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Abstract:

In this paper we present a signal reconstruction algorithm
from absolute value of frame coefficients that requires a
relatively low redundancy. The basic ideaisto use a non-
linear embedding of the input signal Hilbert space into a
higher dimensional Hilbert space of sesquilinear function-
als so that absolute values of frame coefficients are associ-
ated to relevant inner productsin that space. In this space
the reconstruction becomes linear and can be performedin
a polynomial number of steps.

1. Introduction

Let us denote by E" the n-dimensional space of signals
(eg. E™ = R"™ or E™ = C"), and assume we are given
aframe of m vectors {f1,..., fm} C E™ that span E™.
Thus necessarily m > n. In this paper we look at the
following problem: Given¢; = |{z, fi)|, 1 < I < m,
reconstruct the original signal z € E™ up to a constant
phase ambiguity, that is, obtain asignal y € E™ such that
y = e*x for some p € [0, 27).
This problem arises in severa areas of signal process-
ing (see [BCEO6] for a more detailed discussion of these
issues). In particular, in X-Ray Crystalography (see
[LFB87]) it is known as the phase retrieval problem. In
speech processing it is related to the use of cepstral coeffi-
cients in Automatic Speech Recognition as well as direct
reconstruction from denoised spectogram (see [NQL82)).
By the same token the solution posed here can be viewed
as anew, nonlinear signal generating model.
Recently ([BBCEQ9]) we proposed a quasi-linear recon-
struction algorithm that requiresthe frameto have high re-
dundancy (m = O(n?)). The algorithm works as follows.
First note that two vectors x,y € E™ that are equivalent
(i.e. equal to one ancther up to a constant phase) generate
the same rank-one operators K ,, = K, where
K,:E"—>E", K,(2) = (z,u)u Q)
withu = z or u = y. Conversely, if K, = K, then
necessarily there exists a phase ¢ so that y = e* 2. Thus
the reconstruction problem reduces to obtaining first K,
and then a representative of the class z. Next notice that
the absol ute val ue of frame coefficient | (z, f;)| isrelated to
the Hilbert-Schmidt inner product between K, and Ky,

(Kz, Ky,) :=trace(K, Kfz) |{x, fl>|

Hence, if {Ky , 1 < [ < m} form aframe for the set
of Hilbert-Schmidt operators (thisis the same as the set of
quadratic forms), then K, can be reconstructed from d7
with a linear algorithm, from where a vector y € % can
be obtained. Explicitely, the algorithmis as follows: First
denoteby {K; : E* — E" | 1 <[ < m} the canonical
dual frameof {Ky, , 1 <1 <m}.

1. Compute:

m

=1
2. Assumee € E", |le|]| = Lissothat || K e|| # 0. Then:
y=—F——=Ka(e) ©

isavector in E™ equivalent to x.

While very appealing from a computational perspective,
this algorithm requiresthe set {Ky, , 1 < [ < m} to
be complete (spanning) in the Hilbert space of n x n
quadratic forms. In the rea case (E = R) this latter
Hilbert spaceis of dimensionn(n + 1)/2. In the complex
case (E = C) the dimension becomes n2. Thus the algo-
rithm requires the origina frame set {f; , 1 < 1 < m}
to have m = O(n?) vectors. In practice this require-
ment may not be feasible. Furthermore, in [BCEQ6] we
obtained that generically m > 4n — 2 should sufficein the
complex case, and n > 2n — 1 should suffice in the real
case. In this paper we present an algorithm that appliesto
ageneric frame set of m = 5.394n — 4.394 vectorsin the
complex case, and m = 2n — 1 inthereal case. Themain
ingredient of this algorithm is the nonlinear embeding of
E™ into alinear space A 4,4 of (d, d)-sesquilinear symmet-
ric forms where the absolute value of frame coefficients
provide the inner products with aframe set.

