
ENABLING VIRTUAL-GLOBE BROWSING
ON MEMORY-CONSTRAINED PLATFORMS

Cyril MINOUX a,

a Département Environnement Géophysique – Centre d'Expertise Parisien
16bis avenue Prieur de la Côte d'Or – 94114 Arcueil Cedex – France

Commission IV, WG IV/4

KEY WORDS: Virtual globe, vector draping, terrain rendering, memory constraints, seamless interaction and visualization

ABSTRACT:

In this paper we investigate techniques for virtual-globe visualization of 2D geospatial data draped on terrain while limiting as much
as possible the amount of data rendered and loaded in random access memory, in order to enable seamless interaction with
heterogeneous geospatial data on memory-constrained platforms. Using our two-steps rendering technique, which uses a texture-
based approach for rendering vector data and a multiple level of details quad-tree data structure for rendering raster data, we were
able to measure that such virtual-globe interactions can be considered for browsing huge heterogeneous datasets, even with limited
available RAM resources.

1. INTRODUCTION

1.1Motivation

Geospatial information targets portable devices such as
handhelds on the low-end side, and service oriented
architectures on the high-end side. Wether for minimizing the
hardware requirements or maximizing the scalability of an
architecture, there is a drastic need for geospatial information
dissemination software to minimize the resources consumption.

Virtual-globe ergonomics is becoming a standard as it allows
geospatial data to be presented as close as possible to the way it
appears in the real-world, and interaction to take place in a user-
centered schema : the user does not move along a given CRS
axis, but moves along horizontal and vertical directions
respective to “the screen”, i.e. its own local 3D cartesian
reference system, and 3D navigation has been enriched in order
to benefit from aircrafts' motion capabilities - "pitching",
"rolling", "yawing" as defined in (NasaGRC).

For the purpose of this paper, the challenge consecutive to these
capabilities is to take into account that the user can "tilt" the
camera in order to have a perspective view of the landscape.
Tilting the camera, the user sollicitates a much more significant
part of the underlying datasets than in a vertical view. And as
geospatial datasets are usually huge, they usually only fit in
mass-storage devices. Despite increasing developments in flash-
ram-based solid-state-drives, which appear as a promising
alternative to conventional hard-disks by providing numerous
significant advantages such as lower latency, these emerging
technologies do not improve at this time the rate for sequential
I/O access (SSD). As a consequence, data-subsets required to be
rendered on-the-fly still need to be streamed from persistent
storage and cached in volatile random access memory. As for
today, PDAs typically come with 64 to 256 MBytes RAM,
while servers need to share their few GBytes with tens or
hundreds of users. However, given the current area of interest
of a user, there is basically no need for loading more

information in RAM than the exact information that is going to
fit into the screen at the current pixel resolution.

1.2 Related work

Rendering virtual landscapes requires methods for rendering
textured-terrain for dealing with raster data, and methods for
rendering vector on that terrain.

Huge efforts have been committed to address as fast and as
accurate as possible landscape terrain rendering. (Hoppe, 1998)
demonstrates the use of multiple-level-of-details terrain and on-
the-fly approximation of triangle meshes for efficient terrain
rendering maximizing the accuracy of the landscape as it
appears on the screen. (Pouderoux, Marvie, 2005) focus on
adapting the quality of the terrain approximation to match a
target number of frames per second, selecting the appropriate
triangles with respect to a metric in order to adapt to the
devices' graphic processing capabilities.

These work however focus on terrain data with precomputed
textures. If we want to enable seamless interaction with
heterogeneous data, the order, visibility or opacity of the
various layers can be changed at any moment by the user. As a
consequence, this working context requires on-the-fly
computation of terrain's textures.

