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Abstract. Given a set P of n uncertain points on the real line, each rep-
resented by its one-dimensional probability density function, we consider
the problem of building data structures on P to answer range queries of
the following three types: (1) top-1 query: find the point in P that lies in
I with the highest probability, (2) top-k query: given any integer k ≤ n
as part of the query, return the k points in P that lie in I with the
highest probabilities, and (3) threshold query: given any threshold τ as
part of the query, return all points of P that lie in I with probabilities
at least τ . We present data structures for these range queries with linear
or near linear space and efficient query time.

1 Introduction

In this paper, we study range queries on uncertain data. Let R be any real line
(e.g., the x-axis). In the (traditional) deterministic version of this problem, we
are given a set P of n deterministic points on R, and the goal is to build a data
structure (also called “index” in database) such that given a range, specified by
an interval I ⊆ R, one point (or all points) in I can be retrieved efficiently. It is
well known that a simple solution for this problem is a binary search tree over all
points which is of linear size and can support logarithmic (plus output size) query
time. However, in many applications, the location of each point may be uncertain
and the uncertainty is represented in the form of probability distributions [3,5,
11,19,20]. In particular, an uncertain point p is specified by its probability density
function (pdf) fp : R → R

+ ∪ {0}.
Let P be the set of n uncertain points in R (with pdfs specified as input).

Our goal is to build data structures to quickly answer range queries on P . In
this paper, we consider the following three types of range queries, each of which
involves a query interval I = [xl, xr]. For any point p ∈ P , we use Pr[p ∈ I] to
denote the probability that p is contained in I.
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Fig. 1. The pdf of an uncertain point
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Fig. 2. The cdf of the uncertain point in Fig. 1

Top-1 query: Return the point p of P such that Pr[p ∈ I] is the largest.
Top-k query: Given any integer k, 1 ≤ k ≤ n, as part of the query, return the

k points p of P such that Pr[p ∈ I] are the largest.
Threshold query: Given a threshold τ , as part of the query, return all points

p of P such that Pr[p ∈ I] ≥ τ .

We assume fp is a step function, i.e., a histogram consisting of at most c
pieces for some integer c ≥ 1 (e.g., see Fig. 1). More specifically, fp(x) = yi for
xi−1 ≤ x < xi, i = 1, . . . , c, with x0 = −∞, xc = ∞, and y1 = yc = 0. We assume
c is a constant. The cumulative distribution function (cdf) Fp(x) =

∫ x

−∞ fp(t)dt
is a monotone piecewise-linear function consisting of c pieces (e.g., see Fig. 2).
Note that Fp(+∞) = 1, and for any interval I = [xl, xr] the probability Pr[p ∈ I]
is Fp(xr) − Fp(xl). As discussed in [2], the histogram model can be used to
approximate most pdfs with arbitrary precision in practice, including the discrete
pdf where each uncertain point can only appear in a finite number of locations.

We also study an important special case where the pdf fp is a uniform dis-
tribution function, i.e., f is associated with an interval [xl(p), xr(p)] such that
fp(x) = 1/(xr(p) − xl(p)) if x ∈ [xl(p), xr(p)] and fp(x) = 0 otherwise. Clearly,
the cdf Fp(x) = (x − xl(p))/(xr(p) − xl(p)) if x ∈ [xl(p), xr(p)], Fp(x) = 0 if
x ∈ (−∞, xl(p)), and Fp(x) = 1 if x ∈ (xr(p),+∞). Uniform distributions have
been used as a major representation of uncertainty in some previous work (e.g.,
[10,11,16]). We refer to this special case the uniform case and the more general
case where fp is a histogram distribution function as the histogram case.

Throughout the paper, we will always use I = [xl, xr] to denote the query
interval. The query interval I is unbounded if either xl = −∞ or xr = +∞. For
the threshold query, we will always use m to denote the output size of the query,
i.e., the number of points p of P such that Pr[p ∈ I] ≥ τ .

