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Abstract: 
  
The use of satellite imagery in the derivation of land cover information has yielded immense dividends to numerous application fields 
such as environmental monitoring and modeling, map making and revision and urban studies. The extraction of this information from 
images is made possible by various classification algorithms each with different advantages and disadvantages. Support Vector machines 
(SVMs) are a new classifier with roots in statistical learning theory and their success in fields like machine vision have drawn the 
attention of the remote sensing community. Previous studies have focused on how SVMs compare with traditional classifiers such as 
maximum likelihood and minimum distance to means classifiers. They have also been compared to newer generation classifiers such as 
decision trees and artificial neural networks. In this research the understanding of the application of SVMs to image classification is 
furthered by proposing feature selection as a way in which remote sensing data can be optimized. Feature selection involves selecting a 
subset of features (e.g. bands) from the original set of bands that captures the relevant properties of the data to enable adequate 
classification. Two feature selection techniques are explored namely exhaustive search and population based incremental learning. Of 
critical importance to any feature selection technique is the choice of criterion function. In this research a new criterion function called 
Thornton’s separability index has been successfully deployed for the optimization of remote sensing data for SVM classification.  

 
1.0 INTRODUCTION 

Feature selection is defined as “the search for a subset of the 
original measurement features that provide an optimal trade off 
between probability error and cost of classification” (Swain and 
Davis, 1978). It involves selecting a subset from the original set 
of features (e.g. bands) that captures the relevant properties of the 
data (Gilad-Bachrach et al, 2004) to enable adequate classification 
(Wu and Linders, 2000). Feature selection is, in part, motivated 
by Hughes phenomenon (Hughes, 1968), which postulates that in 
the presence of a limited training sample size, contrary to 
intuition, the mean accuracy doesn’t always increase with 
additional measurements. Rather it exhibits a peaking effect i.e. 
the accuracy will increase until a certain point beyond which 
increase in additional measurement will yield no significant 
improvement in classification accuracy (Muasher and Landgrebe, 
1982). The challenge therefore is to identify the subset of bands 
which will yield similar, if not better, accuracies as compared to 
when all the bands are used in a classification task. In effect, 
feature selection is an optimization task. In this research two 
feature selection techniques namely exhaustive search and 
population based incremental learning (PBIL) are investigated in 
as far as their ability to optimize remote sensing data for Support 
Vector Machine (SVM) Classification. 
 
 

2.0 SUPPORT VECTOR MACHINES 

Support Vector Maachines (SVMs) are a new supervised 
classification technique that has its roots in Statistical Learning 
Theory (Vapnik, 1995). Having taken root in machine vision 
fields such as character, handwriting digit and text recognition 
(Vapnik, 1995; Joachims, 1998), there has been increased interest 
in their application to image classification (Huang et al, 2002;  
Mahesh and Mather, 2003). SVMs are non-parametric hence they 

boast the robustness associated with Artificial Neural Networks 
(Foody and Mathur, 2004a; Foody and Mathur, 2004b) and other 
nonparametric classifiers. 
 
SVMs function by nonlinearly projecting the training data in the 
input space to a feature space of higher (infinite) dimension by 
use of a kernel function. This results in a linearly separable 
dataset that can be separated by a linear classifier. This process 
enables the classification of remote sensing datasets which are 
usually nonlinearly separable in the input space. In many 
instances, classification in high dimension feature spaces results 
in overfitting in the input space, however, in SVMs, overfitting is 
controlled through the principle of structural risk minimization 
(Vapnik, 1995). The empirical risk of misclassification is 
minimised by maximizing the margin between the data points and 
the decision boundary (Mashao, 2004). In practice this criterion is 
softened to the minimisation of a cost factor involving both the 
complexity of the classifier and the degree to which marginal 
points are misclassified, and the tradeoff between these factors is 
managed through a margin of error parameter (usually designated 
C ) which is tuned through cross-validation procedures (Mashao, 
2004). The functions used to project the data from input space to 
feature space are sometimes called kernels (or kernel machines), 
examples of which include polynomial, Gaussian (more 
commonly referred to as radial basis functions) and sigmoid 
functions. Each function has parameters which have to be 
determined prior to classification and they are usually determined 
through a cross validation process. A deeper mathematical treatise 
of SVMs can be found in Christianini (2002), Campbell (2000) 
and Vapnik (1995). 
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3.0 FEATURE SELECTION 

Feature selection may be categorized into wrapper and filter 
models (Kohavi and John, 1991). The wrapper model selects 
features by directly optimizing the performance of the classifier 
i.e. this model seeks the subset of features yielding the best 
classification accuracy result. Since many subsets may have to be 
tried out, this approach is computationally inefficient (Kavzoglu 
and Mather, 2002).  
 
