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Abstract

Stability is a central concept in exchange-based mechanism
design. It imposes a fundamental requirement that no subset
of agents could beneficially deviate from the outcome pre-
scribed by the mechanism. However, deployment of stability
in an exchange mechanism presents at least two challenges.
First, it reduces social welfare and sometimes prevents the
mechanism from producing a solution. Second, it might incur
computational cost to clear the mechanism.
In this paper, we propose an alternative notion of stability,
coined internal stability, under which we analyze the social
welfare bounds and computational complexity. Our contribu-
tions are as follows: for both pairwise matchings and limited-
length exchanges, for both unweighted and weighted graph-
s, (1) we prove desirable tight social welfare bounds; (2) we
analyze the computational complexity for clearing the match-
ings and exchanges. Extensive experiments on the kidney ex-
change domain demonstrate that the optimal welfare under
internal stability is very close to the unconstrained optimal.

Introduction
Designing desirable matching and exchange mechanisms
has been a topic of intensive researches over the past few
years. (cf. (Roth 2000; Parkes and Seuken 2014)). An ex-
change in a graph is a set of disjoint cycles within which
barter exchanges are conducted. A matching is a special ex-
change where all cycles are of length 2. A desirable feature
in such preference-based matching mechanisms, is the so-
called stability (Gale and Shapley 1962). Roughly, an ex-
change mechanism is stable if no coalition of agents could
deviate to form a new exchange, with everyone in the coali-
tion becoming better off. Stability plays a determinative role
in matching-based market design. Roth (2000) surveys 17
major matching-based markets, 10 of which are stable and
all successfully survive over time, while among the remain-
ing 7 unstable markets, only 2 survive1. As another example,
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in the organ exchange domain, Dickerson et. al. (2013) ob-
serves that, among the assignments suggested by UNOS2,
only 7 percent of which finally make it to surgery. One of
the major reasons is that agents find better alternatives in
and out of the system.

There are two major challenges that prevent stability from
being deployed in the design of an exchange mechanism.
For one, imposition of stability as a constraint significantly
reduces social welfare of the exchange. We will show that,
in certain graphs (called odd cycles), a stable outcome does
not even exist. In other words, optimal welfare with stability
constraints is arbitrarily far from the unconstrained optimal.
For the other, imposition of stability incurs computational
cost. It is known that in weighted graphs, computing maxi-
mum pairwise matchings is in P (Galil 1986), while adding
stability constraints turns it into NP-HARD (Feder 1992).

In this paper, we consider a weaker notion of stability,
coined internal stability. Briefly speaking, Internal stability
only requires matched agents to be stable. Minor modifica-
tion as it might seem, internal stability yields, to a certain de-
gree, satisfactory results with respect to the two challenges.
In particular, we study this new notion in four commonly s-
tudied matching and exchange settings (to be rigorously de-
fined shortly). Our contribution is summarized in Table 1
and the following subsection.

Our contribution
1. In unweighted graph settings, for pairwise matching, we

show that the worst case ratio between maximum inter-
nally stable matching and maximum matching is 1/3.
We further show that maximum internally stable match-
ing matches equal number of agents to maximum sta-
ble matching when maximum stable matchings exist. The
computation problem in this setting has previously been
settled by (Tan 1990).

2. In weighted graph settings, for pairwise matching, the
worst case ratio between maximum internally stable
matching and maximum matching is 2

n , where n is the
number of vertices. We also show that computing a max-
imum internally stable matching is NP-HARD, based on
the hardness result for egalitarian stable roommate prob-
lem (Feder 1992).

2An organ exchange system in the US, www.unos.org.



Table 1: Results of 4 different settings. All bounds are com-
pared to the optimal welfare of the pairwise case.

Setting Complexity Tight lower bound
1 P, Known 1/3
2 NP-HARD 2/n

3 NP-HARD
bT/2c

T , T = 2bL+1
2 c+ 1

4 NP-HARD 2/n

3. In unweighted graph settings, for L-way exchange3, the
worst case ratio is bT/2c

T , T = 2bL+1
2 c + 1. In addition,

the computation problem is NP-HARD.
4. In weighted graphs,L-way exchange. The worst case ratio

is 2
n . The computation problem is NP-HARD.

