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A remarkable discovery in recent years is that there exist various kinds of topological insulators and
superconductors characterized by a periodic table according to the system symmetry and dimensionality. To
physically realize these peculiar phases and study their properties, a critical step is to construct experimentally
relevant Hamiltonians that support these topological phases. We propose a general and systematic method based
on the quaternion algebra to construct the tight-binding Hamiltonians for all the three-dimensional topological
phases in the periodic table characterized by arbitrary integer topological invariants, which include the spin-singlet
and the spin-triplet topological superconductors, the Hopf, and the chiral topological insulators as particular
examples. For each class, we calculate the corresponding topological invariants through both geometric analysis
and numerical simulation.
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Topological insulators (TIs) and superconductors (TSCs)
are symmetry-protected topological phases of noninteracting
fermions described by quadratic Hamiltonians [1], which
have robust gapless boundary modes protected by the system
symmetry [2]. These protected boundary modes have exotic
properties and in some cases are characterized as anyons with
fractional statistics [3], which could be used for the realization
of topological quantum computation [4]. Notable examples of
TIs include the integer quantum Hall states [5] and the recently
discovered two-dimensional (2D) quantum spin Hall states [6],
and the three-dimensional (3D) Z2 TIs [7]. Examples of TSCs
include the 2D p + ip superconductors of spinless fermions
[8] and the Helium superfluid B phase [9,10].

It turns out that the above TI/TSC examples are just a part
of a larger scheme: they sit inside a periodic table for TIs/TSCs
developed according to the symmetry and dimensionality of
the system [9–11]. The periodic table predicts the possible
existence of a number of new topological phases, and it is
of great interest to search for these new phases in nature.
However, the periodic table does not tell where to look for or
how to realize these phases. To physically realize these exotic
phases and study their properties, it is of critical importance
to construct tight-binding Hamiltonians so that they could
be realized in real quantum materials such as optical lattice
systems [12]. So far, some clever example Hamiltonians have
been found for a few new topological phases [11,13–15],
typically with the topological invariant � = ±1, but we lack a
systematic method to construct tight-binding Hamiltonians for
generic topological phases with arbitrary integer topological
invariants.

In this paper, we propose a general and systematic method
to construct tight-binding Hamiltonians for new topological
phases based on the use of quaternion algebra. By this method,
we construct the tight-binding Hamiltonians for all the 3D
topological phases in the periodic table with arbitrary integer
topological invariants, which include the spin-singlet and the
spin-triplet TSCs, the chiral and the Hopf TIs as prototypical
examples. For each class, the topological invariant is explicitly
calculated for the constructed Hamiltonian, using both geo-
metric analysis and numerical simulation, which confirm that

we indeed realize all the topologically distinct phases in the
corresponding class characterized by a topological invariant
of arbitrary integer values. The construction method proposed
here should also work for the 2D and 1D cases, and we believe
its direct generalization to Clifford algebra should provide a
powerful tool to construct tight-binding Hamiltonians for all
the integer topological phases in the periodic table.

Before showing the method, let us first briefly introduce
the quaternion algebra H, which is a generalization of the
familiar complex algebra, with the imaginary basis vectors
extended from one (i) to three (i, j ,k). The basis vectors
(i, j ,k) multiply according to the following noncommutative
product table [16]:

i2 = j2 = k2 = −1, i j = − j i = k,
(1)

j k = −k j = i, ki = −i k = j .

Any element of H can be expanded as q = q0 + q1 i + q2 j +
q3k, where qi (i = 0,1,2,3) are real numbers. Quaternion has
been used recently as a tool to analyze the 3D Landau levels
[17,18].