Range reporting on uncertain data has many applications [2,11,15,18–20], As
shown in [2], our problems are also useful even in some applications that involve
only deterministic data. For example, consider the movie rating system in IMDB
where each reviewer gives a rating from 1 to 10. A top-k query on I = [7,+∞)
would find “the k movies such that the percentages of the ratings they receive
at least 7 are the largest”; a threshold query on I = [7,+∞) and τ = 0.85 would
find “all the movies such that at least 85% of the ratings they receive are larger
than or equal to 7”. Note that in the above examples the interval I is unbounded,
and thus, it would also be interesting to have data structures particularly for
quickly answering queries with unbounded query intervals.
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1.1 Previous Work

The threshold query was first introduced by Cheng et al. [11]. Using R-trees, they
[11] gave heuristic algorithms for the histogram case, without any theoretical
performance guarantees. For the uniform case, if τ is fixed for any query, they
proposed a data structure of O(nτ−1) size with O(τ−1 log n + m) query time
[11]. These bounds depend on τ−1, which can be arbitrarily large.

Agarwal et al. [2] made a significant theoretical step on solving the thresh-
old queries for the histogram case. If τ is fixed, their approach can build an
O(n) size data structure in O(n log n) time, with O(m+log n) query time. If the
threshold τ is not fixed, they built an O(n log2 n) size data structure in expected
O(n log3 n) time that can answer each query in O(m + log3 n) time. Tao et al.
[19,20] considered the threshold queries in two and higher dimensions. They pro-
vided heuristic results and a query takes O(n) time in the worst case. Recently,
Abdullah et al. [1] extended the notion of geometric coresets to uncertain data
for range queries in order to obtain efficient approximate solutions.

As discussed in [2], our uncertain model is an analogue of the attribute-
level uncertainty model in the probabilistic database literature. Another popular
model is the tuple-level uncertainty model [5,12,21], where a tuple has fixed
attribute values but its existence is uncertain. The range query under the latter
model is much easier since a d-dimensional range searching over uncertain data
can be transformed to a (d+1)-dimensional range searching problem over certain
data [2,21]. In contrast, the problem under the former model is more challenging,
partly because it is unclear how to transform it to an instance on certain data.

1.2 Our Results

We say the complexity of a data structure is O(A,B) if it is of size O(B) and can
be built in O(A) time. For the histogram case, we build data structures on P
for answering queries with unbounded query intervals, and the complexities for
the three type of queries are all O(n log n, n). The top-1 query time is O(log n);
the top-k query time is O(k) if k = Ω(log n log log n) and O(log n + k log k)
otherwise; the threshold query time is O(log n + m). Note that we consider c as
a constant, otherwise all our results hold by replacing n by c · n.

For the uniform case, we also present data structures for bounded query inter-
vals. For the top-1 query, the complexity of our data structure is O(n log n, n),
with query time O(log n). For other two queries, the data structure complexities
are both O(n log2 n, n log n); the top-k query time is O(k) if k = Ω(log n log log n)
and O(log n + k log k) otherwise, and the threshold query time is O(log n + m).

For the histogram case with bounded query intervals, Agarwal et al. [2] built a
data structure of size O(n log2 n) in expected O(n log3 n) time, which can answer
each threshold query in O(m+log3 n) time. Our results for the threshold queries
are clearly better than the above solution for the uniform case and the histogram
case with unbounded query intervals. Further, our algorithms are deterministic.

In Section 2, we give some observations. We discuss the uniform case and
the histogram case in Sections 3 and 4, respectively. Due to the space limit, all
lemma proofs are omitted and can be found in the full paper.
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2 Preliminaries

For each uncertain point p, we call Pr[p ∈ I] the I-probability of p. Let F be the
set of the cdfs of all points of P . Since each cdf is an increasing piecewise linear
function, depending on the context, F may also refer to the set of the O(n) line
segments of all cdfs. Recall that I = [xl, xr] is the query interval.

