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ABSTRACT:

In this paper we investigate techniques for virtual-globe visualization of 2D geospatial data draped on terrain while limiting as much 
as  possible  the  amount  of  data  rendered  and  loaded  in  random access  memory, in  order  to  enable  seamless  interaction  with 
heterogeneous geospatial data on memory-constrained platforms. Using our two-steps rendering technique, which uses a texture-
based approach for rendering vector data and a multiple level of details quad-tree data structure for rendering raster data, we were 
able to measure that such virtual-globe interactions can be considered for browsing huge heterogeneous datasets, even with limited 
available RAM resources.

1. INTRODUCTION

1.1Motivation

Geospatial  information  targets  portable  devices  such  as 
handhelds  on  the  low-end  side,  and  service  oriented 
architectures on the high-end side. Wether for minimizing the 
hardware  requirements  or  maximizing  the  scalability  of  an 
architecture,  there is a drastic need for geospatial information 
dissemination software to minimize the resources consumption.

Virtual-globe ergonomics is becoming a standard as it  allows 
geospatial data to be presented as close as possible to the way it 
appears in the real-world, and interaction to take place in a user-
centered schema : the user does not move along a given CRS 
axis,  but  moves  along  horizontal  and  vertical  directions 
respective  to  “the  screen”,  i.e.  its  own  local  3D  cartesian 
reference system, and 3D navigation has been enriched in order 
to  benefit  from  aircrafts'  motion  capabilities  -  "pitching", 
"rolling", "yawing" as defined in (NasaGRC). 

For the purpose of this paper, the challenge consecutive to these 
capabilities  is to take into account  that  the user can "tilt" the 
camera in order  to have a perspective view of the landscape. 
Tilting the camera, the user sollicitates a much more significant 
part of the underlying datasets than in a vertical view. And as 
geospatial  datasets  are  usually huge,  they usually only fit  in 
mass-storage devices. Despite increasing developments in flash-
ram-based  solid-state-drives,  which  appear  as  a  promising 
alternative to  conventional  hard-disks by providing numerous 
significant  advantages  such  as  lower  latency,  these  emerging 
technologies do not improve at  this time the rate for sequential 
I/O access (SSD). As a consequence, data-subsets required to be 
rendered  on-the-fly still  need  to  be  streamed from persistent 
storage and cached in volatile random access memory. As for 
today,  PDAs  typically  come with  64  to  256  MBytes  RAM, 
while  servers  need  to  share  their  few  GBytes  with  tens  or 
hundreds of users.  However, given the current area of interest 
of  a  user,  there  is  basically  no  need  for  loading  more 

information in RAM than the exact information that is going to 
fit into the screen at the current pixel resolution.

1.2 Related work

Rendering  virtual  landscapes  requires  methods  for  rendering 
textured-terrain  for dealing with raster  data,  and methods  for 
rendering vector on that terrain.

Huge efforts have been  committed  to  address  as  fast  and  as 
accurate as possible landscape terrain rendering. (Hoppe, 1998) 
demonstrates the use of multiple-level-of-details terrain and on-
the-fly approximation  of  triangle  meshes  for  efficient  terrain 
rendering  maximizing  the  accuracy  of  the  landscape  as  it 
appears  on  the  screen.  (Pouderoux,  Marvie,  2005)  focus  on 
adapting  the  quality of  the  terrain  approximation  to  match  a 
target number of frames per second,  selecting the appropriate 
triangles  with  respect  to  a  metric  in  order  to  adapt  to  the 
devices' graphic processing capabilities.

These work however focus on  terrain  data  with precomputed 
textures.  If  we  want  to  enable  seamless  interaction  with 
heterogeneous  data,  the  order,  visibility  or  opacity  of  the 
various layers can be changed at any moment by the user. As a 
consequence,  this  working  context  requires  on-the-fly 
computation of terrain's textures.