For raster data, this essentially means loading the appropriate
datatiles with the relevant level of detail. Handling vector data
rendering on 3D landscape is a little bit more tricky. At this
time, two types of method coexist : texture-based approaches
and geometry-based approaches.
In (Kersting, Döllner, 2002), vector data is rasterized on-the-fly
to create a quadtree containing multi-resolution textures, which
are then used at the appropriate level of detail depending on the
resolution requirements of the terrain triangles.
In (Schneider, Guthe, Klein, 2005), the technique is refined in
order to improve the quality of the rendering and minimize
aliasing, by applying a perspective transform to the generated-

textures' coordinates. Those techniques for rendering vector
data on terrain are known as "texture-based" approaches.
(Schneider, Guthe, Klein, 2005) proposes an alternative
method, in which the 2D vector data is preprocessed in order to
compute each node's height and in order to associate multi-
resolution geometries to each feature. This last method has the
drawback of tightly coupling the terrain and vector data :
updating the terrain data will require to reprocess every vector
layer on the area of interest.
Recently, a more sophisticated geometry-based approach has
been proposed by (Schneider, Klein, 2007). It is based on
polyhedral extrusion, which enables to precisely control the
area which is drawn into when rendering a given feature. This
method advertises high-quality rendering, and does not suffer
the above-mentioned drawback of previous geometry-based
approaches which tight vector and terrain data together in a
preprocessing step. However, while it seems efficient for
rendering area and line features with simple styles, it is not that
clear that it is an efficient method when using line styles with
repetitive patterns such as railways, which are likely to increase
the complexity of the extrusion polyhedra.

2. TWO-STEPS TEXTURE-BASED RENDERING
USING EARTH'S SURFACE APPROXIMATIONS

Our rendering method addresses issues that can be encountered
on vector and raster data respectively.

2.1Vector data : need for a continuous texture space

In (Kersting, Döllner, 2002) the visible space is divided into
tiles of relevant level of detail which are then used for texturing
the terrain. From our experience, dividing the texture space into
several tiles leads to visual discontinuities on linear vector
features at the edges and at the corners of the tiles as soon as
they are portrayed with a thickness greater than 1.

Two types of discontinuities are encountered :
1/ features that go through a tile's vertex will be considered to
be out of the area of two of the four adjacent tiles, which
geometrically is right, but dismiss part of the symbology

Rendered features Tiling schema Tiles' occlusion

Figure 1. discontinuity type 1 when using tiled texture buffer

2/ features that go across tiles of different level of detail will be
affected by the gap of resolution existing between the two tiles

Perspective rendered features Tiling schema

Figure 2. discontinuity type 2 when using tiled texture buffer

On top of these vector portrayal issues, dividing the texture
space into tiles will put some constraint on the terrain data
sampling schema : allowing terrain triangles to spread over
several texture tiles would complexify the terrain rendering step
and slow down the whole process. To avoid this, terrain's
samples would need to match textures' tiling schema.

Given these three issues we propose texture-based approaches
should use a continuous texture space for the whole scene.

2.2 Raster data : need for real-world perspective correction

The best way of having a continuous texture space while
limiting the growth of the texture buffer is to have a perspective
corrected texture.
(Schneider, Guthe, Klein, 2005)'s perspective correction is used
to minimize aliasing that would occur when the frame buffer
undersamples the texture buffer's primitives. Although not
clearly stated, it is likely that this method could be used to
overcome the second type of discontinuity depicted in figure 2.
However the two other issues remain to be addressed. Their
parametrization is homothetic. Applying this homothetic
transformation in the context of a single squared texture buffer
is equivalent to considering that the texture space's shape is
trapezoidal.

Let's remind that our concern is to avoid loading and rendering
data that lies outside of the area pointed at by the viewing
frustum. In general intersection of a pyramidal frustum with an
ellipsoid does lead to more complex areas than trapezoids.
The following figures show the WGS84 ellipsoid on the left and
the shape of the intersection in a plate-carree projection on the
right. Whenfar away from the earth, the complexity of
modelling this intersection is obvious (figures 3-4).

As we get closer to the earth's surface - and this is what we're
basically interested in - the area gets closer to a trapezoidal area.
However, as shown in figure 5, using an enclosing trapezoidal
area will lead to select a larger area than the actually visible
one. In the end, this will result in requesting more datatiles than
necessary (figure 6).

Figure 3. Intersection of a frustum and a WGS84 ellipsoid

Figure 4. Intersection of a frustum and a WGS84 ellipsoid

invisible horizon partially visible
horizon

completely visible
horizon

Figure 5 : three possible shapes of the intersection of a
frustum and an ellipsoid at a close distance

The most straightforward way of letting a rectangular buffer
1/ model a shape as close as possible to the actual intersection
of a frustum and the earth's surface
2/ while providing a finer resolution in the foreground and a
coarser resolution in the background like in perspective
correction
3/ and providing the best possible match (without knowledge
about terrain) between the resolution dedicated to each tile's
information and the resolution required by the terrain's texture
is to apply the viewpoint's current projection matrix to the
texture buffer.