Lemma 1. If xl = −∞, then for any uncertain point p, Pr[p ∈ I] = Fp(xr).

Let L be the vertical line with x-coordinate xr. Since each cdf Fp is a mono-
tonically increasing function, there is only one intersection between Fp and L. It
is easy to know that for each cdf Fp of F , the y-coordinate of the intersection of
Fp and L is Fp(xr), which is the I-probability of p by Lemma 1. For each point
in any cdf of F , we call its y-coordinate the height of the point.

In the uniform case, each cdf Fp has three segments: the leftmost one is a
horizontal segment with two endpoints (−∞, 0) and (xl(p), 0), the middle one,
whose slope is 1/(xr(p)−xl(p)), has two endpoints (xl(p), 0) and (xr(p), 1), and
the rightmost one is a horizontal segment with two endpoints (xr(p), 1) and
(+∞, 1). We transform each Fp to the line lp containing the middle segment of
Fp. Consider an unbounded interval I with xl = −∞. We can use lp to compute
Pr[p ∈ I] in the following way. Suppose the height of the intersection of L and
lp is y. Then, Pr[p ∈ I] = 0 if y < 0, Pr[p ∈ I] = y if 0 ≤ y ≤ 1, Pr[p ∈ I] = 1
if y > 1. Therefore, once we know lp ∩ L, we can obtain Pr[p ∈ I] in constant
time. Hence, we can use lp instead of Fp to determine the I-probability of p.
The advantage of using lp is that lines are usually easier to deal with than line
segments. Below, with a little abuse of notation, for the uniform case we simply
use Fp to denote the line lp for any p ∈ P and now F is a set of lines.

Fix the query interval I = [xl, xr]. For each i, 1 ≤ i ≤ n, denote by pi the
point of P whose I-probability is the i-th largest. Based on the above discussion,
we obtain Lemma 2, which holds for both the histogram and uniform cases.

Lemma 2. If xl = −∞, then for each 1 ≤ i ≤ n, pi is the point of P such that
L ∩ Fpi

is the i-th highest among the intersections of L and all cdfs of F .

Suppose xl = −∞. Based on Lemma 2, to answer the top-1 query on I, it is
sufficient to find the cdf of F whose intersection with L is the highest; to answer
the top-k query, it is sufficient to find the k cdfs of F whose intersections with
L are the highest; to answer the threshold query on I and τ , it is sufficient to
find the cdfs of F whose intersections with L have y-coordinates ≥ τ .

Half-Plane Range Reporting. As the half-plane range reporting data struc-
ture [9] is important for our later developments, we briefly discuss it in the dual
setting. Let S be a set of n lines. Given any point q, the goal is to report all lines
of S that are above q. An O(n)-size data structure can be built in O(n log n)
time that can answer each query in O(log n + m′) time, where m′ is the number
of lines above the query point q [9]. The data structure can be built as follows.

Let US be the upper envelope of S (e.g., see Fig. 3). We represent US as an
array of lines l1, l2, . . . , lh ordered as they appear on US from left to right. For
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Fig. 3. Partitioning S into three layers:
L1(S) = {1, 2, 3}, L2(S) = {4, 5, 6},
L3(S) = {7, 8}. The thick polygonal chain
is the upper envelope of S.
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Fig. 4. Dragging a segment of slope 1 out
of the corner at qI : q∗ is the first point that
will be hit by the segment

each line li, li−1 is its left neighbor and li+1 is its right neighbor. We partition
S into a sequence L1(S), L2(S), . . ., of subsets, called layers (e.g., see Fig. 3).
The first layer L1(S) ⊆ S consists of the lines that appear on US . For i > 1,
Li(S) consists of the lines that appear on the upper envelope of the lines in
S \ ⋃i−1