For raster data,  this essentially means loading the appropriate 
datatiles with the relevant level of detail. Handling vector data 
rendering on 3D landscape is a little  bit  more tricky. At this 
time,  two types of method coexist :  texture-based approaches 
and geometry-based approaches.
In (Kersting, Döllner, 2002), vector data is rasterized on-the-fly 
to create a quadtree containing multi-resolution textures, which 
are then used at the appropriate level of detail depending on the 
resolution requirements of the terrain triangles.
In (Schneider, Guthe, Klein, 2005), the technique is refined in 
order  to  improve  the  quality  of  the  rendering  and  minimize 
aliasing, by applying a perspective transform to the generated-



textures'  coordinates.  Those  techniques  for  rendering  vector 
data on terrain are known as "texture-based" approaches.
(Schneider,  Guthe,  Klein,  2005)  proposes  an  alternative 
method, in which the 2D vector data is preprocessed in  order to 
compute  each  node's  height  and  in  order  to  associate  multi-
resolution geometries to each feature. This last method has the 
drawback  of  tightly  coupling  the  terrain  and  vector  data  : 
updating the terrain data will require to reprocess every vector 
layer on the area of interest.
Recently,  a  more sophisticated  geometry-based  approach  has 
been  proposed  by (Schneider,  Klein,  2007).  It  is   based  on 
polyhedral  extrusion,  which  enables  to  precisely  control  the 
area which is drawn into when rendering a given feature. This 
method advertises high-quality rendering,  and does not  suffer 
the  above-mentioned  drawback  of  previous  geometry-based 
approaches  which tight  vector  and  terrain  data  together  in  a 
preprocessing  step.  However,  while  it  seems  efficient  for 
rendering area and line features with simple styles, it is not that 
clear that it is an efficient method when using line styles with 
repetitive patterns such as railways, which are likely to increase 
the complexity of the extrusion polyhedra.

2. TWO-STEPS TEXTURE-BASED RENDERING 
USING EARTH'S SURFACE APPROXIMATIONS

Our rendering method addresses issues that can be encountered 
on  vector and raster data respectively.

2.1Vector data : need for a continuous texture space

In  (Kersting,  Döllner,  2002) the visible space is divided into 
tiles of relevant level of detail which are then used for texturing 
the terrain. From our experience, dividing the texture space into 
several  tiles  leads  to  visual  discontinuities  on  linear  vector 
features at the edges and at the corners of the tiles as soon as 
they are portrayed with a thickness greater than 1.

Two types of discontinuities are encountered :
1/ features that go through a tile's vertex will be considered to 
be  out  of  the  area  of  two  of  the  four  adjacent  tiles,  which 
geometrically is right, but dismiss part of the  symbology

Rendered features Tiling schema Tiles' occlusion

Figure 1. discontinuity type 1 when using tiled texture buffer

2/ features that go across tiles of different level of detail will be 
affected by the gap of resolution existing between the two tiles

Perspective rendered features Tiling schema

Figure 2. discontinuity type 2 when using tiled texture buffer

On  top  of  these  vector  portrayal issues,  dividing  the  texture 
space  into  tiles  will  put  some constraint  on  the  terrain  data 
sampling  schema  :  allowing  terrain  triangles  to  spread  over 
several texture tiles would complexify the terrain rendering step 
and  slow  down  the  whole  process.  To  avoid  this,  terrain's 
samples would need to match textures' tiling schema.

Given these three issues we propose texture-based approaches 
should use a continuous texture space for the whole scene.

2.2 Raster data : need for real-world perspective correction

The  best  way  of  having  a  continuous  texture  space  while 
limiting the growth of the texture buffer is to have a perspective 
corrected texture.
(Schneider, Guthe, Klein, 2005)'s perspective correction is used 
to  minimize aliasing that  would occur when the frame buffer 
undersamples  the  texture  buffer's  primitives.  Although  not 
clearly  stated,  it  is  likely that  this  method  could  be  used  to 
overcome the second type of discontinuity depicted in figure 2. 
However the  two other  issues  remain to  be addressed.  Their 
parametrization  is  homothetic.  Applying  this  homothetic 
transformation in the context of a single squared texture buffer 
is  equivalent  to  considering  that  the  texture  space's  shape  is 
trapezoidal.