Furthermore, we conduct extensive experiments on data
sets generated by the US and China population statistics.
Even though some computation problems are NP-HARD, we
use an integer program formulation and implementation that
clears instances at certain practical levels. Our experiments
confirm that the social welfare of optimal internally stable
exchange is very close to the unconstrained optimal while
consistently beats the standard stability. It is worth pointing
out that our IP formulations are of independent interest.

Related work
Anshelevich et. al. (2013) study the welfare loss caused by
standard stability constraints and conduct experiments of the
welfare loss on randomly generated graphs. In a later work,
Anshelevich et. al. (2013) show that, in the dynamic settings,
stable mechanisms sometimes can yield better social welfare
than greedy mechanisms.

In general, the settings studied in this paper is related
to hedonic games (Banerjee, Konishi, and Sönmez 2001;
Bogomolnaia and Jackson 2002; Dimitrov et al. 2006),
where agents have preferences over subsets of agents and
the goal is to find some partition of all agents. Internal sta-
bility was introduced in a specific hedonic game (Dimitrov
et al. 2006), where preferences are restricted to be binary in
the sense that an agent is either preferred or not preferred.
Each agent prefers to be in a partition with more preferred
agents. They give an algorithm for finding core elements via
internal stability.

As mentioned, most of our main results are investigated
under general matching and exchange contexts. It might be
helpful, however, to think of the kidney exchange as a po-
tential application (Roth, Sönmez, and Ünver 2004; 2005;
Abraham, Blum, and Sandholm 2007). In a kidney exchange
mechanism, a pair of incompatible patient and donor seek
to exchange kidney with another pair (Roth, Sönmez, and
Ünver 2005) or among several other pairs (Roth, Sönmez,
and Ünver 2004; Abraham, Blum, and Sandholm 2007),
the mechanism returns an exchange that maximizes so-
cial welfare, subject to the constraint that no pair can ob-
tain a kidney unless they donate one in return. Over the
past few years, kidney exchange has been studied in a

3An exchange that can only produce cycles of length ≤ L.

number of realistic contexts (Awasthi and Sandholm 2009;
Ashlagi and Roth 2011; Ashlagi et al. 2010; Dickerson, P-
rocaccia, and Sandholm 2012a; 2012b; 2014).

Preliminaries
An exchange problem can be modelled as a directed graph
G = (V,E) with |V | = n, where each vertex vi ∈ V repre-
sents an agent and each arc vivj ∈ E states that vi is accept-
able to vj . Each vertex maintains a linear order preference
over all its neighbors. The rank of vj in vi’s preference list
is denoted by rij . Lower ranking donor is more preferred.
We use edge to denote a 2-way cycle between two vertices.

We distinguish between the following two cases:

• weighted graph, there is a weight wij on each arc vivj .
The weight is consistent with the preference ranking, i.e.,
wij > wik → rij < rik.

• unweighted graph, each arc has a weight 1.

An exchange M is defined to be a set of arcs that form
vertex-disjoint cycles. Our goal, for both weighted and un-
weighted graphs, is to find a maximum weighted exchange.
That is, arg maxM Σvivj∈Mwij .

Quite often, there can be cycle length constraints for cer-
tain specific domains. For example, in kidney exchange,
there is no cycle that should be longer than some length
L. When L = 2, the exchange problem reduced to the
roommate problem (Gale and Shapley 1962). When there
is no constraint on L, the top trading cycle mechanis-
m (Roth, Sönmez, and Ünver 2004) is known to be stable
and strategy-proof.

We now define two notions of stability: the standard
one (Gale and Shapley 1962) and internal stability.

Definition 1 Given a graph G = (V,E), an exchange is
stable if there does not exist a subset of vertices that wish to
deviate from the current assignment to form a new exchange
so that everyone in the subset is better off.

Internally stability is weaker than the standard one in that
it only requires stability among the matched agents.

Definition 2 Given a graph G = (V,E), an exchange is in-
ternally stable if there does not exist a subset of currently
matched vertices that wish to deviate from the current as-
signment to form a new exchange, so that everyone in the
subset is better off.