j=1 Lj(S). Each layer Li(S) is represented in the same way as US . To
answer a half-plane range reporting query on a point q, let l(q) be the vertical
line through q. We first determine the line li of L1(S) whose intersection with
l(q) is on the upper envelope of L1(S), by doing binary search on the array of
lines of L1(S). Then, starting from li, we walk on the upper envelope of L1(S) in
both directions to report the lines of L1(S) above the point q, in linear time with
respect to the output size. Next, we find the line of L2(S) whose intersection
with l(q) is on the upper envelope of L2(S). We use the same procedure as for
L1(S) to report the lines of L2(S) above q. Similarly, we continue on the layers
L3(S), L4(S), . . ., until no line is reported in a certain layer. By using fractional
cascading [7], after determining the line li of L1(S) in O(log n) time by binary
search, the data structure [9] can report all lines above q in constant time each.

For any vertical line l, for each layer Li(S), denote by li(l) the line of Li(S)
whose intersection with l is on the upper envelope of Li(S). By fractional cas-
cading [7], we have the following lemma for the data structure [9].

Lemma 3. [7,9] For any vertical line l, after the line l1(l) is known, we can
obtain the lines l2(l), l3(l), . . . in this order in O(1) time each.

3 The Uniform Distribution

Recall that F is a set of lines in the uniform distribution.

3.1 Queries with Unbounded Intervals

We first discuss the unbounded case where I = [xl, xr] is unbounded and some
techniques introduced here will also be used later for the bounded case. Without
loss of generality, we assume xl = −∞, and the other case where xr = +∞ can
be solved similarly. Recall that L is the vertical line with x-coordinate xr.
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For top-1 queries, by Lemma 2, we only need to maintain the upper envelope
of F , which can be computed in O(n log n) time and O(n) space. For each query,
it is sufficient to determine the intersection of L with the upper envelope of F ,
which can be done in O(log n) time. Next, we consider top-k queries.

Given I and k, by Lemma 2, it suffices to find the k lines of F whose inter-
sections with L are the highest, and we let Fk denote the set of the above k
lines. As preprocessing, we build the half-plane range reporting data structure
(see Section 2) on F , in O(n log n) time and O(n) space. Suppose the layers of
F are L1(F), L2(F), . . .. In the sequel, we compute the set Fk. Let the lines in
Fk be l1, l2, . . . , lk ordered from top to bottom by their intersections with L.

Let li(L) be the line of Li(F) which intersects L on the upper envelope of the
layer Li(F), for i = 1, 2, . . .. We first compute l1(L) in O(log n) time by binary
search on the upper envelope of L1(F). Clearly, l1 is l1(L). Next, we determine
l2. Let the set H consist of the following three lines: l2(L), the left neighbor (if
any) of l1(L) in L1(F), and the right neighbor (if any) of l1(L) in L1(F).

Lemma 4. l2 is the line in H whose intersection with L is the highest.

We refer to H as the candidate set. By Lemma 4, we find l2 in H in O(1)
time. We remove l2 from H, and below we insert at most three lines into H such
that l3 must be in H. Specifically, if l2 is l2(L), we insert the following three
lines into H: l3(L), the left neighbor of l2(L), and the right neighbor of l2(L).
If l2 is the left (resp., right) neighbor l of l1(L), we insert the left (resp., right)
neighbor of l in L1(F) into H. By generalizing Lemma 4, we can show l3 must
be in H (the details are omitted). We repeat the same algorithm until we find
lk. To facilitate the implementation, we use a heap to store the lines of H whose
“keys” in the heap are the heights of the intersections of L and the lines of H.

Lemma 5. The set Fk can be found in O(log n + k log k) time.

We can improve the algorithm to O(log n + k) time by using the selection
algorithm in [14] for sorted arrays. The key idea is that we can implicitly obtain
2k sorted arrays of O(k) size each and Fk can be computed by finding the largest
k elements in these arrays. The result is given in Lemma 6 with details omitted.

Lemma 6. The set Fk can be found in O(log n + k) time.

Remark: The above builds a data structure of O(n log n, n) complexity that can
answer each top-k query in O(log n + k) time for the uniform unbounded case.

