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Abstract:
In this paper we present a signal reconstruction algorithm
from absolute value of frame coefficients that requires a
relatively low redundancy. The basic idea is to use a non-
linear embedding of the input signal Hilbert space into a
higher dimensional Hilbert space of sesquilinear function-
als so that absolute values of frame coefficients are associ-
ated to relevant inner products in that space. In this space
the reconstruction becomes linear and can be performed in
a polynomial number of steps.

1. Introduction

Let us denote by En the n-dimensional space of signals
(e.g. En = Rn or En = Cn), and assume we are given
a frame of m vectors {f1, . . . , fm} ⊂ En that span En.
Thus necessarily m ≥ n. In this paper we look at the
following problem: Given cl = |〈x, fl〉|, 1 ≤ l ≤ m,
reconstruct the original signal x ∈ En up to a constant
phase ambiguity, that is, obtain a signal y ∈ En such that
y = eiϕx for some ϕ ∈ [0, 2π).
This problem arises in several areas of signal process-
ing (see [BCE06] for a more detailed discussion of these
issues). In particular, in X-Ray Crystallography (see
[LFB87]) it is known as the phase retrieval problem. In
speech processing it is related to the use of cepstral coeffi-
cients in Automatic Speech Recognition as well as direct
reconstruction from denoised spectogram (see [NQL82]).
By the same token the solution posed here can be viewed
as a new, nonlinear signal generating model.
Recently ([BBCE09]) we proposed a quasi-linear recon-
struction algorithm that requires the frame to have high re-
dundancy (m = O(n2)). The algorithm works as follows.
First note that two vectors x, y ∈ En that are equivalent
(i.e. equal to one another up to a constant phase) generate
the same rank-one operatorsKx = Ky, where

Ku : En → En , Ku(z) = 〈z, u〉u (1)

with u = x or u = y. Conversely, if Kx = Ky then
necessarily there exists a phase ϕ so that y = eiϕx. Thus
the reconstruction problem reduces to obtaining first Kx,
and then a representative of the class x̂. Next notice that
the absolute value of frame coefficient |〈x, f l〉| is related to
the Hilbert-Schmidt inner product betweenKx and Kfl

:

〈Kx,Kfl
〉 := trace(KxK

∗
fl

) = |〈x, fl〉|2

Hence, if {Kfl
, 1 ≤ l ≤ m} form a frame for the set

of Hilbert-Schmidt operators (this is the same as the set of
quadratic forms), then Kx can be reconstructed from d2

l

with a linear algorithm, from where a vector y ∈ x̂ can
be obtained. Explicitely, the algorithm is as follows: First
denote by {K̃l : En → En , 1 ≤ l ≤ m} the canonical
dual frame of {Kfl

, 1 ≤ l ≤ m}.
1. Compute:

Kx =
m∑

l=1

c2l K̃l (2)

2. Assume e ∈ En, ‖e‖ = 1 is so that ‖Kxe‖ 
= 0. Then:

y =
1√〈Kx(e), e〉Kx(e) (3)

is a vector in En equivalent to x.
While very appealing from a computational perspective,
this algorithm requires the set {Kfl

, 1 ≤ l ≤ m} to
be complete (spanning) in the Hilbert space of n × n
quadratic forms. In the real case (E = R) this latter
Hilbert space is of dimension n(n+ 1)/2. In the complex
case (E = C) the dimension becomes n2. Thus the algo-
rithm requires the original frame set {f l , 1 ≤ l ≤ m}
to have m = O(n2) vectors. In practice this require-
ment may not be feasible. Furthermore, in [BCE06] we
obtained that genericallym ≥ 4n−2 should suffice in the
complex case, and n ≥ 2n − 1 should suffice in the real
case. In this paper we present an algorithm that applies to
a generic frame set of m = 5.394n− 4.394 vectors in the
complex case, andm = 2n− 1 in the real case. The main
ingredient of this algorithm is the nonlinear embeding of
En into a linear space Λd,d of (d, d)-sesquilinear symmet-
ric forms where the absolute value of frame coefficients
provide the inner products with a frame set.