For our purpose, it is more convenient to write q in the
polarlike coordinate with q = ρ(cos θ + â sin θ ), where ρ ≡
|q| =

√
q2

0 + q2
1 + q2

2 + q2
3 is the norm of q, θ is the angle,

and â = â1 i + â2 j + â3k with â2
1 + â2

2 + â2
3 = 1 is a unity

vector denoting the direction in the imaginary space. From the
definition, we immediately get

qn = ρn(cos nθ + â sin nθ ). (2)

To construct tight-binding lattice Hamiltonians for the TIs
or TSCs, we typically work in the momentum space. The
Hamiltonian coefficients are taken as components qi of a
quaternion q, which in general depend on the momentum
through the notation qi(k). In a d-dimensional (d = 1,2,3)
space, the momentum k takes values from the Brillouin zone
(BZ) characterized by a d-dimensional torus Td . The norm |q|
of the quaternion q characterizes the energy scale (energy gap)
of the Hamiltonian, which can be taken as 1 (the energy unit)
without loss of generality, and the topological space of q is thus
characterized by the sphere Sd . The Hamiltonian with qi(k) as
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the coefficients can be considered as a map from the space Td

to Sd . If this map is topologically nontrivial characterized by a
topological invariant (usually taken as the winding number
or Chern number) � = 1, geometrically (in the sense of
homotopy) it means that the space Td wraps around Sd one
time through the map. Now consider a Hamiltonian where
the coefficients are taken as the components of qn(k). From
the geometric representation of qn in the polar coordinate
in Eq. (2), if the space Td wraps around Sd one time
through the map k → q(k) with � = 1, it will wrap Sd

ntimes through the map k → qn(k) with � = n. So, by this
quaternion-power mapping, we can construct Hamiltonians
for topologically distinct new phases with arbitrary integer
topological invariants. This serves as our physical intuition
to construct tight-binding Hamiltonians for new topological
phases. In the following, we apply this method to construction
of the Hamiltonians for all the 3D topological phases in the
periodic table characterized by the integer group Z, which
include the spin-singlet and the spin-triplet TSCs, the chiral
and the Hopf TIs.

Spin-singlet TSC (class CI). The topological phases in the
periodic table are classified by three generic symmetries, the
time reversal, the particle-hole exchange (charge conjugation),
and the chiral symmetry, denoted respectively by T ,C,S with
S ≡ T C. These three symmetries can be used to classify the
system even when weak disorder breaks the lattice translational
symmetry. The symmetries T and C are represented by
antiunitary operators, and T 2,C2 can take values either +1
or −1 depending on the effective spin of the system.

Spin-singlet TSC is described by a Bogoliubov–de-Gennes
(BdG) type of mean-field Hamiltonian and belongs to the
symmetry class CI in the periodic table, which means the
BdG Hamiltonian has both T and C symmetries with T 2 = 1
and C2 = −1. The topological phase is characterized by a
topological invariant �CI, which takes values from 2Z (even
integers). Reference [19] has proposed a Hamiltonian in a
diamond lattice, which realizes a special instance of the CI TSC
with �CI = ±2. Here, we construct tight-binding Hamiltonians
that can realize all the topologically distinct phases for the
CI TSC with arbitrary even integer �CI in a simple cubic
lattice. The simplified lattice geometry could be important for
an experimental implementation.

To construct the BdG Hamiltonian in the momentum space,
first we define a quaternion q with the following dependence
on the momentum k

q = t cos kx − i(sin kx + sin ky + sin kz)

+ j cos ky + k cos kz, (3)

where t is a dimensionless parameter. A family of the BdG
Hamiltonians can be constructed on the 3D cubic lattice with
the form HCI = ∑

k �
†
kHCI(k)�k in the momentum space,

where �k = (ak↑,bk↑,a
†
−k↓,b

†
−k↓)T denotes the fermionic

mode operators with spin ↑,↓ and momentum k. The 4 × 4
Hamiltonian matrix reads

HCI(k) =
(

m · σ (qn)3I2

(qn)3I2 −m · σ

)
, (4)

where m = [(qn)0,(qn)1,(qn)2] with (qn)i denoting the ith
components of the quaternion qn, I2 is the 2 × 2 identity

matrix, and σ = (σx,σ y,σ z) are the Pauli matrices. Expressed
in the real space, the Hamiltonian HCI contains spin-singlet
d-wave pairing described by the quaternion component (qn)3,
and has local hopping and pairing terms up to the nth
neighboring sites. One can check thatHCI(k) indeed has both T

and C symmetries (and thus also the chiral symmetry S = T C)
with T 2 = 1 and C2 = −1 (see the Appendix for an explicit
check).