For the threshold query, we are given I and a threshold τ . We again build
the half-plane range reporting data structure on F . To answer the query, as
discussed in Section 2, we only need to find all lines of F whose intersections
with L have y-coordinates larger than or equal to τ . We first determine the line
l1(L) by doing binary search on the upper envelope of L1(F). Then, by Lemma
3, we find all lines l2(L), l3(L), . . . , lj(L) whose intersections have y-coordinates
larger than or equal to τ . For each i with 1 ≤ i ≤ j, we walk on the upper
envelope of Li(F), starting from li(L), on both directions in time linear to the
output size to find the lines whose intersections have y-coordinates larger than
or equal to τ . Hence, the running time for answering the query is O(log n + m).
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3.2 Queries with Bounded Intervals

Now we assume I = [xl, xr] is bounded. Consider any point p ∈ P . Recall that
p is associated with an interval [xl(p), xr(p)] in the uniform case. Depending on
the positions of I = [xl, xr] and [xl(p), xr(p)], we classify [xl(p), xr(p)] and the
point p into the following three types with respect to I.

L-type: [xl(p), xr(p)] and p are L-type if xl ≤ xl(p).
R-type: [xl(p), xr(p)] and p are R-type if xr ≥ xr(p).
M-type: [xl(p), xr(p)] and p are M-type if I ⊂ (xl(p), xr(p)).

Denote by PL, PR, and PM the sets of all L-type, R-type, and M -type of
points of P , respectively. In the following, for each kind of query, we will build an
data structure such that the different types of points will be searched separately
(note that we will not explicitly compute the three subsets PL, PR, and PM ). For
each point p ∈ P , we refer to xl(p) as the left endpoint of the interval [xl(p), xr(p)]
and refer to xr(p) as the right endpoint. For simplicity of discussion, we assume
no two interval endpoints of the points of P have the same value.

The Top-1 Queries. For any point p ∈ P , denote by Fr(p) the set of the
cdfs of the points of P whose intervals have left endpoints larger than or equal
to xl(p). Again, as discussed in Section 2 we transform each cdf of Fr(p) to a
line. We aim to maintain the upper envelope of Fr(p) for each p ∈ P . If we
compute the n upper envelopes explicitly, we would have an data structure of
size Ω(n2). To reduce the space, we choose to use the persistent data structure
[13] to maintain them implicitly such that data structure size is O(n). The details
are given below.

We sort the points of P by the left endpoints of their intervals from left to
right, and let the sorted list be p′

1, p
′
2, . . . , p

′
n. For each i with 2 ≤ i ≤ n, observe

that the set Fr(p′
i−1) has exactly one more line than Fr(p′

i). If we maintain the
upper envelope of Fr(p′

i) by a balanced binary search tree (e.g., a red-black
tree), then by updating it we can obtain the upper envelope of Fr(p′

i−1) by an
insertion and a number of deletions on the tree, and each tree operation takes
O(log n) time. An easy observation is that there are O(n) tree operations in total
to compute the upper envelopes of all sets Fr(p′

1),Fr(p′
2), . . . ,Fr(p′

n). Further,
by making the red-black tree persistent [13], we can maintain all upper envelopes
in O(n log n) time and O(n) space. We use L to denote the above data structure.

We can use L to find the point of PL with the largest I-probability in O(log n)
time, as follows. First, we find the point p′

i such that xl(p′
i−1) < xl ≤ xl(p′

i). It
is easy to see that Fr(p′

i) = PL. Consider the unbounded interval I ′ = (−∞, xr].
Consider any point p whose cdf is in Fr(p′

i). Due to xl(p) ≥ xl, we can obtain
that Pr[p ∈ I] = Pr[p ∈ I ′]. Hence, the point p of Fr(p′

i) with the largest
value Pr[p ∈ I] also has the largest value Pr[p ∈ I ′]. This implies that we can
instead use the unbounded interval I ′ as the query interval on the upper envelope
of Fr(p′

i), in the same way as in Section 3.1. The persistent data structure L
maintains the upper envelope of Fr(p′

i) such that we can find in O(log n) time
the point p of Fr(p′

i) with the largest value Pr[p ∈ I ′].
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Similarly, we can build a data structure R of O(n) space in O(n log n) time
that can find the point of PR with the largest I-probability in O(log n) time.