2. Nonlinear Embeddings

Let En be the signal n-dimensional Hilbert space. Let
F = {f1, . . . , fm} be a spanning set of m vectors in En.
Its redundancy is r = m/n ≥ 1. Fix an integer d ≥ 1
which is going to measure the embedding depth. Let
Λd,d(En) denote the linear space of (d, d)-sesquilinear
functionals, that is

Λd,d(En) = { α : En × · · ·En︸ ︷︷ ︸
2d

→ C } (4)



where α(y1, . . . , yd, z1, . . . , zd) is linear in y1, . . . , yd,
and antilinear in z1, . . . , zd. Note Λd,d(En) is a vector
space of dimension n2d. Let {ek , 1 ≤ k ≤ n} be an or-
thonormal basis of En. For each 2d-tuple (k1, . . . , k2d) of
integers from 1, . . . , n (repetitions are allowed) define

δk1,...,k2d
(y1, . . . , yd, z1, . . . , zd) = 〈y1, ek1〉 · · · 〈yd, ekd

〉 ·
〈ekd+1 , z1〉 · · · 〈ek2d

, zd〉 (5)

Note Δ = {δk1,...,k2d
; 1 ≤ kl ≤ n, 1 ≤ l ≤ 2d}

forms a basis in Λd,d(En). We define an inner product
on Λd,d(En) so that this basis is orthonormal. Consider
two sesquilinear functionals in Λd,d(En):

α(y1, . . . , yd, z1, . . . , zd) = 〈y1, a1〉 · · · 〈yd, ad〉〈b1, z1〉 · · · 〈bd, zd〉
β(y1, . . . , yd, z1, . . . , zd) = 〈y1, g1〉 · · · 〈yd, gd〉〈h1, z1〉 · · · 〈hd, zd〉
Then their inner product is defined as

〈α, β〉 := 〈g1, a1〉 · · · 〈gd, ad〉〈b1, h1〉 · · · 〈bd, hd〉 (6)

Extend this binary operation to an inner product on
Λd,d(En). With this inner product Δ becomes an or-
thonormal basis for the Hilbert space Λd,d(En).
Now we are ready to define the nonlinear embedding of
the input Hilbert space En in Λd,d(En). This is given by
the map Φ : En → Λd,d(En)

Φ(x)(y1, . . . , yd, z1, . . . , zd) = 〈y1, x〉 · · · 〈yd, x〉 ·
·〈x, z1〉 · · · 〈x, zd〉 (7)

Let Ed = span(Φ(Λd,d(En))) be the linear span of the
embedding. Note in general Ed � Λd,d(En) unless d =
1. Let P denote the orthogonal projection onto Ed, P :
Λd,d(En) → Ed.
Define now the following sesquilinear functionals associ-
ated to the frame set F . Fix 1 ≤ j1, . . . , jd ≤ m.

ψj1,...,jd
(y1, . . . , yd, z1, . . . , zd) = 〈y1, fj1〉 · · · 〈yd, fjd

〉 ·
·〈fj1 , z1〉 · · · 〈fjd

, zd〉 (8)

Note there are md distinct such functionals, however the
number of distinct projections onto Ed is much smaller.
Notice

〈Φ(x), ψj1,...,jd
〉 = |〈x, fj1 〉|2 · · · |〈x, fjd

〉|2 (9)

Thus if (k1, . . . , kd) is a permutation of (j1, . . . , jd) then
Pψk1,...,kd

= Pψj1,...,jd
. For converse we need to as-

sume first that frame vectors belong to distinct equiva-
lence classes (that is, for any two 1 ≤ l < j ≤ m
and any a ∈ [0, 2π), fl 
= eiafj). Then we get that
Pψk1,...,kd

= Pψj1,...,jd
if and only if (k1, . . . , kd) is

a permutation of (j1, . . . , jd). Thus we obtain that for
frames with frame vectors in distinct equivalence classes
the set

Ψ = {ψj1,...,jd
, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jd ≤ m} (10)

is a maximal set of sesquilinear functionals of type (8) that
have distinct projections through P .
For our algorithm to work we need to assume:
Assumption A. The set PΨ := {Pψ , ψ ∈ Ψ} is spanning
in Ed.
In section 4. we analyze the dimensionality constraint
|PΨ| ≥ dim(Ed), and in section 5. we present numeri-
cal results supporting Assumption A for a generic frame.

3. The Reconstruction Algorithm

Under Assumption A, let us denote by {ψ̃j1,...,jd
, 1 ≤

j1 ≤ · · · ≤ jd ≤ m} the canonical dual frame to
PΨ. This dual frame allows us to recover Φ(x). Recall
{e1, . . . , en} is an orthonormal basis of En. Notice the
following relations:

Φ(x)(ek, . . . , ek) = |〈x, ek〉|2d (11)
n∑

k=1

(Φ(x)(ek, . . . , ek))1/d = ‖x‖2 (12)

Φ(x)(ej , . . . , ej︸ ︷︷ ︸
2d−1

, ek) = |〈x, ej〉|2d−2〈ej , x〉〈x, ek〉

(13)

From (11) and (13) we obtain:

〈x, ek〉 =
〈x, ej〉
|〈x, ej〉|

Φ(x)(ej , . . . , ej, ek)
(Φ(x)(ej , . . . , ej , ej))(2d−1)/2d

(14)
The Reconstruction Algorithm is as follows.
Reconstruction Algorithm
Input: Coefficients c1 = |〈x, f1〉|, ... cm = |〈x, fm〉|.
Step 0. If