 Filter models are described as feature selection algorithms which 
use a performance metric (i.e. evaluation function) based entirely 
on the training data without reference to the classifier for which 
the features are to be selected (Kavzoglu and Mather, 2002). 
Examples of criterion functions encountered in remote sensing 
literature include statistical separability measures such as Wilk’s 
Λ, Hotelling’s T2 and more commonly separability indices. 
Separability indices give a measure of how separable training data 
classes are hence giving an indication of how easily the dataset 
may be correctly classified.  
 
Pudil and Somol (2005) further categorizes feature selection 
methods into optimal and suboptimal methods. Optimal methods 
search for the optimal subset out of all possible subsets e.g. 
exhaustive search methods. Suboptimal methods on the other 
hand make a trade off between the optimality of a selected subset 
and computational efficiency. Some of the search methods in this 
regard include greedy eliminative search, random search and 
guided random search methods. In this paper we consider a 
guided random search method called Population Based 
Incremental Learning (PBIL). 
 
3.1 Exhaustive Search Method 

The exhaustive search method (also called enumerative search 
method) works by considering all possible band combinations by 
way of calculating their separability indices. Although this search 
method guarantees the optimality of solution, it poses the problem 
of being computationally prohibitive (Pudil and Somol, 2005). 
For a dataset with d features (i.e. bands), 2d – 1 combinations are 
possible. This method is practicable if the number of bands is less 
than 10. The use of 10 or more bands would be costly in terms of 
computational speed. Dutra and Huber (1999) however are of the 
opinion that advancements in computer technology should 
eventually render exhaustive search an operational reality. This, 
including the fact that the datasets considered in this research had 
less than ten bands, influenced the authors decision to consider 
this method. 
 
3.2 PBIL 

In the random search method, a subset of features (bands) is taken 
at random and their separability index calculated. If many bands 
are being considered, the chances of hitting on the optimum 
subset in a limited random search will be small. However if good 
separability indices are possible from a variety of band 
combinations, there is a higher probability of encountering one of 
the optima quickly. The time it takes to converge to the optimum 
subset can be dramatically reduced by modifying the random 
search to a guided random search. The guided random/stochastic 
search method is a randomized search in which attention is 
adaptively increased to focus on the band combinations that return 
promising results. Population Based Incremental Learning is a 

genetic algorithm that can be used to perform a guided random 
search. 
 
Genetic algorithms are motivated by the evolutionary biology 
principle of natural selection and genetics. From a biological 
context, all living organisms are made up of cells characterized by 
a set of chromosomes. Chromosomes consist of genes that encode 
peculiar traits. During reproduction, genes from parents combine 
to form a new chromosome with traits from either parent. 
According to Darwin’s theory, this breeding results in the fit traits 
being propagated at the expense of the weaker ones which end up 
being filtered away. It is on this basis that genetic algorithms are 
tailored. 

A genetic algorithm functions by randomly generating a 
population of ‘chromosomes’. The ‘chromosomes’ are of equal 
length and may be represented by a special coding technique e.g. 
binary code (Tso and Mather, 2001). The fitness level of each 
‘chromosome’ is then calculated based upon which random pairs 
of ‘chromosomes’ are bred to generate a new pool of 
‘chromosomes’. Breeding is effected through two mechanisms 
called crossover and mutation. Crossover involves the exchange of 
genes between two parent ‘chromosomes’ whereas mutation is 
carried out by randomly changing binary values that are 
representative of genes/traits. Crossover and mutation facilitate 
genetic diversity without which the genetic algorithm would settle 
into a sub-optimal state. The process of selecting and breeding 
define a generation. The progression of genes from one generation 
to another is dependent on how well the ‘chromosomes’ pass a 
fitness test. The ‘chromosomes’ with high fitness levels may be 
programmed to have a higher probability of selection to ensure that 
strong traits are passed on to the next generation. The number of 
generations may be fixed or the breeding process allowed to 
continue until a satisfactory level of fitness is attained. 