2. Nonlinear Embeddings

Let E™ be the signa n-dimensional Hilbert space. Let
F=A{f1,..., fm} beaspanning set of m vectorsin E".
Its redundancy isr = m/n > 1. Fix aninteger d > 1
which is going to measure the embedding depth. Let
Aq,q4(E™) denote the linear space of (d, d)-sesquilinear
functionals, that is

Aga(

E'Y={a:E"x---E" = C} (4

2d



where «(y1,...,Yd, 21, --,24) IS linear in y1,...,y4,
and antilinear in zy,...,z4. Note A4 q(E™) is a vector
space of dimension n?¢. Let {e;, 1 < k < n} bean or-
thonormal basis of E™. For each 2d-tuple (k1, . . ., kag) of
integersfrom 1, ..., n (repetitions are allowed) define

e,

3. TheReconstruction Algorithm

Under Assumption A, let us denote by {wj/ljjd, 1<
1 < -+ < jg < m} the canonical dual frame to
PW. Thisdua frame alows us to recover ®(z). Recall

.,en} is an orthonormal basis of E™. Notice the

) , e e = N ,

ki,...,k24 (yla yYds 21, ) Zd) <y1; ek1> <yda ekd> followi ng relations:

<ek’d+1 ) Zl) o <ek’2d7 Zd> (5 2d

Note A = {60 pil < b < ml <1 < 2d) ) O(x)(en, .- ex) = |(z,exr)] (1)
forms a basis in A4 ¢(E™). We define an inner product P ) 1/d  _ 2 12
on A44(E™) so that this basis is orthonormal. Consider 1;( @)(ex; - ex)) I (12)
two sesquilinear functionalsin A 4 4(E"): - _

#a(E") D)y, veper) = [{e,es) 2 es,a) (e cn)
Y1y Yds 215+ -5 2d) = (Y1,01) -+ (Yd, aa) (b1, 21) - - - (ba, 2a) e
ﬁ(yla e Ydy 21, Zd) = <y1agl> e <ydagd><h17 Zl> to <hd7 Zd> (13)
Then their inner product is defined as From (11) and (13) we obtain:
(o, B) == (g1,a1) -+ - (gd, aa) (b1, h1) - - - (ba, ha)  (6) ( > (x,ej) O(z)(ej,...,e5,€x)
T,ex) =

Extend this binary operation to an inner product on ¥ [(z,e;)] (®(x)(ej,...,e4,e5))2d-1)/2d
Aqqa(E™). With this inner product A becomes an or- (14)

thonormal basis for the Hilbert space A 4 4(E™).

Now we are ready to define the nonlinear embedding of
the input Hilbert space E” in Ay 4(E™). Thisis given by
themap @ : E® — Ag q(E")

() (Y1, s Ydy 21+ -y 2d) = (Y1,2) - {Ya,x) -
(@, z1) -+ (@, za) @

Let By = span(®(Aqq(E™))) be the linear span of the
embedding. Notein general E; C Aqq(E™) unlessd =
1. Let P denote the orthogonal projection onto £ 4, P :
Ad’d(En) — Ed.

Define now the following sesquilinear functionals associ-
atedtotheframeset F. Fix 1 < j1,..., 54 < m.

wj17~~~,jd(y1’ ey Ydy Ry ey Zd) =

Note there are m¢ distinct such functionals, however the
number of distinct projections onto E; is much smaller.
Notice

<(I)(x)7wj17---7jd> - |<.13, fj1>|2 T |<.13, fjd>|2 )

Thusif (ki,...,kq) isapermutation of (j1,...,j4) then
Py, ... .k, = Py, 5, For converse we need to as-
sume first that frame vectors belong to distinct equiva-
lence classes (that is, foranytwo 1 < I < j < m
and any a € [0,27), fi # €“f;). Then we get that
Pwkl,...,kd = ijl,...,jd, if and only if (/fl,...,kd) is
a permutation of (ji1,...,74). Thus we obtain that for
frames with frame vectors in distinct equivalence classes
the set

U={tj ., 1<j1<jo<---<ja<m} (10)

isamaximal set of sesquilinear functional sof type (8) that
have distinct projections through P.

For our algorithm to work we need to assume:
Assumption A. The set PU := { P, ¢ € ¥} isspanning
in Ey.

In section 4. we analyze the dimensionality constraint
|PU| > dim(Ey), and in section 5. we present numeri-
cal results supporting Assumption A for ageneric frame.