Let's remind that our concern is to avoid loading and rendering 
data  that  lies  outside  of  the  area  pointed  at  by the  viewing 
frustum. In general intersection of a pyramidal frustum with an 
ellipsoid does lead to more complex areas than trapezoids.
The following figures show the WGS84 ellipsoid on the left and 
the shape of the intersection in a plate-carree projection on the 
right.  Whenfar  away  from  the  earth,  the  complexity  of 
modelling this intersection is obvious (figures 3-4).

As we get closer to the earth's surface - and this is what we're 
basically interested in - the area gets closer to a trapezoidal area. 
However, as shown in figure 5, using an enclosing trapezoidal 
area will lead to select  a larger area than the actually visible 
one. In the end, this will result in requesting more datatiles than 
necessary (figure 6).

Figure 3. Intersection of a frustum and a WGS84 ellipsoid

Figure 4. Intersection of a frustum and a WGS84 ellipsoid
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Figure  5  :  three  possible  shapes  of  the  intersection  of  a 
frustum and an ellipsoid at a close distance

The most straightforward way of letting a rectangular buffer 
1/ model a shape as close as possible to the actual intersection 
of a frustum and the earth's surface
2/  while providing a finer resolution  in the foreground and a 
coarser  resolution  in  the  background  like  in  perspective 
correction
3/ and providing the best possible match (without  knowledge 
about  terrain)  between the  resolution  dedicated  to  each  tile's 
information and the resolution required by the terrain's texture
is  to  apply  the  viewpoint's  current  projection  matrix  to  the 
texture buffer.

2.3 The two step rendering process

In order to address the three issues mentionned in paragraph 2.1 
and to  minimize the amount of data required as explained in 
paragraph  2.2,  we propose  the  following  two-step  rendering 
process.

In  the  first  step  2D data  is  rendered  in  a  3D space  without 
taking  terrain  data  into  account.  Vector  features  are  simply 
transformed from longitude-latitude 2D geographic coordinates 
to 3D using the surface's approximation model. This is done on-
the-fly.  One  can  use   ellipsoid  equations  as  described  in 
(Bouteloup,  2003)  or  any other  approximation  of  the  earth's 
surface,  including  geoids.  The  choice  of  the  earth's 
approximation is essentially a trade-off between accuracy and 
efficiency. As it is simply about selecting the relevant data tiles, 
the  granularity  should  not  require  a  much  more  precise 
approximation than the ellipsoid.

Imagery data is structured as a quadtree, with constant pixel size 
and  increasing geographic  resolution.  High resolution  /  small 
extent tiles are used in the foreground while low resolution / 
wide extent tiles are used in the background. The four vertices 
of  the  tile  are  processed  like vector  vertices.  This  adaptative 
method allows to adjust at the same time both the resolution of 
the data and the accuracy of the earth's surface approximation.

As  depicted  in  figure  7,  this  first  rendering  step  builds  the 
texture buffer's content.

The second step consists in rendering terrain using this texture 
buffer. The only prerequisite on terrain data structure is that it is 
available as a triangle mesh.
As described in figure 8, for each  vertices of each triangle, the 
projection of the vertex on the earth surface's approximation is 
computed and projected into the texture buffer by applying the 
projection  transformation  of  the  current  point  of  view.  This 
gives  pixel  coordinates  corresponding  to  the  texture's 
coordinates to be used for this vertex when rendering the terrain 
triangle on the screen.

Figures 9 and 10 illustrate the process on a real-world example.

Figure 7. Actual vs trapezoidal area - shape 3

Figure 6. In this example, a trapezoidal approximation of the 
intersection will require to load 6 additional data tiles (in blue) 
than when using the actual intersection shape (38 green tiles), 
which results here in a loss of 6/38 = 15% of cache memory.