Population Based Incremental Learning (PBIL) is an adaptation of 
genetic algorithms whereby the population is replaced by a 
probability vector instead of storing each possible solution 
explicitly. It is this probability vector that is updated when one 
progresses from one generation to another rather than the fixed 
population (Gosling and Cromp, 2004).  
 
Linking feature selection to PBIL, the elements of the probability 
vector define the probability of selection of each feature. The idea 
is to use PBIL to determine the subset of bands which when 
classified will give as good classification results (if not better) than 
when all bands are utilized. In the absence of a priori knowledge 
of the importance of the bands, the probability vector is initialized 
to a value for example 0.5. This would mean that in a randomized 
selection operation, each band has an equal chance of being 
chosen. 

 
In each generation a population of trials is created by sampling the 
probability vector with a random vector. This ensures that the 
inclusion of a given feature follows the probabilities in the 
probability vector. The fitness of each trial is determined by 
calculating the separability index and the trial yielding the highest 
index is identified as the best (chromosome in genetic algorithm 
technology) in that generation. Based on these results the 
probability vector is adjusted to reflect the best trial. If for example 
bands 1, 3 and 4 ended up being the best trials out of 9 bands, the 
probability vector corresponding to these bands would be 
increased slightly (by 10% from 0.5 to 0.55) while the other values 



would be reduced in the same proportion (from 0.5 to 0.45). This 
enables the subsequent generation to contain a greater proportion 
of trials that resemble to some degree the best trial of the previous 
generation. 
 
Before proceeding to the next generation, mutation is applied to 
the probability vector to increase the search space in an attempt to 
avoid convergence towards a local optimum. Mutation may be 
implemented by a secondary adjustment to the probability vector 
in which the vector values are relaxed towards the neutral value 
(0.5 in this case) (Gosling et al, 2004).  
 

Ultimately, after a series of generations the separability index of 
the best trial in each generation improves until the global optimum 
emerges. The final probability vector will also have converged 
towards 0 or 1 indicating the bands that had a higher or lower 
probability of being selected. The best trial at the end of the whole 
process would then represent the subset of bands with potential to 
yield classification accuracies comparable to those derived from 
using all the bands 
 
The interest in PBIL over the traditional genetic algorithm stems 
from the fact that PBIL results have been found to be more 
accurate, and are attained faster than the traditional genetic 
algorithms, both in terms of the number of evaluations performed 
and the clock speed. This gain in clock speed is attributed to the 
simplicity of the algorithm (Baluja, 1994). In view of this 
documented simplicity and associated accuracy, PBIL was 
selected to facilitate feature selection n this research. 
 
3.3 Separability Indices 

The choice of adopted separability index, i.e. evaluation function, 
should be related to the behavior of the error made by the classifier 
used if the optimal subset is to be selected (Bruzzone and Serpico, 
2000).  Separability analysis is performed on the training data to 
give an indication of the expected classification error for various 
band combinations (Swain and Davis, 1978). However, finding an 
appropriate definition of interclass separability is not trivial 
(Schowengerdt, 1997). 
 
In light of the fact that nonparametric classifiers are gaining 
prominence in remote sensing studies, there is a corresponding 
need for separability measures tailored around the uniqueness of 
these nonparametric classifiers. Whereas Kavzoglu and Mather 
(2002) have used the Mahalanobis distance classifier to select 
features for artificial neural networks (which is a nonparametric 
classifier like the SVMs used in this research), this research 
proposes a separability index tailored for the uniqueness of 
nonparametric classifiers. This separability measure is called 
Thornton’s separability index. 
 
Thornton’s separability index is defined as the fraction of data 
points whose classification labels are the same as those of their 
nearest neighbors. Thus it is a measure of the degree to which 
inputs associated with the same output tend to cluster together 
(Greene, 2001). Greene (2001) expresses this concept by the 
following formula: 
 
 

Thornton’s separability index = 
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Where x’ is the nearest neighbor of x 
          n is the number of points. 

 
With this separability measure, well separated classes will have 
high separability indices equal to or tending towards unity. As the 
clusters move closer to each other and points from opposing 
classes begin to overlap the index begins to fall (Greene, 2001).  
A separability index of zero, therefore, denotes totally mixed up 
classes. The interest in this separability measure stems from its 
simplicity, speed and the fact that it is nonparametric which 
augers well with the SVM classifier which is also nonparametric. 
 