Clearly, stable exchanges do not always exist. In contrast,
internally stable exchanges always exist. It is easy to see that
any single edge constitutes an internally stable exchange.

Definition 3 An exchange is k (internally) -stable, if for any
deviating subset vertices within size k, the (internally) sta-
bility constraint hold.

Let L-k exchange denote an exchange with cycle length
no more than L under k stability. So, a 2-2 exchange in fact
stands for stable pairwise matching, while a 3-2 exchange
stands for a standard 3-way exchange with 2-stable con-
straints. Without mentioning otherwise, the stability notion
under consideration is internal stability.



Theoretical results
Our analysis in this section covers the following four cases:

1. unweighted graph, stable pairwise matching;

2. weighted graph, stable pairwise matching;

3. unweighted graph, L-k exchange;

4. weighted graph, L-k exchange.

We are interested in the following important questions.

• What is the worst case ratio between the welfare of maxi-
mum internally stable exchange and unconstrained maxi-
mum exchange? That is, the welfare loss caused by inter-
nal stability4.

• What is the complexity of computing a maximum weight-
ed exchange, subject to stability constraint? As men-
tioned, except for case 1, this complexity is known to be
NP-hard under standard stability.

In the following, we report our findings with respect to
the two questions in these four cases. We conclude that in-
ternal stability is a desirable tradeoff that can be potentially
deployed in exchange market design.

Pairwise stable matching in unweighted graphs
It is important to note that the stable pairwise matching prob-
lem in unweighted graph is equivalent to the so-called sta-
ble roommate problem (Gale and Shapley 1962). The stable
roommate problem is defined as follows. There are n people,
each of which has a preference over acceptable others. The
goal is to find a stable assignment with n

2 disjoint pairs. As
for our problem, the goal is finding a stable assignment con-
taining as many pairs as possible. In stable roommate prob-
lem, computing a perfect stable matching with strict prefer-
ence is shown to be solvable in O(n2) time (Irving 1985).
Replacing stability by internal stability does not change this
fact (Tan 1990) but has desirable welfare bound shown in
Theorem 2.

The standard stable matching does not exist in an odd cy-
cle. Here, an odd cycle is a graph G = (V,E) where V =
{v1, v2, . . . , vn} with n ≥ 3 being odd and vivi+1, vivi−1 ∈
E,∀i = 1, 2, . . . , n with v0 = vn and vn+1 = v1. No other
arc exists in the graph. ri,i+1 = 1, ri,i−1 = 2. It is easy to
see that no stable matching exists in such a graph, since there
are odd number of vertices in the graph, at least one vertex
is left unmatched. Without loss of generality, we denote this
vertex by vi. As ri−1,i = 1, vi−1’s best choice is vi. Both
vi and vi−1 get better off by matching with each other. This
contradicts the definition of standard stability.

The theorem below shows internal stability is desirable
in the context of odd cycles as well as in general graphs.
It also serves as the basis for proving the welfare bound in
Theorem 2.

Theorem 1 In any unweighted graph G = (V,E), let M∗
denote a maximum internally stable matching and M ′ de-
note a maximum stable matching (if exists). We have:

4Clearly, this ratio is unbounded for the standard stability since
there are cases where stable matching is empty or does not exist.

1. M∗ always exists,
2. when M ′ exists, |M∗| = |M ′|,
3. if G is an odd cycle, M∗ has the same size as a maximum

matching.

The proof of Theorem 1 is rather involved. We need some
existing results from Irving’s Algorithm (1985) and Tan’s
Algorithm (1990). For completeness, we include both al-
gorithms in the attachment. An overview of Tan’s algorith-
m, which computes maximum 2-2 exchange for unweighted
graphs, is as follows:5

A vertex b in a’s preference list is defined as an entry
(a|b). Tan’s algorithm consists of 2 phases.

In the first phase, each vertex i proposes to his most pre-
ferred vertex j, namely rij = 1. j removes all (j|k) satis-
fying rjk > rji, and symmetrically all (k|j) are removed.
Repeat this procedure until no entry can be removed any-
more. Label the vertices whose preference list contains less
than 2 elements as inactive. Phase 1 ends here.