∑m
k=1 c

2
k = 0 then y = 0 and stop. Otherwise

continue.
Step 1. Construct the following sesquilinear functional

α =
∑

1≤j1≤···≤jd≤m

c2j1 · · · c2jd
ψ̃j1,...,jd

(15)

Step 2. Find a 1 ≤ j0 ≤ n so that α(ej0 , · · · , ej0) > 0.
This is possible due to (12). Set

ν = 2d

√
α(ej0 , . . . , ej0) (16)

Step 3. Set

y =
1

ν2d−1

n∑
k=1

α(ej0 , . . . , ej0︸ ︷︷ ︸
2d−1

, ek)ek (17)

Summarizing all results obtained so far we obtain:

Theorem 3..1 For every x ∈ En there is z ∈ C so that
|z| = 1 and the output of the Reconstruction Algorithm

satisfies x = zy. Specifically z = 〈x,ej0 〉
|〈x,ej0〉| , with j0 ob-

tained in Step 2.

4. Redundancy Constraint

In this section we analyse the necessary condition |Ψ| ≥
dim(Ed).

4.1 The Cardinal of Set Ψ

The set Ψ given in (10) has the same cardinal as

{(k1, . . . , kd) , 1 ≤ k1 ≤ · · · ≤ kd ≤ m} (18)

Let us denote this number by Mm,d. In order to compute
it, consider the following cardinal equivalent set:

{(n1, . . . , nm) , 0 ≤ n1, . . . , nm ≤ d, n1+· · ·+nm = d}
(19)



The bijective correspondence between d-tuples of (18) and
m-tuples of (19) is given by the following interpretation:
nl is the number of times l is presented in the d-tuple
(k1, . . . , kd). Then, one can obtain the following recur-
sion:

Mm+1,d =
d∑

r=0

Mm,d

where we set Mm,0 = 1. Since M1,d = 1, one obtains by
induction that:

Mm,d =
(
m+ d− 1
m− 1

)
=
m(m+ 1) · · · (m+ d− 1)

d!
(20)

4.2 The Dimension of Ed

Recall Ed is the linear span of vectorx Φ(x) in Λd,d(En).
Recall also that Δ whose n2d vectors are defined in (5) is
an orthonormal basis in Λd,d(En). Let us denote by Nn,d

the dimension of Ed. We will describe an orthonormal
basis in Ed. Fix t1, . . . , tn ∈ C and expand:

Φ(t1e1 + · · · tnen) =
∑

1≤k1,...,k2d≤n

tk1 · · · tkd
tkd+1 · · · tk2d

·

·δk1,...,k2d
(21)

We shall group together terms containing same tk terms.
The real case will be treated separately from the complex
case.
To simplify the exposition, we introduce notation com-
mon to both cases. Let us denote by k = (k1, . . . , kr)
an ordered r-tuple of integers each from 1 to n, where
the length r is equal to 2d (in the real case), or d (in
the complex case). Let us denote by Pr the set of r-
permutations, and by Pk the quotient set Pk = P/ ∼k

where π′, π′′ ∈ Pr are equivalent π′ ∼k π
′′ if and only if

π′(k) = π′′(k). Note

|Pk| =
r!

m1! · · ·mn!

where ml denotes the number of repetitions of l in k.
The Complex Case
In the complex case, tk and tk can be treated as inde-
pedent (real) variables. Then terms in (21) are grouped
using two independent d-tuples, j = (j1, . . . , jd) and
l = (l1, . . . , ld) as follows∑

1≤j1≤···≤jd≤n

∑
1≤l1≤···≤ld≤n

tj1 · · · tjd
tl1 · · · tld×

×
∑

π∈Pj

∑
ρ∈Pl

δπ(j1),...,π(jd),ρ(l1),...,ρ(ld)

Then the following sesquilinear functionals are orthonor-
mal and form a basis in Ed:

dj,l =
1√

|Pj |
√|Pl|

∑
π∈Pj

∑
ρ∈Pl

δπ(j1),...,π(jd),ρ(l1),...,ρ(ld)

(22)
Their number (and hence dimension of Ed) is equal to the
number of ordered d-tuples j times the number of ordered

d-tuples l:

Nn,d = (Mn,d)2 =
(
n(n+ 1) · · · (n+ d− 1)

d!

