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ABSTRACT: 
 
This paper presents and compares approaches of estimating true area on the ground and calibrating quantitative errors of area esti-
mate on categorical maps from the contingency table. Results directly estimated from the contingency table and those from two cali-
bration methods were compared on two maps of 10 different land cover classes with known errors between them. The estimated true 
area percentage from the contingency table and two calibration approaches showed obvious improvement when compared with un-
calibrated values. However, there is no significant difference among the estimates from the contingency table and the two calibration 
methods. Although the inverse method led to mean estimates closer to the true values for all classes than other methods, comparing 
the individual area estimates for each class showed that the inverse method did not always produce the most accurate estimate. Ho-
mogeneous classes with high classification accuracy have a better chance of achieving more accurate estimates from calibration than 
heterogeneous classes. Compared with large classes, classes covering a small percentage of a map are more vulnerable to the quanti-
tative error and more sensitive to sampling error. 
 
 
 

1. INTRODUCTION 
 
The categorical map (or data) with nominal classes generated 
from remotely sensed data or other data sources is one of the 
major map types stored in GIS. The categorical map is often 
used to visualize and calculate how much area each category 
takes in the map region. Often these area estimates taken from 
the categorical maps are treated as unbiased estimates of the 
true area for each category and are used for various types of re-
source management or input of other quantitative models or ap-
plications (Congalton and Green 1999, Lunetta and Lyon 
2004). However, the categorical maps stored and used in GIS 
are never error-free. In the evaluation of errors in a categorical 
map, two types are usually distinguished: quantification error 
and location error (Pontius 2000). Quantification error summa-
rizes how the area percentage of each category on the map is 
different from the area percentage of each category in reality, 
while location error occurs when the classes do not occur in the 
correct locations, whether or not total areas are correct. With 
the growing attention to the error and uncertainty issue in GIS 
and remote sensing, many efforts have been made to measure, 
model and visualize location and quantification errors of cate-
gorical maps (such as Goodchild et al. 1992, Pontius 2000, and 
Goodchild 2003). In this paper, we focus on quantification er-
rors in categorical maps, where their error is identified by the 
total areas in which categories are misclassified.  
 
The contingency table (also called the error matrix or the con-
fusion matrix) is a common and effective way to represent 
quantification errors for categorical maps, and is usually the 
first step used to evaluate the accuracy of categorical maps, 
especially for maps generated from remotely sensed data 
(Congalton and Green 1999, Jensen 1996). The contingency 
table is generated by comparing the ground truth of selected 
samples with their classes on a map. Depending on the 
representation format of maps, the sampling unit can vary. For 
a raster map generated from remotely sensed data, the samples 
are a number of sampling pixels based on a sampling strategy, 
while the samples would be selected points or polygons in a 
vector map. The accuracy of the results from these samples is 
then extrapolated to the entire map.  The contingency table 

the entire map.  The contingency table records the comparison 
results in a square array of numbers set out in rows and col-
umns that express the number (or percentage) of samples as-
signed to one category in the map relative to one category in 
reality.  
 
Information on the contingency table can be used to compute 
other accuracy measurement indexes and update the area esti-
mates of map categories (Lewis and Brown, 2001). Several 
calibration-based models (such as Tenenbein 1972, Card 1982, 
Grassia and Sundberg 1982) have been developed to improve 
the area estimate accuracy in the statistical literature and have 
been applied to remote sensing applications. In general, there 
are two classes of statistical calibration methods (the classical 
model and the inverse model) based on linear algebraic equa-
tions to treat quantification error using the information from a 
contingency table (the details are explained in following sec-
tion). Previous studies (Prisley and Smith 1987,Czaplewski and 
Catts 1991, and Walsh and Burk 1993) have employed these 
methods to calibrate area estimators for misclassification errors 
in remote sensing.  
 
The objective of this paper is to illustrate different methods to 
calibrate quantitative errors on categorical maps, and compare 
the various calibration methods by emphasizing the relationship 
between sampling error and accuracy of area estimate from 
calibration. Two multivariate calibration approaches are re-
viewed. An empirical study was conducted by a Monto Carlo 
simulation to generate random samples. The area estimate di-
rectly from the sampling and two calibration methods were 
compared, based on results generated from maps with known 
errors. The paper concludes with a discussion of results and ap-
plications of the calibration methods. 
 