In the second phase, define a rotation to be two sequences
of vertices (a1a2 . . . ar|b1b2 . . . br) satisfying raibi = 1
and rai+1bi = 2 (subscripts mod. r). Repeat the follow-
ing 3 steps until no active agent left: (1) Find a rotation
(a1a2 . . . ar|b1b2 . . . br). (2) ∀i = 1, 2, . . . , r, ai proposes to
bi+1. bi+1, remove all (bi+1|k) with rbi+1k > rbi+1ai , and
symmetrically remove all (k|bi+1). (3) Label those whose
preference list contains less than 2 elements as inactive.

We make use of a lemma from Tan (1990). The “table” in
the lemma contains n rows, where the ith row denotes agent
i’s preference list.

Lemma 1 (Tan 1990) Let T2 be a table in phase 2 and let
R = (a1, a2, . . . , ar)|(b1, b2, . . . , br) be a rotation exposed
in T2. Suppose that on elimination of R from T2, some list
becomes empty, then

• r = 2m+ 1 for some m and bi = ai+m for all i,1 ≤ i ≤
r(subscripts mod. r);

• For each i, there are only two entries in ai’s list in T2,
namely bi(= ai+m) and bi+1(= ai+m+1);

• the list of ai, but no other list become empty on elimina-
tion of R.

Call rotationR described in Lemma 1 as an odd rotation and
the eliminatation of such R an odd elimination.

If i has single entry in the preference list, say (i|j),
then i and j are matched. For an odd rotation R =
(a1, a2, . . . , ar)|(b1, b2, . . . , br), r = 2m + 1, ∀i =
1, 2, . . . ,m, ai and ai+m are matched. This matching is a
maximum internally stable matching.

Lemma 2 Let A be the set of all vertices that have emp-
ty preference lists after phase 1. The vertices in A must be
pairwise disconnected.

Proof: After the first phase, for any two vertices x, y ∈ A.
If there is an edge between them, they are in each other’s
preference list at the beginning. We claim that (1) the entries

5The only difference between Tan’s and Irving’s algorithm is
that Irving’s algorithm terminates and reports no complete match-
ing whenever an empty preference list appears.



between them cannot be eliminated unless one of them is the
most preferred vertex by someone; (2) if an agent is most
preferred by someone, his preference list can not be empty
after phase one.

During the phase 1, the only two cases of elimination are:
(1) x prefers y the most, those less preferred than x in y’s
preference list will be eliminated. (2) if (x|y) is eliminated
by the first case, (y|x) is also eliminated.

First we prove the correctness of the first claim. If neither
x nor y is most preferred by someone, both (x|y) and (y|x)
can not be eliminated by case 1. So, (y|x) and (x|y) cannot
be eliminated by case 2.

Now we prove the second claim. Without loss of gener-
ality, Let (x|z) be the last eliminated entry satisfying that z
prefers x most. Then (x|z) cannot be eliminated by case 2,
as x is z’s most preferred. If it is eliminated by case 1, some-
one else t prefers xmost, t is still in x ’s preference list. This
contradicts the assumption that (x|z) is the last.

We are now ready to prove Theorem 1.
Proof:

1. As M∗ is a maximum internally stable matching, it exist-
s if and only if an internally stable matching exists. We
know that M = ∅ is an internally stable matching. So a
maximum internally stable matching exists.

2. By (Irving 1985, Corollary 3.2), we have if one or more
preference list is empty after the algorithm, then the orig-
inal problem instance admits no perfect stable matching.
Thus, there is no perfect stable matching if one’s prefer-
ence list is empty during the algorithm.