2.3 The two step rendering process

In order to address the three issues mentionned in paragraph 2.1
and to minimize the amount of data required as explained in
paragraph 2.2, we propose the following two-step rendering
process.

In the first step 2D data is rendered in a 3D space without
taking terrain data into account. Vector features are simply
transformed from longitude-latitude 2D geographic coordinates
to 3D using the surface's approximation model. This is done on-
the-fly. One can use ellipsoid equations as described in
(Bouteloup, 2003) or any other approximation of the earth's
surface, including geoids. The choice of the earth's
approximation is essentially a trade-off between accuracy and
efficiency. As it is simply about selecting the relevant data tiles,
the granularity should not require a much more precise
approximation than the ellipsoid.

Imagery data is structured as a quadtree, with constant pixel size
and increasing geographic resolution. High resolution / small
extent tiles are used in the foreground while low resolution /
wide extent tiles are used in the background. The four vertices
of the tile are processed like vector vertices. This adaptative
method allows to adjust at the same time both the resolution of
the data and the accuracy of the earth's surface approximation.

As depicted in figure 7, this first rendering step builds the
texture buffer's content.

The second step consists in rendering terrain using this texture
buffer. The only prerequisite on terrain data structure is that it is
available as a triangle mesh.
As described in figure 8, for each vertices of each triangle, the
projection of the vertex on the earth surface's approximation is
computed and projected into the texture buffer by applying the
projection transformation of the current point of view. This
gives pixel coordinates corresponding to the texture's
coordinates to be used for this vertex when rendering the terrain
triangle on the screen.

Figures 9 and 10 illustrate the process on a real-world example.

Figure 7. Actual vs trapezoidal area - shape 3

Figure 6. In this example, a trapezoidal approximation of the
intersection will require to load 6 additional data tiles (in blue)
than when using the actual intersection shape (38 green tiles),
which results here in a loss of 6/38 = 15% of cache memory.

Figure 8 : Rendering step 2 : computing texture coordinates

Figure 7 : Rendering step 1 : building the texture buffer

Figure 9 : Example of texture buffer generated in step 1

3. IMPLEMENTATION AND TESTS

In our implementation, the WGS84 ellipsoid was chosen as the
approximation of the earth's surface. The client window is sized
1024x1024 pixels. The size used for the imagery data quadtree
tiles is 512x512. A basic cache mechanism was implemented in
order to avoid streaming again data that is already in memory
from one frame to another, but was configured so that it can just
fit the maximum number of tiles required experienced.

The following datasets were used for these tests, covering an
area of 10°x4° (W120-110 longitude, N36-40 latitude) collected
from (USGS) and (MapAbility)
– a 28800x72000 pixels matrix of Landsat imagery (1.44

GBytes in GeoTIFF format), turned to grayscale to
improve vector features readability ;

– a 7200x12000 pixels matrix of SRTM terrain (213 MBytes
in DTED format) ;

– five layers from a 223 MBytes VMap Level 1 dataset
chosen for their representativity : tree areas from the
vegetation layer ; lake areas and watercourses from the
hydrographic layer ; roads from the transportation layer ;
builtup areas from the population layer

3.1Memory requirements measures

A monitoring process enabled to record various parameters of
interest and produced the following observations.

camera'
s tilt

camera
- earth

distance

numbe
r of

visible
imager
y tiles

number of visible
vector vertices

MBytes of
data

streamed
(imagery
+ vector)

vertical
(0°)

350 km

186 km

40 km

6 to 24

9 000 to 90 000

60 000 - 350 000

50 000 - 550 000

0 to 1 MB

0 to 11MB

0 to 20MB

tilted, no
horizon
visibility
(40-50°)

350 km

186 km

40km

9 to 50
20 000 - 90 000

90 000 - 550 000

100 000 – 580 000

0 to 5 MB

0 to 20MB

0 to 32MB

tilted,
horizon
visible

(65-70°)

350 km

186 km

40km

11 - 80

10 000 - 100 000

140000 - 600000

100 000 - 700 000

0 to 5 MB

0 to 20MB

0 to 50MB
Table 1 : influence of camera's tilt and distance to earth on
number of visible tiles, vector vertices and data streams.