 

2. CALIBRATION METHODS 
  
Two calibration methods have been developed to calibrate the 
area estimate difference by using misclassification probabilities 
from a contingency table generated from samples. The follow-
ing explains the principles and steps involved in these two 
methods. 
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The first method is known as the “inverse” or “inverse predic-
tion” estimator (Czaplewski, 1991). For any pixel of class i on 
the classified map, the conditional probability that it is classi-
fied as class i on the ground is Pii/Pi+, and the conditional prob-
ability that other class j (j=1, ..., k,  and ij ≠ ) on the map is 
classified to class i on the ground is Pji/Pj+. So the percentage of 
pixels on the map classified as class i on the ground is (Pii/Pi+) * 
AMi, and the total percentage of other classes on the map that is 
misclassified to class i on the ground  is )*(
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the percentage of any class i on the ground AGi is the sum of 
both and can be calibrated as: 
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The second method is known as a classical estimator and was 
first introduced into the statistical community by Grassia and 
Sundberg (1982). It is an alternative calibration to the first 
method. For any class i on the ground, it is estimated that (Pii / 
P+i) * AGi of its pixels are classified as class i on the map and 
(Pij / P+j) * AGj of class j (j =1, …, k, and ij ≠ ) on the 
ground are misclassified as class i on the classified map. So the 
total of the percentage AMi for class i on a classified map can 
be estimated as: 

)*(*
,1

j

K

ijj j

ij
i

i

ii
i AG

P
P

AG
P
PAM ∑

≠= ++

+= )*(
1

j

K

j j

ij AG
P
P

∑
= +

=     (2) 

 
This method can be expressed in matrix algebra as: 
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The matrix inverse is used to solve the true percentage AG as: 
  
 AG = (Pi)-1 AM      (4) 
 
From a statistical point there is no preference between the in-
verse estimator and classical estimator (Brown 1982, Heldal 
and Spjotvoll 1988).  
 

4. AN EMPIRICAL STUDY 
 
To investigate the effectiveness of calibration methods and the 
impact of sampling error, two land-cover maps covering the 
same area in the western region of the city of Kingston, On-
tario, Canada, were used as reference and classified maps in 
this study. The two maps were generated by classifying a 4 m 
multispectral IKONOS image with two different classification 
methods. One of the land-cover maps generated from a texture 
classifier was treated as reference data. There are 10 land cover 
categories on the map. The class percentage of different classes 
ranges from 1.38% to 21.91% with different levels of spatial 
autocorrelations.  The class categories and their percentages on 
both maps, and their individual accuracy measured with Kappa 
are listed in Table 1. The quantitative error, the difference be-

tween the area percentage of each land-cover category on these 
two maps, ranges from 0.499% for lawn and artificial grass to 
4.29% for natural grass. Without calibration 15.77% of the 
study area would be counted in wrong land-cover categories. 
This range of quantitative errors can often occur in classified 
maps generated from remotely sensed data. 
 

Cla
ss 
ID 

Land cover type Propor-
tion in 
refer-
ence 
map (%) 

Propor-
tion in 
classi-
fied map 
(%) 

Accuracy in 
Individual 
Kappa 

1 Residential roof 4.79 2.78 0.868 
2 Indus-

trial/Commercial 
roof 

1.37 2.05 0.546 

3 Paved surface 8.85 6.62 0.958 
4 Lawn and artifi-

cial grass 
8.59 8.09 0.901 

5 Coniferous tree 14.12 12.32 0.961 
6 Deciduous tree 21.91 20.57 0.863 
7 New crop and 

pasture 
17.38 18.89 0.723 

8 Nature grass 9.15 13.45 0.551 
9 Bare field 3.70 4.59 0.696 
10 Water surface 10.13 10.66 0.944 
 
Table 1: Land cover classification scheme and their proportions 

in two maps 
 
Random sampling was used in accuracy assessment to obtain 
the contingency table. In this study a sample size of 600 was 
used. The random samples were generated by a Monte Carlo 
simulation.  The contingency table was generated for each sam-
pling. Since negative estimates of percentages would appear in 
the results of calibration methods, and since those are inadmis-
sible in practice (Czaplewski and Catts 1991), all simulations 
with any negative estimates from the two calibrations were dis-
carded. In total, 100 feasible contingency tables were created. 
The following estimated percentages were calculated for each 
feasible contingency table: 
 