Now we show that the Hamiltonian HCI has topologically
distinct phases depending on the parameters n and t . For this
purpose, we need to calculate the topological invariant �CI for
HCI . Direct diagonalization of the Hamiltonian HCI leads to the
energy spectrum E±(k) = ±|qn| = ±ρn = ±[t2 cos2 kx +
cos2 ky + cos2 kz + (sin kx + sin ky + sin kz)2]n/2. It is always
gapped if t �= 0 and has a twofold degeneracy for each k. To
calculate the topological index �CI, we first flatten the bands
of HCI (which is a continuous transformation that does not
change its topological property) by introducing the Q matrix,

Q(k) = 1 − 2P (k), P (k) =
∑
f

|uf (k)〉〈uf (k)|, (5)

where P (k) is the projector onto the filled Bloch bands
[with energy E−(k) and wave vectors |uf (k)〉 from the
diagonalization of HCI]. With the chiral symmetry, the Q

matrix can be brought into the block off-diagonal form
Q(k) = ( 0 b(k)

b†(k) 0 ) by a unitary transformation, with

b(k) = −
(

(qn)3 − i(qn)2 −i(qn)0 − (qn)1

−i(qn)0 + (qn)1 (qn)3 + i(qn)2

)/
E+(k)

(6)

for the Hamiltonian HCI. With the matrix b(k), the topological
index �CI is defined by the following winding number [10]:

�CI = 1

24π2

∫
BZ

dk εμρλTr[(b−1∂μb)(b−1∂ρb)(b−1∂λb)],

(7)

where εμρλ is the antisymmetric Levi-Civita symbol and
∂μb ≡ ∂kμ

b(k). When n = 1, the integral in �CI can be
calculated analytically and we find �CI(n = 1) = 2sign(t) =
±2. In general cases, due to the geometric interpretation of the
map qn, we immediately get

�CI[HCI] = 2nsign(t) = ±2n. (8)

This result is confirmed through direct numerical calculations.
We integrate Eq. (7) numerically through discretization of the
Brillouin zone. The numerical results for different n are shown
in Table I. As one varies n, it is evident from Eq. (8) that we can
realize all the spin-singlet TSC phases in the CI class through
our constructed Hamiltonian HCI with the topological index
�CI taking arbitrary even integers.

Spin-triplet TSC (class DIII). Spin triplet TSCs are de-
scribed by the BdG Hamiltonians that have both T and C

symmetries with T 2 = −1 and C2 = 1. It belongs to the
symmetry class DIII in the periodic table. The 3He superfluid
B phase is a well known example in this class [9,10], but it is
not described by a simple lattice model. Tight-binding lattice
Hamiltonians have been constructed for the DIII-class spin
triplet TSCs with the topological index �DIII = ±1 [20–22].
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TABLE I. Numerical results of the corresponding topological invariants for the constructed Hamiltonians in different symmetry classes.
The symmetry property of each class is also indicated. The presence of time-reversal symmetry T , particle-hole symmetry C, and chiral
symmetry S is denoted by ±1, with ±1 specifying the values of T 2 and C2. The absence of these symmetries is denoted by 0. The parameters
for the corresponding Hamiltonians are chosen as (t,h) = (1,2). The number of grid points is Ngrid = 320 for all the cases. The integer numbers
in the square brackets are theoretical values for the corresponding topological invariants.