Figure 10 : Terrain generated with the above texture buffer

Figure 13 : number of bytes streamed from HDD to RAM when
moving, given the viewpoint's tilt and distance to earth

Figure 12 : number of vector data vertices required for building
the texture given the viewpoint's tilt and distance to earth

Figure 11 : number of data tiles required for building the texture
given the viewpoint's tilt and distance to earth

The number of 512x512 tiles necessary for rendering a
1024x1024 screen is a little bit astonishing at first but can be
explained. A coarser level of detail for a given tile is selected
only if the data resolution is more than twice the screen pixel
resolution. As a consequence a 257x257 screen area will still
require a 512x512 data tile. As a consequence, up to 4x4=16
512x512 data tiles may be required for filling the screen,
provided that the tiles and the screen are perfectly aligned and
the viewing frustum is vertical. Should the viewing frustum be
misaligned with the tiling schema of the data, this can increase
to 25 (figure 14). Also, depending on how data was produced,
and specifically if the angular pixel resolution is the same in
both north/south and east/west directions, 512x512 datatiles
will be rectangular once projected on earth. As a consequence,
at 38° northern latitude ceil(5 / cos(38°)) = 7 datatiles will be
selected instead of 5 in the longitudinal direction, leading to
selecting 5x7 = 35 datatiles.

As expected, camera's tilt is a key factor on the number of data
tiles required for building the texture. As shown in figure 15,
some small portions of the texture buffer may require a full tile.

Fortunately the multiple level of details data structure of
imagery and the distance dependant vector data portrayal rules
are able to maintain the number of tiles streamed to the texture
buffer below 80 tiles and the amount of vector vertices below
700 000 : this represents 1% of original imagery dataset (8037
tiles) and 14.2% of the original vector dataset (4 942 539
vertices).

As each tile is stored in memory as a RGBA uncompressed
texture, it represents about 1MBytes (1 048 576 exactly). This
means that a 84 MBytes cache is necessary for imagery data.
Each vertex is stored as a double-precision floating point triplet
(X,Y,Z) which means that a 3x8x700000 = 16.8 MBytes cache
is necessary for vector data. This amounts to a total of 101 MB.

Our measures demonstrate that using this technique, devices
with 128 MBytes should be able to browse on a 1024x1024
screen and with virtual globes ergonomics, heterogeneous data
like the huge imagery and vector set we tested. For portable
devices with 6x smaller screens (320x480) memory
requirements can be extrapolated to about 17 MBytes.

3.2Rendering quality considerations

One specificity of the proposed two-step rendering technique is
that when in perspective view, the more distant areas are
provided a lot less texture-buffer surface than the closer areas,
and since line feature rendering occurs with constant pixel
width on the texture buffer, the aliasing of line feature rendering
can strongly affect readability.

Readability of vector data in contexts that would clutter the
features is however an issue in itself that does not affect our
approach specifically : as shown in figure 16, far-away vector
information is not much more informative without than with
terrain. Distance-dependent portrayal rules for vector features
are necessary not only for performance considerations to keep
the amount of data reasonable when tilting the camera, but also
for maintaining some readability. We use this mechanism in the
step 1 of our rendering algorithm, which provides more pleasant
results in the background while being more selective on the
relevant information presented to the user.

Still, aliasing will affect line features rendering, even at the
middle of the screen, whenever there are steep slopes (figure
17). This problem however has been acknowledged by the cited
papers addressing vector data draping on terrain, so it is not
specific to our method.

Figure 14 : number of datatiles required for building texture

Figure 15 : example of a small area requiring a full datatile

Figure 17 : foreground / background quality and steep slopes

Figure 16 : zoom on the background of a landscape
with terrain (top) / without terrain (bottom)

A specificity of our implementation was to directly use the
framebuffer for step 1 (building the texture). No framebuffer
color clearing is done between the two steps, thus there is
already a default view of the landscape when step 2 is triggered.
This way we don't have to render a default WGS84 terrain
where no terrain data is available. This has been thought as a
basis for best-effort continuum between areas where there is
terrain data and areas where there is none. However this suffers
from the caveat that terrain data is usually visualized with
accentuation, and this accentuation also affects the mean height
at the current viewpoint, in which case unpleasant – but
meaningful – gaps will appear (figure 18).