• Lemma 1 says that once an empty preference list e-
merges in phase 2, there is an odd rotation. By (Tan
1990, Theorem3.1 and Theorem 3.7), we know that e-
liminations of Phases 1 and 2 in the Irving’s algorithm
can retain at least one maximum stable matching. An
odd rotation alone is the same as an odd cycle, which
indicates there is no stable matching. So when empty
preference list appears in phase 2, this item holds.
• If a’s preference list is empty after phase 1, suppose a

and b are connected, from Lemma 2, we know b’s pref-
erence list is not empty after phase 1. By (Tan 1990,
Property 3.3), we have, after phase one, if c is the last
on b’s preference list, b is the first on c’s preference list.
So, if b and a are matched, c and b can match each oth-
er to get better payoff. So a can’t be matched to anyone
else. As a can’t be in any stable matching. removing a
from agents will not affect maximum stable matching,
neither do maximum internally stable matching con-
structed by the Tan’s algorithm. So if there is a max-
imum stable matching, after removing all with empty
preference lists after phase 1, a perfect stable match-
ing exists. A perfect stable matching must be a maxi-
mum internally stable matching, because no matching
can match more vertices than perfect stable matching
and all matched vertices are stable among themselves.
• If no empty set emerges during the execution of the

algorithm, there is a perfect stable matching, which is
also the maximum internally stable matching.

This completes the proof for the second item.
3. On an odd cycle of n vertices, as n is an odd number,

maximum matching can match at most n − 1 vertices.
Following Tan’s algorithm, the whole odd cycle is exactly
an odd rotation in phase 2. Tan’s algorithm matches n− 1
vertices. Thus, maximum matching matches as many as
maximum internally stable matching on odd cycles.

The following result shows the worst case ratio of pair-
wise matching in unweighted graphs.
Theorem 2 For pairwise matching in an unweighted graph,
the worst case ratio between maximum internally stable
matching and maximum matching is k−1

2k , where k is the size
of smallest odd rotation. In particular, when k = 3, the frac-
tion is minimized to be 1

3 .
Proof: Lower bound. First, we show that if a maximum
stable matching exists in a graph, the ratio between max-
imum stable matching and maximum matching is 1

2 . For
any edge vivj in a maximum matching, if both of them
are not matched in the maximum stable matching, vi and
vj can match together without affecting others. This contra-
dicts to the definition of maximum stable matching. If a sta-
ble matching does not exist, according to the proof of The-
orem 1, there exists an odd elimination. In an odd cycle of
size k, internally stable matching can match at most k−1 of
them. If all vertices in the “odd cycle” are matched, it will no
longer be internally stable. The odd cycle can be in at most
k edges in a maximum matching, so the ratio is k−1

2k .
For a given graph G = (V,E) and a maximum internal

stable matching M , whenever there is an odd rotation in the
graph, we can pick out the odd rotation and match k − 1
nodes out of the k-cycle. Take this part out of the graph, the
remainder inM is still an internally stable matching. Repeat
this step until there doesn’t exist an odd cycle. As shown
before, maximum stable matching matches the same amount
of agents as maximum internally stable matching when there
is no odd cycles. Each time we pick out an odd cycle, the
ratio is k−1

2k and in the final graph without odd cycles, the
ratio is 1

2 , so the overall ratio is bounded below by k−1
2k .

Tightness. We now prove the ratio is tight via the
following instance. Given G = (V,E), where V =
{a1, a2, a3, b1, b2, b3}, for i = 1, 2, 3, aibi, biai ∈ E, for
i, j = 1, 2, 3, i 6= j,bibj ∈ E. rb1b2 = rb2b3 = rb3b1 = 1,
rb2b1 = rb3b2 = rb1b3 = 2, rb1a1 = rb2a2 = rb3a3 = 3. In
such a graph, we cannot include any two 2-way cycles in an
internally stable matching. While matching {aibi, biai|i =
1, 2, 3} contains three 2-way cycles. So the bound is tight.

Figure 2 shows an instance. In this figure heavier arcs de-
note higher preferences.

Pairwise stable matching in weighted graphs
We now investigate the welfare loss in weighted graphs.
Theorem 3 In weighted graph, the worst case ratio of pair-
wise matching is 2

n .
Proof: Lower bound. In weighted graph, the result between
maximum internally stable matching and maximum match-
ing can only reach 2

n no matter what the maximum cycle
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length is. First, the ratio can be at least 2
n . Given a graph,

we can pick the largest weight edge e only, The matching
{e} is an internally stable matching. A maximum matching
contains at most n

2 edges and the weight of e is not less than
any edge in the maximum matching.