)2

(23)

where we used (20). Note Nn,1 = n2 and we recover the
complex case considered in [BBCE09].
The Real Case
In the real case, tk and tk are the same variables. Then the
independent terms in (21) are indexed by 2d-tuples k =
(k1, . . . , k2d) as follows:∑

1≤k1≤k2d≤n

tk1 · · · tk2d

∑
π∈Pk

δπ(k1),...,π(k2d)

and an orthonormal basis of Ed is given by the following
vectors indexed by ordered 2d-tuples k:

dk =
1√|Pk|

∑
π∈Pk

δπ(k1),...,π(k2d) (24)

The dimension of Ed in real case is then:

Nn,d = Mn,2d =
n(n+ 1) · · · (n+ 2d− 1)

(2d)!
(25)

Note Nn,1 = n(n+1)
2 and this recovers the real case in

[BBCE09].

4.3 The Optimal Depth and Redundancy Condi-
tion

For given n we would like to find the minimum m = m∗

so that Mm,d ≥ Nn,d for some d ≥ 1.
The Complex Case
We need to solve

m(m+ 1) · · · (m+ d− 1)
d!

≥
(
n(n+ 1) · · · (n+ d− 1)

d!

)2

or, completing the factorials:

(m+ d− 1)! d! ((n− 1)!)2 ≥ (m− 1)! ((n+ d− 1)!)2

Let us denote

R(n,m, d) =
(m+ d− 1)!d!((n− 1)!)2

(m− 1)!((n+ d− 1)!)2
(26)

Ideally we would like to solve:

(1) d∗(n,m) = argmaxdR(n,m, d)
(2) m∗(n) = minR(n,m,d∗(n,m))≥1 m

Instead we make the following choices for d = d(n) and
m = m(n), and then optimize using Stirling’s formula:

d = n− 1 (27)

m = A(n− 1) + 1. (28)

Using Stirling’s formula n! =
√

2πnnne−n we obtain for
R(n+ 1, An+ 1, n),

R(n+1, An+1, n) =

√
8π(A+ 1)n

A

[
A+ 1

16
(1 +

1
A

)A

]n
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Figure 1: The plot of q = q(A) from (29).

To obtain R ≥ 1 for large n, we need

q(A) =
A+ 1

16
(1 +

1
A

)A ≥ 1 (29)

In Figure 1 we plot the function q = q(A). Numerically
we obtain A = 5.394. The remaining factor in R(n +
1, An + 1, n) becomes 5.376

√
n ≥ 1 for all n. Thus we

obtain as sufficient conditions:

d = n− 1 (30)

m = 5.394n− 4.394 (31)

The Real Case
In the real case we need to solve

m(m+ 1) · · · (m+ d− 1)
d!

≥ n(n+ 1) · · · (n+ 2d− 1)
(2d)!

Following the same approach we obtain the following ra-
tio function that we need to make supraunital:

R(n,m, d) =
(m+ d− 1)!(n− 1)!(2d)!
(m− 1)!(n+ 2d− 1)!d!

(32)

It follows:
R(n+ 1, 2n+ 1, n) = 1

Hence a possible choice is

d = n− 1 (33)

m = 2n− 1 (34)

It is interesting to note that in the real case we recover the
critical case m ≥ 2n− 1.

5. Numerical Evidence Supporting Generic-
ity of the Assumption A.

While the previous section computed necessary conditions
for Assumption A to hold true, we still need to prove (or
check) that PΨ is frame in Ed. In this section we plot the
distribution of eigenvalues of the frame operator associ-
ated to PΨ for one randomly generated example.
Using (22), each vector Pψk is represented by a Nn,d-
vector whose components are indexed by a pair (j, l),

F(j,l),k = 〈ψk, dj,l〉. Explicitely this becomes

F(j,l),k =
1√

|Pj |
√|Pl|

∑
π∈Pj

∑
ρ∈Plu

〈eπ(j1), fk1〉 · · ·

·〈eπ(jd), fkd
〉〈fk1 , eρ(l1)〉 · · · 〈fkd

, eρ(ld)〉 (35)

Thus PΨ is frame for Ed if and only if the Nn,d ×Mm,d

matrix F is of full rank. The frame operator is given by
S = FF ∗.
We considered the complex case (E = C) with the fol-
lowing parameters n = 5 and d = 3. Form = 21 the ratio
function (26) takes the value R(5, 21, 3) = 1.4457 > 1.
Note for the algorithm in [BBCE09] to work m has to
be greater than or equal to n2, that is m ≥ 25. For a
frame with 21 vectors in dimension 5 whose vectors are
obtained as realizations of complex valued normal random
variables of zero mean and variance 2 (each real and imag-
inary part is i.i.d. N (0, 1)), the distribution of eigenvalues
of its frame operator is plotted in Figure 2. Note the con-
ditioning number is cond(S) = 6267.7. While relatively
large, the important thing to note is that the realization
PΨ is frame (spanning) for Ed. While this result is by no

Figure 2: Distribution of eigenvalues for a random frame..

means a proof, or even an exhaustive experiment, it sug-
gests the Assumption A might be generically true when-
ever R(n,m, d) > 1.
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