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ABSTRACT

Microphone arrays provide new opportunities for noise reduction
and speech enhancement. This paper presents a novel decomposi-
tion of the estimation problems for short-time spectral amplitude
(STSA), log STSA, and phase in the Bayesian estimation frame-
work. The decomposition is based on the notion of sufficient statis-
tics for the microphone array case. It nicely generalizes the well-
known single-channel Ephraim-Malah estimators [4, 5] to the mi-
crophone array case. We also compare noise reduction obtained
in the single channel with the two- and four-channel cases on real
data.

1. INTRODUCTION

Recent research in microphone-array systems indicate the promise
of such techniques in speech enhancement and hands-free com-
munication applications. Of particular interest are techniques us-
ing small arrays of microphones, e.g. two-four, in designs of sev-
eral centimeters in diameter whose goal is to offer a few dB im-
provement when compared with mono techniques [1] in the case of
real-world environments. Theoretically, multi-channel techniques
offer more information about the acoustic environment, therefore
should indeed offer possibility for improvement especially in the
case of reverberant environments due to multi-path effects and se-
vere noise conditions. These conditions are known to affect the
performance of state-of-the-art single channel techniques. How-
ever the effectiveness of multiple channel techniques for just a few
microphones is yet to be proven.

Beamforming techniques and in general approaches grounded
in the array processing literature indicate tiny SNR improvements
in the case of a small number of microphones. Rather than directly
considering such approaches, we explore extensions of successful
classical mono noise reduction technique to multiple channels. In
particular, in this paper we discuss a novel multi-channel approach,
which turns out to be a generalization of the well-known Ephraim-
Malah signal estimators [4, 5]. The approach has been the focus
of improvements in recent literature [2].

Next section formulates the generalized signal enhancement
problem for the case when the number of microphones is N >
1. Section 3 presents solutions to these multi-channel estimation
problems. Section 4 discusses implementation issues and experi-
mental results with the two-channel implementation. We compare
the segmental SNR results obtained here with results from an im-
plementation of the Epraim-Malah estimators. We conclude with
a qualitative analysis of the multiple channel approach.

2. MULTI-CHANNEL ESTIMATION PROBLEMS

Let us consider a system of N sensors (microphones) as in Figure
1. The mixing model has the following form:

x1(t) = k1 ◦ s(t) + n1(t)

· · · (1)

xN(t) = kN ◦ s(t) + nN (t)

where s(t) is the source signal (voice), n1(t),. . .,nN (t) are the
microphone noises, x1(t),. . .,xN(t) the measured signals, and k1,
. . ., kN the channel impulse responses, for 1 ≤ t ≤ T and ◦
denotes convolution. The problem is to estimate the source s(t)
in an optimal sense that would be made more precise below, given
the measurements x1,. . .,xN and assuming the following:

1. The source and noise signals are short-time stationary and
gaussian distributed with zero average;

2. The source signal is independent of the noises.

These assumptions imply that the short-time Fourier transforms
of s, n1, . . . , nN decouple into independent variables at different
frequencies (see [4]). The frequency-domain representation of (1)
is:

X1(ω) = K1(ω)S(ω) + N1(ω)

· · · (2)

XN (ω) = KN (ω)S(ω) + NN (ω)

where the capital letters are the short-time Fourier transforms of
the lower-case signals. Note the mixing model can be compactly
rewritten:

X = KS + N (3)

where X = [X1 · · · XN ]T and K = [K1 · · · KN ] are complex
N -vectors. In frequency domain, the hypotheses made before turn
into:

1. The source signal S(ω) is gaussian distributed with zero
mean and spectral power Rs;

2. The noise signals (N1(ω), . . . , NN (ω)) are gaussian dis-
tributed with zero mean and spectral covariance matrix Rn;

3. The source signal is independent of the noise signals, and
each of them is independent of the other at different fre-
quencies.
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Now the problem we solve can be stated as follows: determine
the minimum mean square error estimator for short-time spec-
tral amplitude (STSA) |S|, log short-time spectral amplitude (log-
STSA) log(|S|), and short-time complex exponential (STCE), S/|S|.