 

4.0 STUDY AREA 

To carry out this research, two study areas were considered 
namely: Masai Mara in Northern Tanzania and Malmesbury 
located in the Western Cape Province of South Africa. The Masai 
Mara study area was sectioned off from the Mara River Basin. 
Based on prior field work, six land cover classes were sought 
namely: wetlands, water (lakes and rivers), Bush/shrub/trees, 
Grasslands, “bare ground” and Roads. For the Malmesbury 
dataset, three land cover classes were sought for namely fields, 
trees and built up areas. In both cases landsat imagery was used. 
 
 

5.0 METHODOLOGY 

5.1 Data Processing 

For each dataset, sample data corresponding to known land cover 
was imported into Matlab for preparation and derivation of 
optimum SVM parameters through cross-validation. Cross 
validation involves dividing the sample data into training and 
testing data. The training data is then used to derive kernel 
parameters whose measure of efficiency was determined by how 
well they predicted the test data classes. The kernel parameters 
yielding the best prediction are considered optimum and are 
subsequently used to classify the image. For the polynomial 
kernel, polynomial degree and constant C were the sought after 
parameters while for the radial basis function the kernel width and 
constant C were the required parameters which needed to be 
determined. The OSU_SVM Version 3.00 toolkit (developed at 
Oklahoma State University) was used to give Matlab SVM 
functionality. This toolbox was selected for its simplicity and ease 
of use.  
 
5.2 Classification 

SVMs are essentially a binary classification technique, however 
they can be adopted to handle the multiclassification tasks usually 
encountered in remote sensing research. To effect this, two 
common approaches are encountered in SVM literature. The first 
approach is called the ‘one against one’ approach and involves 
constructing a machine for each pair of classes resulting in N(N-
1)/2 machines. When applied to a test point, each classification 
gives one vote to the winning class and the point is labeled with 
the class having most votes. The second approach involves the 
‘one against all’ approach where by the N class dataset is divided 



into N two-class cases. Proponents of the ‘one against one’ 
approach contend that it has the advantage of avoiding highly 
unbalanced training data (Gualtieri and Cromp, 1998). It is 
however acknowledged that this approach involves constructing 
more SVMs as compared to the ‘one against all’ approach, hence 
it is more computer intensive. In this research, the ‘one-against-all 
approach’ was adopted. By implication therefore, different classes 
needed different kernel parameters. IDRISI Kilimanjaro Edition 
image processing software was then used to integrate the resultant 
class images into a land cover map. This land cover map was then 
georeferenced and subjected to accuracy assessment. The 
accuracy measure used was the overall accuracy, which gives a 
measure of agreement between a derived map and ground truth 
data.  
 

5.3 Feature Selection 

The exhaustive search method was used to compare all possible 
band combinations with the original band set. For both study 
areas 63 combinations were considered. The measure of 
comparison was Thornton’s separability index. For each study 
area and each land cover type, the separability index (S.I) of each 
subset was compared with the S.I of the original bands. The 
subset with the least number of bands yielding the closest S.I to 
the original bands was selected for the classification process. This 
subset of bands was then used to derive optimum SVM 
parameters mentioned previously, and subsequently used to 
classify the study area.  
 
The Figure 1 shows a simplified flow chart of the algorithm used 
to effect PBIL classification technique.  
 
5.4 Comparison of Feature Selection Techniques 

For each study area overall accuracies were compared before and 
after feature selection. The significance of these differences was 
determined using a binomial test of significance at the 95% 
confidence level (critical Z value = 1.96). It is based on these 
comparisons that conclusions were drawn about the effectiveness 
and efficiency of the investigated optimization techniques. 

 6.0 RESULTS AND DISCUSSIONS 

The Tables 1 and 2 show the selected optimum bands following 
the exhaustive search (ES) and PBIL for Masai Mara and 
Malmesbury study areas respectively. One observation from 
Table 1 is that ES resulted in fewer bands than PBIL. Using fewer 
bands for classification has the advantage of reducing the time 
taken to effect classification. In Table 2 on the other hand, it is 
only in the class ‘built up areas’ that ES has fewer bands as 
compared to PBIL. In the other classes i.e. ‘trees’ and ‘fields’ 
both ES and PBIL have resulted in identifying the same four 
bands. 