Figure 8 : Rendering step 2 : computing texture coordinates

Figure 7 : Rendering step 1 : building the texture buffer

Figure 9 : Example of texture buffer generated in step 1



3. IMPLEMENTATION AND TESTS

In our implementation, the WGS84 ellipsoid was chosen as the 
approximation of the earth's surface. The client window is  sized 
1024x1024 pixels. The size used for the imagery data quadtree 
tiles is 512x512. A basic cache mechanism was implemented in 
order to avoid streaming again data that is already in memory 
from one frame to another, but was configured so that it can just 
fit the maximum number of tiles required experienced. 

The following datasets were used for these tests,  covering an 
area of 10°x4° (W120-110 longitude, N36-40 latitude) collected 
from (USGS) and (MapAbility)
– a  28800x72000  pixels  matrix  of  Landsat  imagery (1.44 

GBytes  in  GeoTIFF  format),  turned  to  grayscale  to 
improve vector features readability ;

– a 7200x12000 pixels matrix of SRTM terrain (213 MBytes 
in DTED format) ;

– five  layers  from a  223  MBytes  VMap  Level  1  dataset 
chosen  for  their  representativity  :  tree  areas  from  the 
vegetation  layer  ;  lake  areas  and  watercourses  from the 
hydrographic layer ; roads from the transportation layer ; 
builtup areas from the population layer

3.1Memory requirements measures

A monitoring process enabled to record various parameters of 
interest and produced the following observations.

camera'
s tilt

camera
- earth 

distance

numbe
r of 

visible
imager
y tiles

number of visible 
vector vertices

MBytes of 
data 

streamed
(imagery 
+ vector)

vertical
(0°)

350 km

186 km

40 km

6 to 24 

9 000 to 90 000

60 000 - 350 000

50 000 - 550 000

0 to 1 MB

0 to 11MB

0 to 20MB

tilted, no 
horizon 
visibility 
(40-50°)

350 km

186 km

40km

9 to 50
20 000 - 90 000

90 000 - 550 000

100 000 – 580 000

0 to 5 MB

0 to 20MB

0 to 32MB

tilted, 
horizon 
visible

(65-70°)

350 km

186 km

40km

11 - 80

10 000 - 100 000

140000 - 600000

100 000 - 700 000

0 to 5 MB

0 to 20MB

0 to 50MB
Table  1  :  influence  of  camera's  tilt  and  distance  to  earth  on 
number of visible tiles, vector vertices and data streams.

Figure 10 : Terrain generated with the above texture buffer

Figure 13 : number of bytes streamed from HDD to RAM when 
moving,  given the viewpoint's tilt and distance to earth

Figure 12 : number of vector data vertices required for building 
the texture given the viewpoint's tilt and distance to earth

Figure 11 : number of data tiles required for building the texture 
given the viewpoint's tilt and distance to earth



The  number  of  512x512  tiles  necessary  for  rendering  a 
1024x1024 screen is a little bit astonishing at first but can be 
explained. A coarser level of detail for a given tile is selected 
only if the data resolution is more than twice the screen pixel 
resolution.  As a consequence a 257x257 screen area will still 
require a 512x512 data tile. As a consequence,  up to 4x4=16 
512x512  data  tiles  may  be  required  for  filling  the  screen, 
provided that the tiles and the screen are perfectly aligned and 
the viewing frustum is vertical. Should the viewing frustum be 
misaligned with the tiling schema of the data, this can increase 
to 25 (figure 14). Also, depending on how data was produced, 
and specifically if the angular pixel  resolution is the same in 
both  north/south  and  east/west  directions,  512x512  datatiles 
will be rectangular once projected on earth. As a consequence, 
at 38° northern latitude ceil(5 / cos(38°)) = 7 datatiles will be 
selected  instead of 5  in  the  longitudinal  direction,  leading to 
selecting 5x7 = 35 datatiles.

As expected, camera's tilt is a key factor on the number of data 
tiles required for building the texture. As shown in figure 15, 
some small portions of the texture buffer may require a full tile.