Tightness. To show this bound is tight. Let w be the
weight function. We construct a graph G = (V,E), V =
{a1, b1, a2, b2, . . . , am, bm}, n = 2m, ∀i, aibi ∈ E with
w(aibi) near 1. ∀i, biai ∈ E; ∀i, j, i 6= j, bibj ∈ E; ∀i, j,
i 6= j,ε > w(bibj) > w(biai), where ε is an arbitrarily s-
mall number. A matching containing all edges between ai’s
and bi’s can reach a social welfare nearly m. A matching
containing biai and bjaj(i 6= j) simultaneously cannot be
internally stable, as bi and bj prefer each other. So the inter-
nally stable matching can only contain 1 edge between ai’s
and bi’s. This sets the worst case ratio to be 1

m = 2
n .

Figure 1 shows an example where the worst case ratio is
exactly 2

n . Heavier edges have weights near 16, the others
have weights near 0. The maximum matching obtains all the
4 heavier edges, whereas maximum internally stable match-
ing can obtain at most one. If two heavier edges are in some
solution, like the two dashed box in the figure, the two ver-
tices in dotted box get better off by matching with each other.
This instance has a worst case ratio of 1

4 .

Theorem 4 Computing the maximum internally stable pair-
wise matching in weighted graphs is NP-HARD.

The proof can be found in the full version.

L-k exchange in unweighted graphs
Applying a similar approach as in the previous setting, we
obtain a more general tight bound for L-k exchange. The
only difference is that for large L, small odd cycles can now
be matched directly. So the worst case ratio becomes better
but cannot exceed 1

2 .

Theorem 5 For L-k exchange in unweighted graphs, the
worst case ratio is bT/2c

T , where T = 2bL+1
2 c + 1, com-

pared to maximum pairwise matching.

This theorem follows from a similar proof as in Theorem 2.
When longer cycles allowed in exchange, we can deal with

6The weight of one edge here refers to the sum of weights of
the two directed arcs.

ai bi ci

ati

bti
cti

di

dti

Figure 3: the structure of each 4-vertex super-edge

small odd rotation with a single cycle. The odd rotation be-
gins to take effect when its size is larger than the cycle length
limit. T is the minimum size of odd rotation which cannot
be matched by a single cycle with length not longer than L.

About the complexity, (Huang 2010) and (Biró and Mc-
Dermid 2010) show that finding maximum stable 3-way ex-
change is NP-COMPLETE. Our result allows longer cycle
length and requires agents to be stable among any subsets,
under length limit.

We prove that, deciding whether L-k exchange matches
all agents is NP-COMPLETE. Our proof is inspired by the
3-D MATCHING gadget in (Abraham, Blum, and Sandholm
2007). We reduce from L-D-MATCHING, where L is an ar-
bitrary integer greater than 2. Since 3-D MATCHING is an
NP-COMPLETE, so is L-D-MATCHING.

Definition 4 (Garey and Johnson 1979) L-D-matching
refers to the following decision problem: Given L disjoint
sets of vertices X1, X2, X3, . . . , XL of size q for each, a set
of hyper-edged T ⊆ X1 × X2 × X3 × . . . × XL, decid-
ing whether there is a disjoint subset S of T of size q, i.e.,
covering all vertices.

We show the computation of L-k exchange is NP-
COMPLETE by reducing from this problem.

Theorem 6 For all L > k ≥ 3, deciding whether all agents
can be matched by L-k exchange in unweighted graphs is
NP-COMPLETE.

Proof: First, given a solution, we can easily verify it in
polynomial time. It indicates this problem is in NP.

We construct a graph from an instance of L-D-
MATCHING as follows. For each super-edge et =
et1, et2, et3, . . . etL, we construct a subgraph for each eti. In
each subgraph, there are a sequence of L-1 vertices, which
can be used to form an L-way cycle with eti or etti, just like
the part in the dashed box in Figure 3. After that, we line up
all etti in the same direction as shown in the Figure 3.