(s fin) - (as fia) -
'<fj1721>"'<fjdazd> (8)

The Reconstruction Algorithm is as follows.
Reconstruction Algorithm

Input: Coefficientscy = |(z, f1)], - ¢m = |{z, fin)]-
Sep 0. If 37", ¢2 = 0theny = 0 and stop. Otherwise
continue.

Step 1. Construct the following sesquilinear functional

a= Z 051 T C?d,¢j1»~;jd (15)
1<j1 < <ja<m
Sep 2. Findal < jo < n sothat a(ej,,---,ej5) > 0.
Thisis possible dueto (12). Set
v= 2 alejy,. .. €j) (16)
Sep 3. Set
1 n
y= p2d—1 ; a(ejo’ <9 €hg5 ek)ek (17)
2d—1

Summarizing all results obtained so far we obtain:

Theorem 3..1 For every x € E™ thereis z € C so that
|z] = 1 and the output of the Reconstruction Algorithm

satisfies z = zy. Specifically z = ‘g’?ﬁ“iw with jo ob-
=70
tainedin Sep 2.

4. Redundancy Constraint

In this section we analyse the necessary condition || >

4.1 TheCardinal of Set ¥
The set ¥ given in (10) has the same cardinal as

{(k1,-.

Let us denote this number by M, 4. In order to compute
it, consider the following cardinal equivalent set:

{(’I’Ll,..

ka), 1<k <---<kg<m} (18)

S <dyngF Ay, = d}

.,nm),Ognl,.. S
(19



The bijective correspondence between d-tuplesof (18) and
m-tuples of (19) is given by the following interpretation:
ny is the number of times [ is presented in the d-tuple
(k1,...,kq). Then, one can obtain the following recur-

sion:
d
Mm+1,d = Z Mm,d
r=0

where we set M,,, o = 1. Since M, 4 = 1, one obtains by
induction that:

My = ( m+d—1 ) _m(m 1) (mtd—1)

m—1 d!
(20)

4.2 TheDimension of E,

Recall E,; isthe linear span of vectorx ®(z) in A g 4(E").
Recall also that A whose n?? vectors are defined in (5) is
an orthonormal basisin A4 4(E™). Let usdenoteby N, 4
the dimension of E;. We will describe an orthonormal
basisin E,. Fix t,...,t, € C and expand:

tnen) = >t

1<k1,....,k2qa<n

D(trey + -

We shall group together terms containing same ¢, terms.
The real case will be treated separately from the complex
case.

To simplify the exposition, we introduce notation com-
mon to both cases. Let us denoteby & = (k1,..., k)
an ordered r-tuple of integers each from 1 to n, where
the length r is equal to 2d (in the real case), or d (in
the complex case). Let us denote by P,. the set of r-
permutations, and by P, the quotient set P, = P/ ~p
where ', " € P, areequivaent ' ~ «” if and only if
(k) = =" (k). Note

[Pel = mal- - my!

where m,; denotes the number of repetitionsof [ in k.

The Complex Case

In the complex case, t;, and %5 can be treated as inde-
pedent (real) variables. Then termsin (21) are grouped
using two independent d-tuples, j = (j1,...,ja) and
1= (l,...,13) asfollows -

Z Z tiy ety - T, X

1<5:1<-<jas<n 1< < <lg<n

XY > B Ga) o) (L)

mEP; pEPL

Then the following sesquilinear functionals are orthonor-
mal and form abasisin E:

jL m(j1),---m(Ja l1),...,p(lgq
g \/|737 & w;ﬂ;} (G1)s--m(Ga)sp(la)sesp(la)
(22)
Their number (and hence dimension of F;) isequal to the
number of ordered d-tuples j times the number of ordered

. 'tkdtkd+1 NN

d-tuples:

(n+d-—
d!

N o= (Mo a)? = <n(n+1)~ 1)>2 )

where we used (20). Note N,, ; = = n? and we recover the
complex case considered in [BBCEQ9].

The Real Case

Inthereal case, t;, and t;, arethe same variables. Then the
independent terms in (21) are indexed by 2d-tuples k& =
(k1,...,koq) asfollows:

St X i

1<k <ksq<n 7\'673&

and an orthonormal basis of E; is given by the following
vectorsindexed by ordered 2d-tuples k:

1
di = Z Or(kr)yorm(koa) (24)

v |PE| TEPk

Thedimension of E'; inrea caseis then:

nn+1)---(n+2d—1
Nn,d - Mn,2d = ( ) (2(2)' ) (25)
2
( ]leote Npi1 = ”("“ and this recovers the real case in
[BBCEQ9].