Fortunately  the  multiple  level  of  details  data  structure  of 
imagery and the distance dependant vector data portrayal rules 
are able to maintain the number of tiles streamed to the texture 
buffer below 80 tiles and the amount of vector vertices below 
700 000 : this represents 1% of original imagery dataset (8037 
tiles)  and  14.2%  of  the  original  vector  dataset  (4  942  539 
vertices).

As each  tile  is  stored  in  memory as  a  RGBA uncompressed 
texture, it represents about 1MBytes (1 048 576 exactly). This 
means that  a 84 MBytes cache is necessary for imagery data. 
Each vertex is stored as a double-precision floating point triplet 
(X,Y,Z) which means that a 3x8x700000 = 16.8 MBytes cache 
is necessary for vector data. This amounts to a total of 101 MB.

Our  measures  demonstrate  that  using  this  technique,  devices 
with 128  MBytes should be able to  browse on a 1024x1024 
screen and with virtual globes ergonomics, heterogeneous data 
like the  huge imagery and vector set  we tested.  For  portable 
devices  with  6x  smaller  screens  (320x480)  memory 
requirements can be extrapolated to about 17 MBytes.

3.2Rendering quality considerations

One specificity of the proposed two-step rendering technique is 
that  when  in  perspective  view,  the  more  distant  areas  are 
provided a lot less texture-buffer surface than the closer areas, 
and  since  line  feature  rendering  occurs  with  constant  pixel 
width on the texture buffer, the aliasing of line feature rendering 
can strongly affect readability.

Readability  of  vector  data  in  contexts  that  would  clutter  the 
features is  however an issue in itself that  does not  affect our 
approach specifically : as shown in figure 16, far-away  vector 
information  is  not  much more informative without  than  with 
terrain.  Distance-dependent  portrayal rules  for vector features 
are necessary not only for performance considerations to keep 
the amount of data reasonable when tilting the camera, but also 
for maintaining some readability. We use this mechanism in the 
step 1 of our rendering algorithm, which provides more pleasant 
results  in  the  background  while  being  more selective  on  the 
relevant information presented to the user.

Still,  aliasing  will  affect  line  features  rendering,  even  at  the 
middle of the screen,  whenever there are steep slopes (figure 
17). This problem however has been acknowledged by the cited 
papers  addressing vector data  draping on  terrain,  so it  is  not 
specific to our method.

Figure 14 : number of datatiles required for building texture

Figure 15 : example of a small area requiring a full datatile

Figure 17 : foreground / background quality and steep slopes

Figure 16 : zoom on the background of a landscape 
with terrain (top)  / without terrain (bottom)



A  specificity of our  implementation  was to  directly use  the 
framebuffer for step 1 (building the  texture).  No framebuffer 
color  clearing  is  done  between  the  two  steps,  thus  there  is 
already a default view of the landscape when step 2 is triggered. 
This  way we don't  have  to  render  a  default  WGS84  terrain 
where no terrain data is available. This has been thought as a 
basis  for best-effort  continuum between areas  where there  is 
terrain data and areas where there is none. However this suffers 
from  the  caveat  that  terrain  data  is  usually  visualized  with 
accentuation, and this accentuation also affects the mean height 
at  the  current  viewpoint,  in  which  case  unpleasant  –  but 
meaningful – gaps will appear (figure 18).

4. CONCLUSIONS AND WAY FORWARD

This  paper  proposes  a  refinement  of  texture-based  vector 
draping approaches 
• which minimizes the amount of data needed to be loaded 

into memory ;
• which  provides  on-the-fly  computation  of  the  terrain 

texture, which enables the user to manipulate layers' order, 
visibility or opacity at any time ;

• which  keeps  independence  between  the  terrain  and  the 
imagery and vector layers, which means that each of this 
source can be streamed and updated independently ;

• which uses a continuous  texture-space,  addressing tricky 
issues on vector data portrayal ;

• which  is  open  to  arbitrary  complex  portrayal  rules  for 
vector data ;

• which  is  open  to  any  efficient  algorithm  for  terrain 
rendering, enabling to benefit from latest developments in 
that respect ;

Our  memory-benchmarks  demonstrated  that  using  such  an 
approach,  virtual  globe  browsing  can  be  considered  on 
memory-constrained platforms.