AZ
Symmetry Numerical results for different n

class T C S 1 2 3 4 5

AIII 0 0 1 1.000 [1] 1.999 [2] 2.997 [3] 3.993 [4] 4.986 [5]
CI 1 −1 1 1.999 [2] 3.998 [4] 5.992 [6] 7.984 [8] 9.972 [10]
DIII −1 1 1 1.000 [1] 1.999 [2] 2.997 [3] 3.993 [4] 4.986 [5]
A (HIs) 0 0 0 0.999 [1] 1.994 [2] 2.979 [3] 3.951 [4] 4.910 [5]

Here, we use the quaternion method to construct tight-binding
Hamiltonians for the DIII-class TSCs with arbitrary integer
topological indices �DIII in a simple cubic lattice.

To construct the Hamiltonian, we define a quaternion q(k)
with the following dependence on k

q = h + cos kx + cos ky + cos kz + i t sin kx

+ j sin ky + k sin kz (9)

with t,h being dimensionless parameters. We will use this
form of q(k) for all our following examples. We con-
struct a four-band BdG Hamiltonian with the form HDIII =∑

k �
†
kHDIII(k)�k, with the fermionic mode operators �k =

(ak↑,ak↓,a
†
−k↑,a

†
−k↓)T and the 4 × 4 Hamiltonian matrix

HDIII(k) = u · �, (10)

where u = [(qn)1,(qn)2,(qn)3,(qn)0], � = (γ 0γ 1,γ 0γ 2,γ 0γ 3,

− iγ 0γ 5), and γ i denote the standard Dirac matrices with the
explicit expressions given in the Appendix. This Hamiltonian
has spin-triplet pairing with the energy spectrum E±(k) =
±|u(k)| = ±|q(k)|n, which is fully gapped when |h| �= 1,3
and t �= 0.

The DIII class TSC has the chiral symmetry, so its Q matrix
for the Hamiltonian can be brought into the block off-diagonal
form (see Appendix) and the topological index �DIII is also
characterized by the winding number in Eq. (7). We find

�DIII[HDIII] =
⎧⎨
⎩

−2nsign(t) |h| < 1
nsign(t) 1 < |h| < 3
0 |h| > 3

. (11)

It is evident that the topological index �DIII can take arbitrary
integer values for our constructed Hamiltonian depending on
the parameters n,t,h. In the particular case with n = t = 1,
the Hamiltonian reduces to the model Hamiltonian introduced
in Refs. [10,11], which has �DIII = 1 or −2.

Chiral TI (class AIII). Chiral TIs do not have time-reversal
or particle-hole symmetry (thus T = C = 0), but they possess
chiral symmetry with S = 1 and belongs to the symmetry
class AIII in the periodic table. Tight-binding Hamiltonians
have been constructed for the chiral TIs with the topological
index �AIII = ±1 [23]. Here, we use the quaternion method
to construct Hamiltonians with arbitrary integer �AIII. We
consider a three-band Hamiltonian with the following form
HAIII = ∑

k ξ
†
kHAIII(k)ξk, where the fermionic mode operators

ξk = (ak,bk,ck)T and the 3 × 3 Hamiltonian matrix

HAIII(k) = u · G. (12)

In HAIII, u denotes the same quaternion coefficients as defined
below Eq. (10) and G = (λ4,λ5,λ6,λ7) are the four Gell-Mann
matrices with the explicit form given in the Appendix. The
Hamiltonian HAIII is gapped when |h| �= 1,3 and t �= 0 and
has a perfectly flat middle band with a macroscopic number
of zero-energy modes due to the chiral symmetry [23]. A
topological invariant classifying this family of Hamiltonians
can be defined as [23]

�AIII = − 1

12π2

∫
BZ

dk εαβγρεμντ 1

|u|4 uα∂μuβ∂νuγ ∂τ uρ.