4. CONCLUSIONS AND WAY FORWARD

This paper proposes a refinement of texture-based vector
draping approaches
• which minimizes the amount of data needed to be loaded

into memory ;
• which provides on-the-fly computation of the terrain

texture, which enables the user to manipulate layers' order,
visibility or opacity at any time ;

• which keeps independence between the terrain and the
imagery and vector layers, which means that each of this
source can be streamed and updated independently ;

• which uses a continuous texture-space, addressing tricky
issues on vector data portrayal ;

• which is open to arbitrary complex portrayal rules for
vector data ;

• which is open to any efficient algorithm for terrain
rendering, enabling to benefit from latest developments in
that respect ;

Our memory-benchmarks demonstrated that using such an
approach, virtual globe browsing can be considered on
memory-constrained platforms.

There are still further developments to undertake to address
some rendering quality issues. For example, only part of the
texture buffer pixels are used whenever the skyline is visible
within the viewport when the camera is strongly tilted. Finding
a way to overcome this limitation could help limiting aliasing of
line features in steep slopes.

5. REFERENCES

References from Journals :

(Hoppe, 1998) H. Hoppe - “Smooth View-Dependent Level-of-
Detail Control and Its Application to Terrain Rendering” In
IEEE Visualization'98, 35-42, 1998

(Kersting, Döllner, 2002) O. Kersting, J. Döllner - « Interactive
3D Visualization of Vector Data in GIS ». In Proceedings of
the 10th ACM International Symposium on Advances in GIS,
2002

(Pouderoux, Marvie, 2005) J. Pouderoux, J.-E. Marvie -
"Adaptive Streaming and Rendering of Large Terrains using
Strip Masks". In Proceedings of ACM GRAPHITE 2005 pp.
299-306, 2005

(Schneider, Guthe, Klein, 2005) M. Schneider, M.Guthe,
R.Klein « Real-time Rendering of Complex Vector Data on 3D
Terrain Models ». In Proceedings of the 11th International
Conference on Virtual Systems and Multimedia, 2005

(Schneider, Klein, 2007) M. Schneider, R. Klein "Efficient and
Accurate Rendering of Vector Data on Virtual Landscapes", in
15th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision, 2007

References from Books :

(Bouteloup, 2003) Didier Bouteloup – "Cours de géodésie",
Chapter 2 "Géométrie de l'ellipsoïde" – Ecole Nationale des
Sciences Géographiques, Institut Géographique National,
France – March 1st 2003

References from websites :

(MapAbility) http://mapability.com/info/vmap1_index.html

(NasaGRC)http://www.grc.nasa.gov/WWW/K-
12/airplane/pitch.html
http://www.grc.nasa.gov/WWW/K-12/airplane/roll.html
http://www.grc.nasa.gov/WWW/K-12/airplane/yaw.html

(SSD) http://en.wikipedia.org/wiki/Solid_state_drive
http://en.wikipedia.org/wiki/Access_time

(USGS) Data available from U.S. Geological Survey, EROS
Data Center, Sioux Falls, SD – http://seamless.usgs.gov

Figure 18 : a step between no-data terrain areas and terrain
areas, with 120x terrain accentuation

http://mapability.com/info/vmap1_index.html
http://www.grc.nasa.gov/WWW/K-12/airplane/roll.html
http://www.grc.nasa.gov/WWW/K-12/airplane/pitch.html
http://www.grc.nasa.gov/WWW/K-12/airplane/pitch.html
http://www.grc.nasa.gov/WWW/K-12/airplane/roll.html
http://seamless.usgs.gov/
http://en.wikipedia.org/wiki/Access_time
http://en.wikipedia.org/wiki/Solid_state_drive.html

	1. Introduction
	1.1Motivation
	1.2 Related work

	2. Two-steps texture-based rendering using earth's surface Approximations
	2.1Vector data : need for a continuous texture space
	2.2 Raster data : need for real-world perspective correction
	2.3 The two step rendering process

	3. Implementation and tests
	3.1Memory requirements measures
	3.2Rendering quality considerations

	4. conclusions and way forward
	5. References