The Minimum Mean Square Error Short-Time Spectral Ampli-
tude Estimator (MMSE STSA) is given at each frequency ω by (see
[9]):

ˆ|S|1(ω) = E[|S| | x1(·), . . . , xN(·)] (4)

Since X1(·), . . . , XN (·) is an equivalent representation for the
measurements, and furthermore Xi(ω1) is independent from Xj(ω2)
for ω1 �= ω2, the MMSE estimator turns into:

ˆ|S|1 = E[|S| | X1, . . . , XN ] (5)

where we dropped the argument ω for convenience of notation.
The MMSE log-STSA estimator is then given by:

ˆ|S|log = exp{E[log(|S|) | X1, . . . , XN ]} (6)

The MMSE Short-Time Complex Exponential (MMSE STCE)
is given by the constrained MMSE over the unit complex numbers:

ẑ = min
|z|=1

E[|z − S

|S| |
2] (7)

as in [4]. It turns out (see [4]) the solution to (7) is given by

ẑ =
E[ S

|S| |X1, . . . , XN ]

|E[ S
|S| |X1, . . . , XN ]| (8)

Figure 1: The N-sensors mixing scheme.

The final estimator that solves the problem is:

Ŝ = ˆ|S| · ẑ (9)

where ˆ|S| is one of ˆ|S|1 or ˆ|S|log.

3. BAYESIAN APPROACH TO THE ESTIMATION
PROBLEMS

In this section we present explicit solutions for the estimation prob-
lems (5,6,7).

3.1. Statistical Analysis

The statistical hypotheses we made allow us to write the following
conditional pdf of the data:

p(X|S; Rs, Rn, K) =
1

πN det(Rn)
exp{−(X − KS)∗R−1

n (X − KS}
(10)

This expression can be factorized as:

p(X|S; Rs, Rn, K) = g(S, T (X))h(X) (11)

where g and h are some functions and

T (X) =
K∗R−1

n X

K∗R−1
n K

(12)

Using the well-known Fisher-Neyman Factorization Theorem (see
Proposition IV.C.1 in [9]) we deduce that T (X) is sufficient statis-
tics (in the classical sense) for S. At the same time, a simple
statistics exercise shows that T (X) is sufficient statistics for any
function ρ(S) (such are for instance |S| and arg(S)). On the
other hand, T (X) is sufficient statistics in the Bayes sense for our
stochastic model (see Theorem 2.14 in [11]), that is for any prior
probability of S, the posterior probability of S (or ρ(S)) condi-
tioned by the observation X is the same as the conditional with
respect to T (X):

p(ρ(S)|X) = p(ρ(S)|T (X)) (13)

Consequently, the conditional expectation of ρ(S) with respect to
X becomes simply:

E[ρ(S)|X] = E[ρ(S)|T (X)] (14)

In the following we shall particularize this result for the cases:
ρ(S) = |S|, ρ(S) = log(|S|), and ρ(S) = S/|S|.

3.2. The MMSE STSA Estimator

Using (14) for ρ(S) = |S|, the MMSE STSA estimator (5) be-
comes:

ˆ|S|1 = E[|S| | Y = T (X)] (15)

Note that

Y = S +
K∗R−1

n N

K∗R−1
n K

= S + Nr (16)

is a single-channel signal containing both source and noise signals,
and the effective spectral power of each and effective SNR ξ are:

Reff
s = Rs (17)

Reff
n = 1/(K∗R−1

n K) (18)

ξ =
Reff

s

Reff
n

= RsK
∗R−1

n K (19)

Note also that the mixing in (16) preserves the gaussianity of the
signals, i.e. Nr is gaussian.