(13)

We have calculated this invariant and found that

�AIII[HAIII] = nsign(t) = ±n, (1 < |h| < 3) (14)

for our constructed HAIII. This analytic result is confirmed
with direct numerical calculations as shown in Table I. In
the particular case with n = 1, the Hamiltonian HAIII reduces
to the model Hamiltonian constructed in Ref. [23]. Through
the quaternion power, we extend the model Hamiltonian and
realize the chiral TIs with the topological index taking arbitrary
integer values.

Hopf insulators (class A). The Hamiltonians in class A
do not have any symmetry (T , C, or S) except the particle
number conservation. Generically, this class of Hamiltonians
have no topologically nontrivial phase in 3D, but there is a
peculiar exception, called the Hopf insulator, which occurs
when the Hamiltonian has just two bands due to the existence
of the topologically nontrivial Hopf map from S3 to S2

[15,24]. To understand why Hopf insulators exist, note that
the space of all 3D band Hamiltonians with m filled and n

empty bands is topologically equivalent to the Grassmannian
manifold Gm,n+m and can be classified by the homotopy
group of this Grassmannian [11]. Since π3(Gm,n+m) = 0 for
all (m,n) �= (1,1), no nontrivial topological phase exists in
general. However, when m = n = 1, G1,2 is topologically
equivalent to two-sphere S2 and π3(Gm,n+m) = π3(S2) = Z.
This explains why the Hopf insulators may exist in three
dimensions. The Hopf insulators are characterized by the
topological Hopf index �H, which takes values from the
integer set Z. A model Hamiltonian has been constructed
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for the Hopf insulator with �H = ±1 in Ref. [15] based on
the Hopf map [25]. This method was extended in Ref. [24]
to construct Hamiltonians for general Hopf insulators with
arbitrary integer �H based on the generalized Hopf map
encountered in mathematics but not in physics literature. Here,
with the quaternion algebra, we use only the simple Hopf map
but still can construct tight-binding Hamiltonians for the Hopf
insulators with arbitrary integer �H.

To construct the Hamiltonian, we define two complex
variables η = (η↑,η↓)T from the quaternion η↑ = (qn)1 +
i(qn)2, η↓ = (qn)3 + i(qn)0, where q(k) is defined by Eq. (9).
The Hopf map is defined as v = η†ση, which is a quadratic
map from S3 → S2 up to normalization. The two-band Hamil-
tonians can then be constructed as HHopf = ∑

k ψ
†
kHHopf(k)ψk

with ψk = (ak↑,ak↓)T and

HHopf(k) = v · σ . (15)

The Hopf insulators are characterized by the topological Hopf
index, defined as

�H[HHopf] = −
∫

BZ
F · A d3k, (16)

where F is the Berry curvature with Fμ ≡ 1
8π

εμντ v ·
(∂νv × ∂τ v) and A is the associated Berry connection, which
satisfies ∇ × A = F [15,24]. From this definition and our
geometric interpretation of qn, we find

�H[HHopf] = nsign(t) = ±n, (1 < |h| < 3). (17)

This analytical expression is also confirmed with direct numer-
ical calculations. Some numerical results for the topological
indices are listed in Table I for different classes of TIs and
TSCs, which agree very well with our analytical expressions.

It is noteworthy to point out that although the geometric
picture is intuitive, it is not a mathematically rigorous proof.
We therefore have done substantial numerical calculations to
support our conclusion and parts of our results are shown in
Table I. All results are in line with the geometric argument
and the topological invariants indeed have values proportional
to the power n of the quaternions. Another subtlety to note
is that we did not define the same quaternion for all four
examples. This has its root in the parity restriction for each
component of the quaternion. In the construction of H(n)

CI (k),
the symmetries require three components of the quaternion
q to have even parity under the exchange k → −k and the
remaining component odd parity. However, for H(n)

DIII(k), three
components should be odd and the other even. As a result,
different quaternions are chosen for these two classes. We
wish to underline the important fact that qn preserves the
parity property of q defined above. This crucial property
of quaternion algebra enables us to write down a unified
expression for Hamiltonians of each symmetry class with
arbitrary integer topological index.