1. Pi+ (i=1, …, 10), the percentage of samples of each 
class on the classified map from the contingency table 
(ACMi); 
2. P+i (i=1, …, 10), the percentage of samples of each 
class on the reference data from the contingency table 
(ACGi); 
3. The estimated value of area percentage from the 
inverse calibration method for each class (AINi). 
4. The estimated value of area percentage from the 
classical calibration method for each class (ACLi). 
5. The ratio between ACMi  and AMi (RPMi  = ACMi / 
AMi , where AMi is the area percentage of class i on the 
classified map); this ratio measures how closely the 
sampling data represent the percentage on the map.  
6. The ratio between ACGi and AGi (RPRi = ACGi / AGi; 
where AGi is the true area percentage of class i on the 
reference data); this ratio measures how closely the 
sampling data represent the true percentage on the 
reference map. If it equals 1, the percentage in the samples 
can accurately represent the percentage on the ground. In 
this case, no ground sampling error exists. 
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7. The ratio between the estimate from the inverse 
method and the true area percentage on the reference data 
(RIVi = AINi / AGi ); 
8. The ratio between the estimate from the classical 
method and the true area percentage on the reference data 
(RCLi = ACLi / AGi ). 
 

The last two ratios measure how closely the estimates from the 
calibration are to the true percentage on the reference data. The 
closer to 1, the better the calibrated estimate is. The averages of 
the above differences and their standard deviations in 100 simu-
lations were also calculated to check the dispersion of the sam-
ples and calibration methods.  
 

5. RESULTS AND DISCUSSIONS 
 
Table 2 summarizes the mean and standard deviation of esti-
mated true percentage of each class obtained from the contin-
gency table and from calibration methods. It is obvious that the 
estimates from the different methods are not the same. For all 
classes, the means of all estimated values from the contingency 
table (ACGi) and two calibration methods (AINi and ACLi) are 
closer to the true values than the uncalibrated value directly 
taken from maps. The estimate from the inverse method (AINi) 
has a mean closer to the true percentage with a smaller standard 
deviation than those taken directly from the contingency table 
(ACGi) and the classical method (ACLi). The mean estimates of 
percentage from sampling closely represent the percentage on 
the map and the true percentage on the ground (or reference 
data). After calibrating using the inverse method and the classi-
cal method, the average AIVi and ACLi of class 1 are 4.79% and 
5.34%, with standard deviations of 0.90% and 1.46%, respec-
tively. The average estimates of the true percentage from the 
contingency table and two calibration methods are much closer 
to the true values of 4.79% than the value of 2.79% on the map 
without any calibration. However, the difference between the 
mean of ACGi (4.75%) and the mean of AIVi (4.79%) is not ob-
vious or significant. This is the case for all other classes.  
 

 
 
 Table 2: The mean and standard deviation of the different es-
timates from 100 simulations. (AGi=the true percentage of class 
i on the ground; AMi = the percentage of class i on the classified 
map; ACMi = the estimated AMi from the sample; ACGi = the 
estimated AGi from the sample; AIVi: the estimated AGi from 
the inverse method; ACLi: the estimated AGi from the classical 
method. The number after the sign + is the standard deviation) 
 
Comparing the mean differences of each class from different 
methods and samples (t-test) shows that the true area estimates 
(ACGi, AIVi, and ACLi) from the contingency table and two 
calibration approaches show significant improvement (p > 0.05) 
when compared with those from the map (AMi) and the samples 
(ACMi). However, there is no significant difference among the 
estimates from the contingency table and two calibration meth-
ods. Although the two calibration methods consistently led to 
more accurate means of the estimates for all classes, this did not 

mean that the estimates from calibration were superior to those 
taken directly from the contingency table in every simulation. 
This can be seen clearly in Table 3, which summarizes the com-
parison of individual estimates from the contingency table and 
those taken after calibration for each class in all simulations. In 
all estimates from the inverse method, 70% of them were closer 
to their true area values than those taken directly from the con-
tingency table, while 65.1% of them were more accurate than 
those taken using the classical method. It appears that classes 
that are more homogeneous and more accurately classified have 
a higher probability of achieving more accurate estimates from 
the calibration. The two classes with the highest probability of 
having more accurate AIVi, and ACLi than ACMi were class 4 
(irrigated grassland) and class 10 (water), while the two most 
heterogeneous classes (class 1 of Residential roof and class 2 of 
Commercial/industrial roof) had the least chance of having 
more accurate estimates after calibration.    
 