Now we can immediately apply the Ephraim-Malah estima-
tor [4] to our estimation problem, to obtain in a closed form the
expectation of (15):

E[|S| | Y ] =

√
π

2

Reff
n

√
v

b
exp(−v

2
)[(1 + v)I0(

v

2
) + vI1(

v

2
)]

(20)
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where:

b = |Y | (21)

v =
ξ

1 + ξ
b2K∗R−1

n K (22)

and I0, I1 are the modified Bessel function of the first kind and
order 0, respectively 1 (see [6], (8.431-4,5)).

3.3. The MMSE log-STSA Estimator

Using ρ(S) = log(|S|) the MMSE log-STSA estimator (6) be-
comes:

ˆ|S|log = exp{E[log(|S|)|Y = T (X)]} (23)

Using the same argument as before, the above conditional expec-
tation can be taken from the Ephraim-Malah paper [5] as:

ˆ|S|log =
ξ

1 + ξ
exp{1

2

∫ ∞

v

e−t

t
dt}b (24)

3.4. The MMSE STCE Estimator

The norm constrained phase estimator (8) is obtained by first com-
puting

E[
S

|S| |X] = E[
S

|S| |Y = T (X)] (25)

But the right hand side has been computed in [4], and it turns out
to be proportional, up to a real constant, to Y . Thus, the MMSE
STSP estimator becomes:

ẑ =
Y

|Y | (26)

3.5. Overall STFT estimator

Putting together (20), (24) and (26), the estimate of S is:

Ŝ = H(v, b, ξ)Y (27)

with:

H(v, b, ξ) =

√
π

2

Reff
n

√
v

b2
exp(−v

2
)[(1 + v)I0(

v

2
) + vI1(

v

2
)]

(28)
in the MMSE STSA case, or

H(v, b, ξ) =
ξ

1 + ξ
exp(

1

2

∫ ∞

v

e−t

t
dt)b (29)

in the MMSE log-STSA case, and ξ, b, v given in (19,21,22).
The overall estimator can be interpreted as a two-step proce-

dure:

1. First a projection, of the measured signal along K∗R−1
n :

Y =
K∗R−1

n X

K∗R−1
n K

(30)

so that the reduced system becomes (16) with effective spec-
tral powers Reff

s , Reff
n given by (17,18), effective à priori

SNR (in terminology of [8]) ξ given by (19), and effective
à posteriori SNR (the same terminology) given by:

γ =
|Y |2
Reff

n

= b2K∗R−1
n K (31)

2. Second, a Ephraim-Malah estimator ([4],[5]) of S is applied
on Y given by (27).

It is worth mentioning an optimality property of the filter at step
1: it maximizes the output SNR over all linear filters, that is it

maximizes SNR = Rs|A∗K|2
A∗RnA

over A.

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

4.1. Parameters Estimation

An inspection of (19,21,22) shows that the required quantities to
estimate S are: the channel transfer functions K1, . . . , KN , the
noise spectral covariance matrix Rn, and the effective à priori SNR
ξ.

As long as we do not want a channel equalization (i.e. dere-
verberation), we can replace the source s by the signal received
by sensor 1 (for instance) in the absence of any noise. Then the
constants Kj ’s are the relative transfer functions (i.e. ratios of the
actual transfer functions). We present two adaptive estimators of
K’s, and the estimation of Rn and ξ below.

4.1.1. An Adaptive Non-Parametric Estimator of K

Assume the measurements x1, . . . , xD contain signal and noise
via (2). Assume we have an estimate of the noise spectral power
Rn, an estimate of signal spectral power Rs (obtained through
spectral subtraction from Rx;1,1 and Rn;1,1), and an estimate K′

that we want to update. The measured signal (short-time) spectral
power Rx(k, ω) is now

Rx(k, ω) = Rs(k, ω)KK∗ + Rn(k, ω) (32)

