THE ESSENTIAL DIMENSION OF A g-DIMENSIONAL
COMPLEX ABELIAN VARIETY IS 2g

PATRICK BROSNAN

ABSTRACT. We compute the Buhler-Reichstein essential dimen-
sion of a complex abelian variety using Kummer theory.

1. INTRODUCTION

Let F : Fields; — Sets be a covariant functor from the category of
fields containing a fixed field k to sets. Let L be an object of Fieldsy
and a € F(L). The Buhler-Reichstein essential dimension ed(a) of a is
the minimum taken over all fields K such that a € im(F(K) — F(L))
of the transcendence degree trdeg;, K. The essential dimension ed(F)
of F is the maximum of ed(a) taken over all L and all a € F(L). (This
formulation is due to A. Merkurjev; see [1].)

Let G be an algebraic group over k. It is then natural to consider the
functor Fg : Fields, — Sets defined by sending L to the set H'(L, Q)
of isomorphism classes of G-torsors (for the étale topology) over L.

We write ed G for the essential dimension ed(F¢) of this functor.

Recently, a substantial body of literature has been built up concern-
ing ed G for various linear algebraic groups. Even for G finite over C,
the computation of ed G is an interesting and usually open question.
However, the following result, a special case of [2, Theorem 6.1], is
“classical.”

Theorem 1.1 (Buhler-Reichstein). Let G be a finite abelian group
wewed as an algebraic group over C. Then ed G is equal to the rank of

G.

In this note, I use Theorem 1.1 and the elementary theory of torsors
over abelian varieties to prove the theorem stated in the title (gen-
eralized to include the case of arbitrary algebraically closed fields of
characteristic 0).

Theorem 1.2. Let A be an abelian variety (viewed as an algebraic
group) of dimension g over an algebraically closed field k of character-
istic 0. Then ed A = 2g.
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In fact, the main point of the proof is that ed A is the maximum of
the ed H taken over all finite abelian subgroups H < A. From this, the
result follows directly from an application of Theorem 1.1.

Remark 1.3. One interesting aspect of the computation is that it is done
without the use of a versal torsor for the abelian variety A. (See [1,
Definition 6.3] for an explanation of this concept.) It is not difficult to
see that, in fact, no such versal torsor exists.

Acknowledgments. I thank Z. Reichstein for useful discussions.

2. GENERALITIES

In this section, we collect some generalities that will be needed for
the computation of the essential dimension of an abelian variety. As
in the statement of Theorem 1.2, we work over an algebraically closed
field k of characteristic 0.

Definition 2.1. A field K over k is unirational if K C k(ty,...,t,) for
some 7 € N.

Proposition 2.2. For A an abelian variety over k and K a unirational

field over k, A(K) is divisible.

Proof. This is a consequence of the fact that there are no non-constant
maps from a rational variety over k to A. 0

Proposition 2.3. For every non-negative integer r, there exists a uni-
rational field K of transcendence degree v over k and a G := (Z/2)"-
torsor T € H' (K, G) such that edT = r.

Proof. In fact, we can take K = k(ty,...,t,) and T = ((t1),...,(t,)) €
HYK,G) = H'(K,Z/2)". Tt is easy to see that edT = r. (For exam-
ple, by using the proof of Proposition 3.7 of [1]). O

Remark 2.4. Although we do not need it, the same result holds for G
any finite abelian group of rank r.

Principle 2.5 (Berhuy-Favi). Let F,G : Fields, — Sets be two func-
tors equipped with a natural transformation ¢ : F — G, and assume
that F(L) — G(L) for any field L € Fieldsg. Then ed(F) > ed(G).

Proof. This is Lemma 1.9 of [1]. O

Corollary 2.6. Let F; : Fieldsy — Sets be a family functors.
(1) ed([17) = suped(F).
(2) If G : Fields, — Sets is a functor and we are given maps ; :
Fi — G such that Uy;(F;) = G, then ed G < sup ed(F;).
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Proof. (1) is obvious. (2) follows from (1) and Principle 2.5 applied to
the surjective map [[ F; — G. d

Lemma 2.7. Let G be an algebraic group of k and E a G-torsor in
HY(L,G) for some L € Fieldsy. Suppose there is a variety X with a free
G-action defined over a subfield M € Fieldsy of L and a G-equivariant
morphism E'— Xp. Then ed E < trdeg;, M + dim X — dim G.