To find the point of PM with the largest I-probability, the approach for PL

and PR does not work because we cannot reduce the query to another query with
an unbounded interval. Instead, we reduce the problem to a “segment dragging
query” by dragging a line segment out of a corner in the plane, as follows.

For each point p of P , we define a point q = (xl(p), xr(p)) in the plane, and
we say that p corresponds to q. Similar transformation was also used in [11]. Let
Q be the set of the n points defined by the points of P . For the query interval
I = [xl, xr], we also define a point qI = (xl, xr) (this is different from [11], where
I defines a point (xr, xl)). If we partition the plane into four quadrants with
respect to qI , then we have the following lemma.

Lemma 7. The points of PM correspond to the points of Q that strictly lie in
the second quadrant (i.e., the northwest quadrant) of qI .

Let ρu be the upwards ray originating from qI and let ρl be the leftwards ray
originating from qI . Imagine that starting from the point qI and towards north-
west, we drag a segment of slope 1 with two endpoints on ρu and ρl respectively,
and let q∗ be the point of Q hit first by the segment (e.g., see Fig. 4).

Lemma 8. The point of P that defines q∗ is in PM and has the largest I-
probability among all points in PM .

Based on Lemma 8, to determine the point of PM with the largest I-probability,
we only need to solve the above query on Q by dragging a segment out of a corner.
More specifically, we need to build a data structure on Q to answer the following
out-of-corner segment-dragging queries: Given a point q, find the first point of Q
hit by dragging a segment of slope 1 from q and towards the northwest direction
with the two endpoints on the two rays ρu(q) and ρl(q), respectively, where ρu(q)
is the upwards ray originating from q and ρl(q) is the leftwards ray originating
from q. By using Mitchell’s result in [17] (reducing the problem to a point loca-
tion problem), we can build an O(n) size data structure on Q in O(n log n) time
that can answer each such query in O(log n) time.

Hence, for the uniform case, we can build in O(n log n) time an O(n) size data
structure on P that can answer each top-1 query in O(log n) time.

The Top-k Queries. To answer a top-k query, we will do the following. First,
we find the top-k points in PL (i.e., the k points of PL whose I-probabilities are
the largest), the top-k points in PR, and the top-k points in PM . Then, we find the
top-k points of P from the above 3k points. Below we build three data structures
for computing the top-k points in PL, PR, and PM , respectively.

We first build the data structure for PL. Again, let p′
1, p

′
2, . . . , p

′
n be the list

of the points of P sorted by the left endpoints of their intervals from left to right.
We construct a complete binary search tree TL whose leaves from left to right store
the n intervals of the points p′

1, p
′
2, . . . , p

′
n. For each internal node v, let Pv denote
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the set of points whose intervals are stored in the leaves of the subtree rooted at v.
We build the half-plane range reporting data structure discussed in Section 2 on
Pv, denoted by Dv. Since the size of Dv is |Pv|, the total size of the data structure
TL is O(n log n), and TL can be built in O(n log2 n) time.

We use TL to compute the top-k points in PL as follows. By the standard app-
roach and using xl, we find in O(log n) time a set V of O(log n) nodes of TL such
that PL =

⋃
v∈V Pv and no node of V is an ancestor of another node. Then, we

can determine the top-k points of PL in similarly as in Section 3.1. However, since
we now have O(log n) data structures Dv, we need to maintain the candidate sets
for all such Dv’s. Specifically, after we find the top-1 point in Dv for each v ∈ V ,
we use a heap H to maintain them where the “keys” are the I-probabilities of the
points. Let p be the point of H with the largest key. Clearly, p is the top-1 point of
PL; assume p is from Dv for some v ∈ V . We remove p from H and insert at most
three new points from Dv into H, in a similar way as in Section 3.1. We repeat the
same procedure until we find all top-k points of PL.