4.3 TheOptimal Depth and Redundancy Condi-
tion

For given n we would like to find the minimumm = m*

sothat M,y 4 > Ny q for somed > 1.

The Complex Case

We need to solve

(m+d—1) . <n(n+1)~-c~l|(n+d—1))2

m(m+1)---
d!

or, completing the factorials:
(m+d—1)'d (n—1N2>(m—1D!((n+d—1)!)?
Let us denote

(m+d—1)d!((n —1)!)?
(m =D (n+d—-1)12

Ideally we would like to solve:

R(n,m,d) = (26)

(1) d*(n,m) = argmazxqR(n, m,d)

(2) m*(n) = minR(7z,er,d*(n,m))Zl m

Instead we make the following choices for d = d(n) and
m = m(n), and then optimize using Stirling’s formula:

d =

m =

n—1 (27)
An—1)+1. (28)

Using Stirling'sformulan! = +/27mnn™e~" we obtain for

R(n+1,An+1,n),

A+1 A+1 1 ,"
R(n+1, An+1,n) = S )n[ G V‘}

1
A T
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Figure 1: Theplot of ¢ = ¢(A) from (29).

To obtain R > 1 for large n, we need

A+1 1
= %(1 + )4 >1 (29)

q(A) a1

In Figure 1 we plot the function ¢ = g(A). Numerically
we obtain A = 5.394. The remaining factor in R(n +
1, An + 1,n) becomes 5.376y/n > 1 for al n. Thuswe
obtain as sufficient conditions:

d = n-1 (30)
m = 5.394n —4.394 (31)
The Real Case
Inthereal case we need to solve
mm+1)---(m+d—-1) - nn+1)---(n+2d-1)
d! - (2d)!

Following the same approach we obtain the following ra-
tio function that we need to make supraunital:

(m +d — 1)l(n — 1)1(2d)!

d) = 32
B, d) = = 2d - 1)l (32)
It follows:
Rn+1,2n+1,n)=1
Hence a possible choiceis
d = n-1 (33)
m = 2n-—1 (34)

It isinteresting to note that in the real case we recover the
critical casem > 2n — 1.

5. Numerical Evidence Supporting Generic-
ity of the Assumption A.

While the previous section computed necessary conditions
for Assumption A to hold true, we still need to prove (or
check) that PV isframein E,. Inthis section we plot the
distribution of eigenvalues of the frame operator associ-
ated to PV for one randomly generated example.

Using (22), each vector Py, is represented by a N, 4-
vector whose components are indexed by a pair (j,1),

Fipk = (Yr, dj,g. Explicitely this becomes

Fope = SN lenuy fr) -
- \/ |P V |Pl TEP; pEPLu
(er(ia)s Jha) (Frrs o)) - {fras €pa))  (35)

Thus PV isframefor E, if and only if the Ny, g X M, 4
matrix F' is of full rank. The frame operator is given by
S=FF*.

We considered the complex case (E = C) with the fol-
lowing parametersn = 5 andd = 3. For m = 21 theratio
function (26) takes the value R(5,21,3) = 1.4457 > 1.
Note for the algorithm in [BBCEQ9] to work m has to
be greater than or equal to n?, that is m > 25. For a
frame with 21 vectors in dimension 5 whose vectors are
obtained as realizations of complex valued normal random
variables of zero mean and variance 2 (each real and imag-
inary partisi.i.d. A/(0, 1)), the distribution of eigenvalues
of its frame operator is plotted in Figure 2. Note the con-
ditioning number is cond(S) = 6267.7. While relatively
large, the important thing to note is that the realization
P isframe (spanning) for 4. Whilethisresult is by no

Singular Eigenvalues: m=21 n=5 d=3 , Cond=6267 664161
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Figure 2: Distribution of eigenvaluesfor arandom frame..

means a proof, or even an exhaustive experiment, it sug-
gests the Assumption A might be generically true when-
ever R(n,m,d) > 1
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