We want to update K to K′ = K + ∆K constrained by ‖ ∆K ‖
small, and ∆K = [0 Λ]T , where Λ = [∆K2 . . . ∆KD], which
best fits (32) in some norm. We choose the Frobenius norm, ‖ A ‖2F =
trace{AA∗}. Then the criterion to minimized becomes:

J(X) = trace{(Rx −Rn −Rs(K +[0 Λ]T )(K +[0 Λ]T )∗)2}
(33)

The gradient at Λ = 0 is:

∂J

∂Λ
|0 = −2Rs(K

∗E)r (34)

where the index r truncates the vector by cutting out the first com-
ponent: for v = [v1 v2 . . . vD], vr = [v2 · · · vD], and E =
Rx −Rn −RsKK∗. Thus the gradient algorithm for K gives the
following adaptation rule:

K′ = K +
[

0 Λ
]

T , Λ = αRs(K
∗E)r (35)

where 0 < α < 1 is the learning rate.

4.1.2. An Adaptive Model-based Estimator of K

A second adaptive estimator of K makes use of a particular mixing
model, thus reducing the number of parameters. The simplest but
fairly efficient model is the direct path model

Kl(ω) = ale
iωδl , l ≥ 2 (36)
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In this case, a similar criterion to (33) is to be minimized. The
actual criterion is:

I(a2, . . . , aD, δ2, . . . , δD) =
∑

ω

trace{(Rx−Rn−RsKK∗)2}
(37)

Note the summation across the frequencies because the same pa-
rameters (al, δl)2≤l≤D have to explain all the frequencies. The
gradient of I evaluated on the current estimate (al, δl)2≤l≤D is

∂I

∂al
= −4

∑
ω

ρs · real(K∗Evl) (38)

∂I

∂δl
= −2al

∑
ω

ωRs · imag(K∗Evl) (39)

where E = Rx − Rn − RsKK∗ and vl the D-vector of ze-
ros everywhere except on the lth entry where it is eiωδl , vl =
[0 · · · 0 eiωδl 0 · · · 0]T . Then the updating rule is given by:

a
′
l = al − α

∂I

∂al
(40)

δ
′
l = δl − α

∂I

∂δl
(41)

with 0 ≤ α ≤ 1 the learning rate.

4.1.3. Noise Spectral Covariance

The noise spectral covariance matrix is estimated using nonspeech
periods. Thus, given R

(t−1)
n the current estimate of the noise spec-

tral power, and knowing that frame t, X(t), contains only noise,
the updated noise estimate is:

R(t)
n = (1 − β)R(t−1)

n + βX(t)X(t)∗ (42)

where the learning rate β is small. Typically β = 0.2. The voice
detection has been performed by the Multichannel VAD described
in [10].

4.1.4. Effective A Priori SNR

The effective à priori SNR ξ is estimated similar to the decision-
directed method suggested in [4]: Given the previous estimate
of the signal amplitude |S|(t−1), effective noise spectral power
(K∗R(t−1),−1

n K)−1, and current effective amplitude b(t) and noise
spectral power (K∗R(t),−1

n K)−1, the adaptation rule becomes:

ξ(t) = α(|S|(t−1))2K∗R(t−1),−1
n K

+(1 − α)P [b(t),2K∗R(t),−1
n K − 1] (43)

where P [x] is the positive part of x: P [x] = x, for x ≥ 0, and
P [x] = 0, for x < 0.

4.2. Experimental Results

Figure 2 describes our implementation of this estimation scheme.
We used a four-microphone system. Microphones were placed at
about twentynine centimeters apart on a tetrahedral frame. Record-
ings were made in a living room at a sampling frequency of 16kHz.
The time-frequency analysis was performed by means of a Ham-
ming window of size 512 samples and 50% overlapp. The recon-
struction used the dual frame window as described in [12]. We

1 Channel 2 Channel 4 Channel
MMSE AdaptK 0.48 0.78 1.23

Wiener 1.49 -0.25 -0.82

Table 1: Segmental SNRs for the STFT MMSE estimator (28) and
Wiener filter for one, two and four channels.