If there is an L-k exchange, we can convert it to a solution
for L-D-matching. If {etti for 1 ≤ i ≤ L} is an L-cycle in
the solution of maximum L-k exchange problem, et is in
the result of L-D-matching. If the maximum L-k exchange
cannot cover all vertices, it implies there is no solution for
the original L-D-matching problem. Note that no cycle with
size smaller than L is in the constructed graph. This property
ensures that any matching on the graph is k-stable.



L-k exchange in weighted graphs

Algorithm 1: Cycle reduction algorithm
Input: The cycles in L-way exchange, S0.
Output: A set of internally stable cycles S.

• S ← S0

• While ∃C, such that C is the longest cycle that is not
internally stable among the cycles in S, do
– Remove C from S.
– Let T = (t1, t2, . . . tr) be a cycle satisfying
∀i = 1, 2, . . . , r, ti ∈ C, ti is allocated a better choice
in T than in C.

– For each titi+1(subscripts mod. r) in T , titi+1 and
part of C forms a cycle Ci, add Ci to S.

• Return S

Theorem 7 For all L > k ≥ 3, deciding whether social
welfare can reach a constant c by L-k exchange in weighted
graph is NP-COMPLETE.

The proof can be adapted from the proof of Theorem 6,
by assigning weights properly, which can be found in full
version.
Theorem 8 In weighted graphs, the worst case ratio of L-k
exchange is 2

n .
Proof: Upper bound. First, the upper bound of the worst

case ratio is 2
n as implied by the proof of Theorem 3.

Tightness. We prove this by explicit constructing an in-
ternally stable matching via Algorithm 1.

The algorithm terminates because theCi’s generated from
C have smaller lengths, so any removed cycle C won’t ap-
pear again in S. This algorithm has two properties: (1) each
arc in some element of S0 will be in some element of S; (2)
for any arc vivj in some element of S, if vi points to vk in
some element of S0, wij ≥ wik.

Based on the properties above, we give a construction of
internally stable matching that reaches ratio n

2 . First, find
argvxvy maxvxvy∈C∈S0

(wxy +wyz), z is the vertex y points
to in S0. Find vivj ∈ C∗ ∈ S, wxy + wyz is more than 2

n
of maximum L-way exchange. The total weight of C∗ is not
less than wxy +wyz . So, C∗ is an internally stable matching
with ratio at least 2

n .

Experimental results
In this section, we evaluate the welfare loss caused by sta-
bility via experiments. All our experiments are conducted
on the kidney exchange domain. We run experiments for al-
l four cases considered in the paper. In each of these four
cases, we compare the social welfare of the maximum un-
constrained exchange and the maximum exchange under
both notions of stability. Our data generator is carefully de-
signed based on statistics of the US and China population-
s.(Tan, Zhou, and Tang 2006; Tu, Chen, and Wang 2005;
Segev et al. 2005; Zhang 2004). We summarize our findings
below. For the results on the China Data, see the full version.
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Figure 4: U.S. data. In (b)(c)(d), the horizontal line denotes
the welfare of internally stable optimal while the vertical
lines above and below denote the range of the unconstrained
optimal and stable optimal respectively. The curves connect
the medians of unconstrained optimal.

• For pairwise matching in unweighted graphs, there is a
clear gap between the unconstrained and internally stable
optimal. Stable matching doesn’t exist in many instances.

• For the other three cases, unconstrained optimal still beats
internally stable optimal, which in turn beats stable opti-
mal. However, the gaps are not significant.

• In all four cases, odd cycles return 0 for optimal stable
matching. But such cases are unlikely to occur except for
pairwise matching in unweighted graphs.

• We observe that the social welfare always grow linearly
with the number of vertices. A regression analysis that
returns the coefficients can be found in the full version.

• Internally stable exchange returns faster than the standard
stability under our implementation because it is possible
for CPLEX to cut more branches under internal stability.

Of independent interests, we include in the full version
our ILP implementation for computing 3-2 exchanges.

Conclusion
In this paper, we study an alternative notion of stability
called internal stability. We show desirable properties un-
der this new notion: welfare loss and computation complex-
ity. Our experiments show that by adding internally stabili-
ty constraint, social welfare does not drop significantly un-
der the setting of kidney exchange. All our findings suggest
that internal stability is an efficient and robust trade-off point
between exchange market design with and without stability
constraints.
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