Before ending the paper, we briefly remark that the quater-
nion tool proposed here can be extended straightforwardly
to the 1D and 2D cases although our focus in this paper
is on the 3D topological phases. We can set one (two) of
the quaternion components to zero for the 2D (1D) case and
observe that the map q −→ qn always preserves the subspace
of H spanned by {1,i, j}) ({1,i}). With the power mapping

qn, which preserves the symmetry of the Hamiltonian, starting
from one particular example of topological Hamiltonians with
the topological index � = ±1, we can always construct a
family of Hamiltonians that realize all the topological phases
with arbitrary integer �. Another interesting topic is to study
the application of our quaternion toolkit in interacting systems
and how interaction will affect our constructed Hamiltonians.
In the small interaction limit, our constructions should not be
affected because of the finite energy gap in the constructed
Hamiltonians.

In summary, we have proposed a powerful tool based on the
quaternion algebra to systematically construct tight-binding
Hamiltonians for all the topological phases in the periodic
table that are characterized by arbitrary integer topological
indices. The constructed Hamiltonians make the basis for
further studies of properties of these topological phases and
phase transitions and provide an important step for future
experimental realization.
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APPENDIX: SYMMETRY CHECK AND THE
CALCULATION OF TOPOLOGICAL INDICES

In this Appendix, we explicitly check the symmetries for
our constructed Hamiltonians. We also give some details for
the description of these Hamiltonians and the calculation of
their corresponding topological indices.

We first specify the definition of time-reversal (T ), particle-
hole (charge conjugation C), and chiral (S = T C) symmetries
in the momentum (k) space. A Hamiltonian is represented by a
finite matrixH(k) in the k space (kernel of the Hamiltonian). It
has the time-reversal symmetry if there exists a unitary matrix
Tm such that

TmH∗(k)T −1
m = H(−k). (A1)

Similarly, H(k) has the particle-hole symmetry if there is a
unitary matrix Cm such that

CmH∗(k)C−1
m = −H(−k). (A2)

The antiunitary nature of the time-reversal and the particle-hole
symmetries is manifested in the complex conjugate H∗(k) in
Eqs. (1) and (2). Finally, as S = T C, the chiral symmetry is
unitary and represented by (Sm = TmC∗

m)

SmH(k)S−1
m = −H(k). (A3)

Pertaining to the presence/absence of these symmetries, ten
classes of single-particle Hamiltonians can be specified, which
is intimately related to the classification of random matrices
by Altland and Zirnbauer (AZ) [26].
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1. Spin-singlet topological superconductor

We first prove that the Hamiltonian HCI for the spin-singlet topological superconductors (TSCs) constructed in Eq. (4) of the
main text has the CI-class symmetry with T 2 = 1 and C2 = −1. Let us denote the parity of a function f (k) by P [f (k)], with P = 1
(−1) for an even (odd) parity under the exchange k → −k. From the product table of the quaternion algebra, it is easy to check
that with P [(q)1] = P [(sin kx + sin ky + sin kz)] = −1 and P [(q)0] = P [(q)2] = P [(q)3] = 1, we have P [(qn)0] = P [(qn)2] =
P [(qn)3] = 1 and P [(qn)1] = −1 for any integer power n. The explicit expression of the Hamiltonian in Eq. (4) of the main text is

HCI(k) =

⎛
⎜⎜⎝

(qn)2 (qn)0 − i(qn)1 (qn)3 0
(qn)0 + i(qn)1 −(qn)2 0 (qn)3

(qn)3 0 −(qn)2 −(qn)0 + i(qn)1

0 (qn)3 −(qn)0 − i(qn)1 (qn)2

⎞
⎟⎟⎠ . (A4)

