between a city argbdution
zone

- Different categories of integrity constraints according to
uncertainty nature:

According to the categorisation proposed by (M.eBialon-
going PhD Thesis; Salehi eal., 2007) and developed
essentially for geo-decisional databases, we definetegrity
constraint as an expression which can defipatial semantic

» Spatial constraints this class contains constraints
defined to control validity and correctness of
geometric primitives used to represent vague
spatiotemporal objects (points, lines and polygons)
such as the simplicity of arcs and the closeness of
polygons (Souris, 20065 patial integrity constraints
control validity of any object geometry only acciogi
to geometric primitives’ definitions and properties
(e.g. the non-intersection between internal and
external boundaries of any fuzzy concentric region
(cf. figure 10)). We also consider metric constisin
this category (e.g. the distance between two region
lines is the minimum of distances between all Eoint
of these two objects (i.e.

d(A B) =min(d(x,y),.x0 A yOB))).

Furthermore, we distinguish two other sub-categooiespatial
constraints related to the vagueness context.\ifbssibility
spatial integrity constraintsshould control validity and
coherency of possibilities affected to geometriesny dataset.
For example, dny object geometry couldn’t have more than
one possibility inside the same collectian “The possibility of
the kernel of a fuzzy region should be equal’tdlhis type of
constraints allows reducing of data redundanchéf geometry
is associated to different objects of differentledions. For
example, a point represents a town center withpthesibility
0.7 in a first collection and an historic buildingith the
possibility 0.6 in a second collection. Secondlfyzzy
geometries integrity constraintsontrol topological relations
between components of these geometries (cf. figQje Other
constraints can be defined on vague points ands.line
Furthermore, constraints on spatial relations (ogological,
metric, directional and order-relationdetween objects require
presence of the semantic level. For exampde, agricultural

andtemporalconditions. These kinds of an integrity constraintspreading parcel should naierlap any strearh In effect, we
components oatomsare represented in figure 9. According to should combine the semantic and spatial levelsefine this

section 5, inconsistencies occur differently intEpasemantic
and temporal levels. 1) For the spatial level, theestion is
principally about the validity of object geometrgcarding to
the space model. 2) For the semantic level, thesistancy
concerns principally validity of the model and tldata
according to the reality, the user specificationsl aeeds. 3)
For the temporal level, the consistency concerrna datuality
and their validity according to the temporal models current
to combine these three kinds of integrity constratoms in an
integrity constraint (e.g. we can obtaiapatio-semantic
constraints spatio-semantic temporal constraintetc.). In
spatiotemporal databases, spatial and temporal Isoae
separated. They can be linked only through the stémkevel.
It is difficult to find a "spatiotemporadl integrity constraint
which should be verified for any spatiotemporal eabjin
absence of any semantic. Spatiotemporal integotystaints
are in general linked to the application context eeguire some
semantic to be specified.

Semantic

T
I

Figure 9. Components of an integrity constraint
(Salehi etal., 2007)

Spatial Temporal

kind of constraints.

.-" -\'
W I

¥
o .
R A

Tneertain part

Keme

Uneertain part
Invalid fuzzy aggregative region  Valid fuzaggregative region

Figure 10. Valid and invalid intersections betwbenindaries
of a fuzzy region

Semantic constraintsan integrity constraint can be
purely semantic if it doesn’t control any spatial o
temporal aspect. In this case, an integrity coirgtia
defined on object attributes (e.g. acidity’,
“pH_level, etc.) or on semantic relations between
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objects. According to section 5, attributes values temporal and semantic levels might exist and be
could be imprecise or fuzzy. Integrity constraints combined in the same constraint. For exampiep*“
these attributes should verify and quantify this cultivated areas shouldn't spatially overlap each
inherent vagueness. For examplehe’ attribute other in the same time period”

pH_Level of the table agricultural_spreading_parcel

should receive the valuesow, high or medium”.

“Low”, “mediuni and “high” represent the set of 8. CONCLUSION AND PERSPECTIVES

fuzzy values.

In this paper, we proposed a classification of gritg

» Temporal constraintsthese constraints verify validity constraints where different levels of vaguenesscarssidered.

of the objects temporalities. A temporal constrgemt ~ Thus, we proposed a definition of vague spatiotewmpabjects

be: metric (i.e. concerns a metric relation betweerbased on vagueness levels introduced by (Bédard])198e

temporal primitives), topological or a temporal considered integrity constraint as an expressioitlwban be

possibility  constraint. Topological temporal referenced on three dimensiossmanti¢spatialandtemporal

constraintcan be defined to control validity of vague Vagueness occurs differently on these dimensionscam be

object temporality according to temporal model. Forcombined in the same integrity constraint. Somemgtes are

example, for every temporal period, the start instant presented for every constraints category. Furthegpiategrity

should precede the final instant on the time'agis  constraints for vague spatiotemporal objects atatioes are

“the minimum instant of a fuzzy instant shouldbased on the fuzzy logic in order to allow graduaimbership

precede its maximum instdntTemporal possibility and partial consistency.

constraints verify validity of possibilities of the In perspectives, we will complete our spatiotemparadel by

temporality of any object according to the temporala structure to express spatial and temporal relatizetween

model. For example,ah object temporality should vague spatial and temporal primitives. Then, we stildy the

have only one possibility in a valid database State  formal specification of fuzzy integrity constrainend their

“a fuzzy period should have at least one of extremit implementation through fuzzy logic. This part oftproject

where the possibility is less than ®neFuzzy will extend the project results of M. Duboisset {@wing PhD

primitives’ constraints control validity of fuzzy Thesis) who works on the formal expression of spatitegrity

temporalities according to the temporal model. Forconstraints on crisp objects (Duboisset at, 2005). In

example, &n instance of a fuzzy instant should occuraddition, the results of this work will be linked those of M.

between the minimum and maximum instants Salehi (Salehi, 2007) to increase quality of thegnation of

Finally, integrity constraints on temporal relations data used by a SOLAP tool (Rivesiaét 2004).

(i.e. topological and metri) can be defined if the

semantic level is also present.
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