Proof. Since G acts freely on X, the quotient B = X/G exists as an
algebraic space [3, Proposition 22]. Since F is a G-torsor over Spec L,
the map Spec L. — Spec M factors through B. Let b denote the image
of Spec L in B and let X} denote the pullback to X. Then the algebraic
space X, is a G-torsor over k(b). By descent, it is a scheme over k(b).
Moreover, the diagram

(2.8) E X,
| |
Spec L — Spec k(b)

is a pullback.
Thus E is in the image of the map H'(Speck(b),G) — H'(L, Q).
Since trdegy, k(b) < trdeg, M + dim X — dim G, the result follows. O

Principle 2.9. Let v : A — B be an inclusion of algebraic groups
over k and let E be a torsor in H'(L,A) for L € Fieldsy. Then,
ed F 4+ dim A —dim B < ed(.(E)) < ed E.

In particular, ed E = ed (1. E) if dim A = dim B.

Proof. Clearly ed(¢,F) < ed E. Thus, we are reduced to proving the
first inequality.

The pushforward of E to a B-torsor is ¥,(E) = B x* E. (Here
B x4 E is the quotient of B x E identifying (ba, ¢) with (b, ae).) Let
f: E — B x% E denote the A-equivariant morphism given by e —
(1,e).

Suppose now that there is an M C L in Fields, and a B-torsor F
such that Fj, = B x4 F as a B-torsor. The induced A-equivariant map
f+ E — Fp, then satisfies the hypotheses of Lemma 2.7. From this, we
see that ed E < trdeg;, M +dim B x4 E —dim A = trdeg;, M +dim B —
dim A. Thus trdeg, M > ed E+dim A —dim B. The desired inequality
follows. U

Remark 2.10. The first inequality of Principle 2.9 proves [1, Theorem
6.19]. Indeed, the proof of the principle is essentially the same as
Berhuy and Favi’s proof of their theorem.
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3. PRINCIPAL HOMOGENEOUS SPACES

The goal of this section is to prove Theorem 1.2. J. Silverman’s
book [4] is a good reference for the simple facts about torsors for abelian
varieties used here. (They are stated there in the context of elliptic
curves but the generalizations are obvious).

As in the statement of Theorem 1.2, let A be an abelian variety of
dimension g over an algebraically closed field k of characteristic 0. If
E is a torsor for A over a field extension K of k, then there is a finite
extension L/K such that Ey, is split (i.e., E(L) # 0, hence, E, = Ay).

Let us write ¢ : K — L for the inclusion and i, : H'(K,A) —
HY (L, A) (resp. i* : HY(L,A) — H'(K, A)) for the corestriction (resp.
restriction) map on the Weil-Chéatelet group. It is well-known that i.:*
is multiplication by [L : K]. Hence, every A-torsor is in the subgroup
H'(K, A)[n] of n-torsion elements of the Weil-Chatelet group, for some
positive integer n. That is,

(3.1) HY(K,A) = U2 H (K, A)[n).
The sequence
0— A(K)[n] — A(K) 22 A(K) — 0

of Galois modules (for the absolute Galois group, Gk, of K) gives an
exact sequence

(32)  A(K)/nA(K) — H'(K, A[n)) — H\(K, A)[n] — 0

of groups.
By (3.1), (3.2) and Corollary 2.6, we see that ed A < sup?®, ed(A[n]).
Since A[n] = (Z/n)%, ed(A[n|) = 2g by Theorem 1.1. Thus ed A < 2g.
To see that ed(A) = 2¢, let K be a unirational fields of transcendence
degree 2¢g equipped with the (Z/2)?9-torsor T with ed T = 2g. (Such a
field is provided by Proposition 2.3.) Note that,

(3.3) H'(M, Aln]) = H"(M, A)[n]

for any M C K and any integer n. This is because A(M) is divisible.
Let F denote the image of T" under the composition

H'(K,(Z/2)%) = H'(K, A]2)) = H\(K, A)[2] — H\(K, A).

Suppose ed E < 2g. Then there is a field M C K of transcendence
degree less than 2g and a torsor E' € H'(M, A) such that E is the
image of F’ under the map H'(M, A) — H'(K, A). We clearly have
E' € H'(M, A)[2s] for some non-zero integer s. But then note that
HY(M, A)[2s] = HY(M, A[2s]). Tt follows that the image 7" of T in
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H'(K, A[2s]) is equal to the image of E’. This contradicts Principle 2.9.
The proof of Theorem 1.2 is thus complete.
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