From the parity of qn, the time-reversal symmetry can be readily seen as

[HCI(k)]∗ = HCI(−k), (A5)

so Tm = I4, the 4 × 4 identity matrix. The particle-hole symmetry can be seen as

Cm[HCI(k)]∗C−1
m = −HCI(−k), (A6)

with Cm = I2 ⊗ σy , where σ = (σx,σ y,σ z) denote the Pauli matrices. Apparently, T 2 = 1 and C2 = −1 (as CmC∗
m = −I4), as

it is the case for the CI-class symmetry.
To calculate the topological invariant, we note that the system also has the chiral symmetry S = T C and the Q(k) matrix

(defined in the main text) can thus be brought into the block off-diagonal form by a unitary transformation [10,11]. At the half
filling (therefore inside the energy gap) and with a convenient gauge, direct calculation leads to

Q(k) =
(

0 b(k)
b†(k) 0

)
, b(k) = −

(
(qn)3 − i(qn)2 −i(qn)0 − (qn)1

−i(qn)0 + (qn)1 (qn)3 + i(qn)2

)/
E+(k)

with E+(k) = |q(k)|n, as mentioned in the main text.

2. Spin-triplet topological superconductor

The Dirac matrices (also known as the γ matrices) {γ 0,γ 1,γ 2,γ 3} are a set of 4 × 4 matrices, defined as

γ 0 =
(

I2 0
0 −I2

)
, γ 1 =

(
0 σx

−σx 0

)
, γ 2 =

(
0 σy

−σy 0

)
, γ 3 =

(
0 σ z

−σ z 0

)
,

The fifth γ matrix is defined by γ 5 = iγ 0γ 1γ 2γ 3 = σx ⊗ I2. Using the explicit form of these γ matrices, the Hamiltonian matrix
HDIII(k) can be written as

HDIII(k) =

⎛
⎜⎜⎝

0 0 −i(qn)0 + (qn)3 (qn)1 − i(qn)2

0 0 (qn)1 + i(qn)2 −i(qn)0 − (qn)3

i(qn)0 + (qn)3 (qn)1 + i(qn)2 0 0
(qn)1 − i(qn)2 i(qn)0 − (qn)3 0 0

⎞
⎟⎟⎠ . (A7)

The Q(k) matrix can thus be written as

Q(k) =
(

0 b(k)
b†(k) 0

)
, b(k) = −

( −i(qn)0 + (qn)3 (qn)1 − i(qn)2

(qn)1 + i(qn)2 −i(qn)0 − (qn)3

)/
E+(k),

with E+(k) = |q(k)|n. Note that for the quaternion q defined in Eq. (9) of the main text, we have P [(q)1] = P [(q)2] = P [(q)3] =
−P [(q)0] = −1 and thus P [(qn)1] = P [(qn)2] = P [(qn)3] = −P [(qn)0] = −1. With the parity properties, one can easily check
that

(σx ⊗ σy)[HDIII(k)]∗(σx ⊗ σy) = HDIII(−k), (A8)

(σy ⊗ σy)[HDIII(k)]∗(σy ⊗ σy) = −HDIII(−k). (A9)

So the symmetry matrix Tm = σx ⊗ σy and Cm = σy ⊗ σy with T 2 = −1 and C2 = 1 (as TmT ∗
m = −I4 and CmC∗

m = I4), as it is
the case for the DIII-class symmetry.
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3. Chiral topological insulator

The four Gell-Mann matrices used in the text are defined as

λ4 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ , λ5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ , λ6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ , λ7 =

⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠ .

The Hamiltonian matrix HAIII(k) for the chiral topological insulator has the following explicit form

HAIII(k) =
⎛
⎝ 0 0 (qn)1 − i(qn)2

0 0 (qn)3 − i(qn)0

(qn)1 + i(qn)2 (qn)3 + i(qn)0 0

⎞
⎠ .

The Hamiltonian HAIII(k) does not have time-reversal or particle-hole symmetry, but it has a chiral symmetry SmHAIII(k)S−1
m =

−HAIII(k) with the unitary matrix

Sm =
⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠ . (A10)
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