PV elements that have converged to 
1 determine which subsets continue 

to be used for classification

Mutate PV by relaxing PV values towards 0.5

Adjust PV on the basis of the best subset

Initial S.I = New S.I
Record of band combination stored No

Yes

End of generation?

Yes

End of trial?

Initialize PV elements to 0.5 
representing each band e.g for Landsat               

PV = [0.5,0.5,0.5,0.5,0.5,0.5]

No No

Yes

Is S.I > Initial S.I

Calculate Subset's S.I

Randomly Select Subset

Initialize S.I = 0

Next Generation

Next Trial

  
PV – Probability Vector, SI – Separability Index 

Figure 1: PBIL methodology 
 

Table 1: Landsat Bands selected for Masai Mara 

Class E.S PBIL 
Wetlands 1, 2 & 6  3, 4, 5 & 7 
Water 5 1 & 7 
Bush/Shrub/Trees 3, 4 & 5 1, 3, 4, 5 & 7  
Grasslands 3 & 4  3, 4 & 5 
Bare ground 3 & 5 3, 4 & 5 
Roads 2 & 5  3, 4 & 5 

 
Table 2: Landsat Bands selected for Malmesbury 

Class E.S PBIL 
Built up areas 2, 4, 5 & 6 1, 3, 4, 5 & 6  
Trees 3, 4, 5 & 6 3, 4, 5 and 6  
Fields 1, 3, 4 and 5 1, 3, 4 & 5 

 
Table 3 depicts the overall classification accuracies before (Pre-
FS) and after feature selection (ES and PBIL). From this table it 
can be seen that for the Masai Mara dataset, overall accuracy has 
improved following the application of the polynomial SVM 
classifier to the results of ES and PBIL. On the other hand, the 



application of the RBF SVM classifier to both feature selection 
techniques has resulted in reduced overall accuracy. For the 
Malmesbury dataset, the polynomial SVM classifier has yielded 
reduced overall accuracies when applied to ES and PBIL results 
while the RBF SVM classifier has yielded improved overall 
accuracies. 
 
Table 3: Overall accuracies for both datasets  

 Masai Mara Malmesbury 
SVM Pre-FS ES PBIL Pre-FS ES PBIL 
Polynomial 0.67 0.71 0.75 0.69 0.65 0.66 
RBF 0.83 0.64 0.79 0.65 0.66 0.66 
 
Tables 4 and 5 give further analysis of these results by giving a 
summary of the significance of the differences between the 
overall accuracies before and after feature selection. For the 
Masai Mara dataset, feature selection has resulted in significantly 
better overall accuracies when the polynomial SVM is used, while 
yielding significantly worse overall accuracies when the RBF 
classifier is applied. In the case of the Malmesbury dataset, the 
differences in the overall accuracy using the results of feature 
selection are insignificant. 
 
Table 4: Assessment of overall accuracies for Masai Mara 

 ES PBIL 
SVM Significance Comment Significance Comment 
Polynomial 4.65 Significantly 

Better 
11.07 Significantly 

Better 
RBF -23.74 Significantly 

Worse 
-5 Significantly 

Worse 
 
Table 5: Assessment of overall accuracies for Malmesbury 

 ES PBIL 
SVM Significance Comment Significance Comment 
Polynomial - 0.55 Insignificant - 0.37 Insignificant 
RBF 0.18 Insignificant 0.18 Insignificant 

 
Of the two feature selection methods, ES is more computer 
intensive and hence more time consuming given that the S.Is of 
all possible combinations have to be evaluated before a ranking 
process enables the identification of the optimal subset. The 
efficiency of the ES technique can be improved by restricting the 
search to the subset of bands that is greater than the datasets 
intrinsic dimensionality (Dean and Hoffer, 1983). For landsat, the 
intrinsic dimensionality is two or three. This implies that to make 
ES more competitive, the search for optimal subset, only band 
combinations with three or more features need be considered. 
 
On trial as well in this search was Thornton’s separability index 
and on the balance of the results posted, it has performed well. 
 
 

7.0 CONCLUSIONS 

From the results, both Exhaustive Search and Population Based 
Incremental Learning are appropriate feature selection techniques 
for Support Vector Machine classification and so is Thorntorn’s 
separability index an appropriate criterion function. The authors 
would like to recommend that a logical progression of this 

research would be to investigate appropriate feature selection 
techniques for emerging multi-classifier SVMs. 
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