1 Channel 2 Channel 4 Channel
MMSE AdaptK -2.29 -3.36 -4.62

Wiener -8.24 11.62 40.27

Table 2: Distortions for the STFT MMSE estimator (28) and
Wiener filter for one, two and four channels.

used the 4-channel VAD described in [10] for learning the noise
spectral covariance matrix Rn together. Furthermore, we assumed
that the noise cross-spectral power is zero (i.e. Rnkj = 0, for
k �= j). The ratios K were estimated using the first K estimator
presented before.

Next we present a comparison of our multi-channel STSA
MMSE estimator (four and two channels) with the single chan-
nel STSA MMSE estimator. We also compare them to the two and
four channel Wiener filters. The evaluation included the following
criteria:

1. Segmental SNR, computed using the following formula:

segSNR =
1

Nf

Nf∑
k=1

10 log10

‖ S ‖2

‖ Ŝ − S1 ‖2
(44)

where Nf is the number of frames for which the instan-
taneous signal-to-distortion is between -10dB and +30dB
(see [3]), and S1 is the input signal on channel 1.

2. Signal distortion, computed as follows:

dist = 10 log10

‖ ŜS − S1 ‖2

‖ S1 ‖2
(45)

3. Average SNR gain, given by:

again =
1

Nf

Nf∑
k=1

(10 log10

‖ ŜS ‖2

‖ ŜN ‖2
−10 log10

‖ Ŝ1 ‖2

‖ N̂1 ‖2
)

(46)
where Nf is as before, and

ŜS = H(v, b, ξ)K∗R−1
n S/(K∗R−1

n K),

ŜN = H(v, b, ξ)K∗R−1
n N/(K∗R−1

n K)

are the signal, respectively the noise component of the out-
put, and S1, N1 are the input voice, respectively noise, sig-
nal on channel 1.

Ideally, segSNR = ∞, dist = −∞, and again = ∞.
Algorithms were tested on four living-room voice and noise

recordings with an input SNR of about -0.5dB. The experimental
results are summarized in Tables 1,2 and 3.

Results for the four channel STFT MMSE show an absolute
improvement of about 1.5dB segmental SNR at a level of about -
4dB total distortion and a modest improvement over the Ephraim-
Malah solution. The single-channel Wiener filter has a low dis-
tortion, but comparatively poor segmental and average SNR gains.
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1 Channel 2 Channel 4 Channel
MMSE AdaptK 2.4 2.85 3.23

Wiener 0.74 -0.89 -1.17

Table 3: Average SNR gains for the STFT MMSE estimator (28)
and Wiener filter for one, two and four channels.

An informal listening of the results showed an audible improve-
ment, from one to two and two to four channels. In all cases the
signal estimate has some musical artifacts. Importantly, artefacts
decrease with an increase in the number of microphones.

Figure 2: The N-sensors enhancement scheme.

5. CONCLUSIONS

This paper presents a formal extension of single channel STSA
and log-STSA MMSE estimators to multichannel systems using
Bayes sufficient statistics framework. The optimal scheme is de-
composable into a linear beamforming-like filter followed by the
single-channel Ephraim-Malah estimation scheme as proposed in
[4, 5]. Our solution implicitely takes into account multi-path ef-
fects by using transfer function ratios.

We have applied this estimation technique to a four-microphone
recording scheme. Results show a decrease in artefacts and an ab-
solute improvement of about 1-2 dB segmental SNR over the sin-
gle channel Ephraim-Malah estimate. Although the difference ap-
pears small, the relative improvement is significant particularly in
the case of severe noise conditions. The multi-channel technique
results in less artifacts compared to the single channel estimate,
especialy when voice signals vary from strong to soft during the
same utterance.

Although present work focused little on the choice of param-
eters of the multi-channel implementations, future work will ad-
dress the optimization of parameters of interest in order to fully
exploit the potential of the microphone array schemes indicated
by these results.
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