Class AIVi is more 
accurate 
than ACGi  

AIVi is more 
accurate than 
ACLi 

ACLi is more 
accurate than  
ACGi 

1 57 63 41 
2 64 66 43 
3 67 66 50 
4 81 65 75 
5 72 67 66 
6 73 68 55 
7 67 70 54 
8 66 59 46 
9 67 66 49 
10 87 59 87 
Total  70 65.1 56.5 

 
Table 3. The comparison of individual estimates from two cali-
bration methods and those directly from the contingency table 
for individual class (The number shows the percentage of simu-
lations in which one method led to a more accurate estimate 
than the other) 
 
To check how accurate the estimate from each individual simu-
lation was, the individual ratios of RPM, RPR, RIV and RCL of 
each class in 100 simulations are plotted in Figure 1. The ratio 
value of 1 means the estimate is the same as the true percent-
age. Ratios greater than 1 mean that the estimates overstate the 
true values, while those less than 1 represent underestimated 
values.   
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Figure 1.The different ratios for individual classes in 100 simu-

lations:  a) the ratio between the estimate from the 
inverse method and AGi,;  b) : the ratio between 
the estimate from the classical method and AGi; c) : 
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the ratio between ACGi and AGi; d) the ratio be-
tween ACMi and AMi. 

 
From Figure 1 it can be seen that the sensitivity of estimate ac-
curacy from different methods varies for different classes. The 
large classes had much less biased estimates, relatively speak-
ing, than the small classes in all four estimates. The larger 
classes have relatively smaller variations on their estimates than 
the smaller classes. This is true for all results from different 
methods. The class that fluctuates the most in all estimates is 
class 2 (Industrial and commercial roof), which has the smallest 
percentage at 1.37%. In all simulations, its highest and lowest 
ratios of estimates from the contingency table are 1.47 and 
0.26.  The most stable estimates vary in three different meth-
ods. Class 10 (water, 10.13%) has the most stable estimates in 
both the inverse and classical methods.  Its highest and lowest 
ratios obtained from simulations by using the inverse method 
are 1.07 and 0.92, while the ratios from the classical method 
range from 0.90 to 1.07. It should be noted that class 10 is the 
fourth-largest class, not the largest one. The estimates of class 6 
show the smallest variation from the contingency table. From 
the map it can be seen that class 10 (water) and class 6 (decidu-
ous tree) are less mixed and fragmented by other classes.  
 

6. SUMMARY AND CONCLUSIONS 
 
In this paper, we presented and compared two methods of cali-
brating area estimate errors on the categorical map by using the 
contingency table. One hundred contingency tables generated 
from 100 sets of 600 random samples were used to test the effi-
ciency of three methods. The individual area estimates, as well 
as average estimates taken directly from the contingency table 
and two calibration methods were evaluated.  Emphasis has 
been placed on the relationship between the area estimate bias 
from samples and estimate bias after calibration.  
 
The mean estimates from all methods were substantially less 
biased than the uncalibrated estimates taken directly from the 
map or the samples. However, the differences among the true 
area estimates taken directly from the contingency table and 
two calibration methods were not significant. Comparison of 
the individual area estimates for each class showed that the in-
verse method produced the most stable area estimates with 
mean values closer to the true percentages. But this did not 
guarantee that all estimates from the inverse method were supe-
rior to estimates taken using the classical method and taken di-
rectly from the contingency table.  There is no significant dif-
ference among the estimates directly from the contingency table 
and those taken from calibration methods. In this study only 
70% and 56.5% of the estimates from the inverse method and 
the classical method, respectively, were more accurate than the 
estimates taken directly from the contingency table. The classes 
that were homogeneous with less percentage difference on the 
map had a higher probability of achieving more accurate esti-
mates from the calibration than the heterogeneous classes. 
 
The sensitivity of a class to the area estimate bias is related to 
the size of the class. Classes with a smaller percentage of cov-
erage on a map are more vulnerable to the area estimate bias 
than are larger classes. This was also suggested by Czaplewski 
(1992). However, this type of sensitivity is influenced not only 
by the percentage of a class, but also by spatial patterns of the 
class. In this study, the smallest class is the most sensitive, but 
the most stable class is not the one with the highest percentage 
but the fourth-largest class (water), with a homogeneous and 
less fragmented presence on the map. Future studies are needed 

to systematically evaluate the relationship between the accuracy 
and precision of area estimates and the percentage and spatial 
autocorrelation parameter of classes.  
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