There  are  still  further  developments  to  undertake  to  address 
some rendering quality issues.  For  example,  only part  of the 
texture buffer pixels are used whenever the skyline is visible 
within the viewport when the camera is strongly tilted. Finding 
a way to overcome this limitation could help limiting aliasing of 
line features in steep slopes.

5. REFERENCES

References from Journals : 

(Hoppe, 1998) H. Hoppe - “Smooth View-Dependent Level-of-
Detail  Control  and  Its  Application  to  Terrain  Rendering”  In 
IEEE Visualization'98, 35-42, 1998

(Kersting, Döllner, 2002) O. Kersting, J. Döllner - « Interactive 
3D Visualization of Vector Data in GIS ». In  Proceedings of  
the  10th ACM International  Symposium on  Advances  in  GIS, 
2002

(Pouderoux,  Marvie,  2005)  J.  Pouderoux,  J.-E.  Marvie  - 
"Adaptive  Streaming  and  Rendering  of  Large Terrains  using 
Strip  Masks". In  Proceedings  of  ACM GRAPHITE  2005  pp. 
299-306, 2005

(Schneider, Guthe, Klein, 2005) M. Schneider, M.Guthe,
R.Klein « Real-time Rendering of Complex Vector Data on 3D 
Terrain  Models  ».  In  Proceedings  of  the  11th International  
Conference on Virtual Systems and Multimedia, 2005

(Schneider, Klein, 2007) M. Schneider, R. Klein "Efficient and 
Accurate Rendering of Vector Data on Virtual Landscapes", in 
15th International Conference in Central Europe on Computer  
Graphics, Visualization and Computer Vision, 2007

References from Books :  

(Bouteloup,  2003)  Didier  Bouteloup  –  "Cours  de  géodésie", 
Chapter  2  "Géométrie  de  l'ellipsoïde"  –  Ecole  Nationale  des 
Sciences  Géographiques,  Institut  Géographique  National,  
France – March 1st 2003

References from websites :  

(MapAbility) http://mapability.com/info/vmap1_index.html

(NasaGRC)http://www.grc.nasa.gov/WWW/K-
12/airplane/pitch.html
http://www.grc.nasa.gov/WWW/K-12/airplane/roll.html
http://www.grc.nasa.gov/WWW/K-12/airplane/yaw.html

(SSD) http://en.wikipedia.org/wiki/Solid_state_drive
http://en.wikipedia.org/wiki/Access_time

(USGS)  Data  available  from U.S.  Geological  Survey,  EROS 
Data Center, Sioux Falls, SD – http://seamless.usgs.gov

Figure 18 : a step between no-data terrain areas and terrain 
areas, with 120x terrain accentuation

http://mapability.com/info/vmap1_index.html
http://www.grc.nasa.gov/WWW/K-12/airplane/roll.html
http://www.grc.nasa.gov/WWW/K-12/airplane/pitch.html
http://www.grc.nasa.gov/WWW/K-12/airplane/pitch.html
http://www.grc.nasa.gov/WWW/K-12/airplane/roll.html
http://seamless.usgs.gov/
http://en.wikipedia.org/wiki/Access_time
http://en.wikipedia.org/wiki/Solid_state_drive.html

	1. Introduction
	1.1Motivation
	1.2 Related work

	2. Two-steps texture-based rendering using earth's surface Approximations
	2.1Vector data : need for a continuous texture space
	2.2 Raster data : need for real-world perspective correction
	2.3 The two step rendering process

	3. Implementation and tests
	3.1Memory requirements measures
	3.2Rendering quality considerations

	4. conclusions and way forward
	5. References