To analyze the running time, for each node v ∈ V , we can determine in O(log n)
time the line in the first layer of Dv whose intersection with L is on the upper enve-
lope of the first layer, and subsequent operations on Dv each takes O(1) time due
to fractional cascading. Hence, the total time for this step in the entire algorithm
is O(log2 n). However, we can do better by building a fractional cascading struc-
ture [7] on the first layers of Dv for all nodes v of the tree TL. In this way, the above
step only takes O(log n) time in the entire algorithm, i.e., do binary search only
at the root of TL. In addition, building the heap H initially takes O(log n) time.
Note that the additional fractional cascading structure on TL does not change the
size and construction time of TL asymptotically [7]. The entire query algorithm
has O(k) operations on H in total and the size of H is O(log n + k). Hence, the
total time for finding the top-k points of PL is O(log n + k log(k + log n)), which
is O(log n + k log k) by Lemma 9.

Lemma 9. log n + k log(k + log n) = O(log n + k log k).

If k = Ω(log n log log n), we have a better result in Lemma 10. Note that com-
paring with Lemma 6, we need to use other techniques to obtain Lemma 10 since
the problem here involves O(log n) half-plane range reporting data structures Dv

while Lemma 6 only needs to deal with one such data structure.

Lemma 10. If k = Ω(log n log log n), we can compute the top-k points in PL in
O(k) time.

To compute the top-k points of PR, we build a similar data structure TR, in a
symmetric way as TL, and we omit the details.

Finally, to compute the top-k points in PM , we do the following transforma-
tion. For each point p ∈ P , we define a point q = (xl(p), xr(p), 1/(xr(p) − xl(p))
in the 3-D space with x-, y-, and z-axes. Let Q be the set of all points in the 3-D
space thus defined. Let the query interval I define an unbounded query box (or
3D rectangle) BI = (−∞, xl) × (xr,+∞) × (−∞,+∞). Similar to Lemma 7 in
Section 3.1, the points of PM correspond exactly to the points of Q∩BI . Further,
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the top-k points of PM correspond to the k points of Q ∩ BI whose z-coordinates
are the largest. Denote by QI the k points of Q ∩ BI whose z-coordinates are the
largest. Below we build a data structure on Q for computing the set QI for any
query interval I and thus finding the top-k points of PM .

We build a complete binary search tree TM whose leaves from left to right store
all points of Q ordered by the increasing x-coordinate. For each internal node v
of TM , we build an auxiliary data structure Dv as follows. Let Qv be the set of
the points of Q stored in the leaves of the subtree of TM rooted at v. Suppose all
points of Qv have x-coordinates less than xl. Let Q′

v be the points of Qv whose
y-coordinates are larger than xr. The purpose of the auxiliary data structure Dv

is to report the points of Q′
v in the decreasing z-coordinate order in constant time

each after the point of qv is found, where qv is the point of Q′
v with the largest

z-coordinate. To achieve this goal, we use the data structure given by Chazelle [8]
(the one for Subproblem P1 in Section 5), and the data structure is a hive graph
[6], which can be viewed as the preliminary version of the fractional cascading
techniques [7]. By using the result in [8], we can build such a data structure Dv of
size O(|Qv|) in O(|Qv| log |Qv|) time that can first compute qv in O(log |Qv|) time
and then report other points of Q′

v in the decreasing z-coordinate order in constant
time each. Since the size of Dv is |Qv|, the size of the tree TM is O(n log n), and
TM can be built in O(n log2 n) time.

Using TM , we find the set QI as follows. We first determine the set V of O(log n)
nodes of TM such that

⋃
v∈V Qv consists of all points of Q whose x-coordinates less

than xl and no point of V is an ancestor of another point of V . Then, for each node
v ∈ V , by using Dv, we find qv, i.e., the point of Qv with the largest z-coordinate,
and insert qv into a heap H, where the key of each point is its z-coordinate. We find
the point in H with the largest key and remove it from H; denote the above point
by q′

1. Clearly, q′
1 is the point of QI with the largest z-coordinate. Suppose q′

1 is in
a node v ∈ V . We proceed on Dv to find the point of Qv with the second largest
z-coordinate and insert it into H. Now the point of H with the largest key is the
point of QI with the second largest z-coordinate. We repeat the above procedure
until we find all k points of QI .

To analyze the query time, finding the set V takes O(log n) time. For each
node v ∈ V , the search for qv on Dv takes O(log n) time plus the time linear to
the number of points of Dv in QI . Hence, the total time for searching qv for all
vertices v ∈ V is O(log2 n) time. Similarly as before, we can remove a logarith-
mic factor by building a fractional cascading structure on the nodes of TM for
searching such points qv’s, in exactly the same way as in [6]. With the help of the
fractional cascading structure, all these qv’s for v ∈ V can be found in O(log n)
time. Note that building the fractional cascading structure does not change the
construction time and the size of TM asymptotically [6]. In addition, building the
heap H initially takes O(log n) time. In the entire algorithm there are O(k) opera-
tions on H in total and the size of H is always bounded by O(k+log n). Therefore,
the running time of the query algorithm is O(log n + k log(k + log n)), which is
O(log n + k log k) by Lemma 9.

Using similar techniques as in Lemma 10, we obtain the following result.
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Lemma 11. If k = Ω(log n log log n), we can compute the top-k points in PM in
O(k) time.

In summary, for the uniform case, we can build in O(n log2 n) time an O(n log n)
size data structure on P that can answer each top-k query in O(k) time if k =
Ω(log n log log n) and O(k log k + log n) time otherwise.

For the threshold queries, we build the same data structure as for the top-k
queries, i.e., the three trees TL, TM , and TR. The query algorithmic scheme is also
similar. We omit the details.

4 The HistogramDistribution

In this section, we present our data structures for the histogram case, where I =
[xl, xr] is unbounded. Again, we assume w.l.o.g. that xl = −∞. Recall that L is
the vertical line with x-coordinate xr. In the histogram case, the cdf of each point
p ∈ P has c pieces; recall that we assumed c is a constant, and thus F is still a set
of O(n) line segments. Note that Lemmas 1 and 2 are still applicable.

For the top-1 queries, as in Section 3.1 it is sufficient to maintain the upper
envelope of F . Although F now is a set of line segments, its upper envelope is still
of size O(n) and can be computed in O(n log n) time [4]. Given the query interval
I, we can compute in O(log n) time the cdf of F whose intersection with L is on
the upper envelope of F .

For the threshold query, as discussed in Section 2 we only need to find the cdfs
of F whose intersections with L have y-coordinates at least τ . Let qI be the point
(xr, τ) on L. A line segment is vertically above qI if the segment intersects L and
the intersection is at least as high as qI . Hence, to answer the threshold query on
I, it is sufficient to find the segments of F that are vertically above qI . Agarwal
et al. [2] gave the following result on the segment-below-point queries. For a set S of
O(n) line segments in the plane, a data structure of O(n) size can be computed in
O(n log n) time that can report the segments of S vertically below a query point
q in O(m′ + log n) time, where m′ is the output size. In our problem, we need
a data structure on F to solve the segments-above-point queries, which can be
solved by using the similar approach as [2]. Therefore, we can build in O(n log n)
time an O(n) data structure on P that can answer each threshold query with an
unbounded query interval in O(m + log n) time.

For the top-k queries, we only need to find the k segments of F whose intersec-
tions with L are the highest. To this end, we can slightly modify the data structure
for the segment-below-point queries in [2]. The details are omitted.
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