An Empirical Study and some Improvements of
the MiniMac Protocol for Secure Computation

Ivan Damgard*, Rasmus Lauritsen*, and Tomas Toft**

Department of Computer Science, Aarhus University
{ivan,rwl,ttoft}@cs.au.dk

Abstract. Recent developments in Multi-party Computation (MPC)
has resulted in very efficient protocols for dishonest majority in the pre-
processing model. In particular, two very promising protocols for Boolean
circuits have been proposed by Nielsen et al. (nicknamed TinyOT) and
by Damgard and Zakarias (nicknamed MiniMac). While TinyOT has
already been implemented, we present in this paper the first implemen-
tation of MiniMac, using the same platform as the existing TinyOT im-
plementation. We also suggest several improvements of MiniMac, both
on the protocol design and implementation level. In particular, we sug-
gest a modification of MiniMac that achieves increased parallelism at no
extra communication cost. This gives an asymptotic improvement of the
original protocol as well as an 8-fold speed-up of our implementation. We
compare the resulting protocol to TinyOT for the case of secure com-
putation in parallel of a large number of AES encryptions and find that
it performs better than results reported so far on TinyOT, on the same
hardware.

1 Introduction

In Multi-party Computation (MPC), N players wish to compute a function
securely on privately held inputs, where security means that the result must be
correct, and be the only new information that is released about the inputs. This
must hold even if T players are corrupted by an adversary. In this paper, we
consider the case of active corruption (where the adversary takes full control
over corrupted players) of up to N — 1 players, so-called dishonest majority.
In several recent papers [2,6,5,7,9] it has been shown that we can obtain very
practical MPC protocols for dishonest majority using preprocessing.

The basic idea exploited is that, while dishonest majority precludes information-
theoretic (IT) constructions, the expensive and inefficient, computationally se-
cure (public key) cryptography can be pushed to a preprocessing phase. This

* The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, within part of
this work was performed; and from the CFEM research center, supported by the
Danish Strategic Research Council.

** Supported by the European Research Council Stating Grant 279447

phase is independent of not only the inputs, but also the function to be securely
computed. The “raw-material” generated allows the use of IT-secure protocols
in the online phase, i.e., protocols that are much more computationally efficient.
Two promising protocols have been proposed for the case of secure computa-
tion of Boolean circuits, namely the TinyOT protocol by Nielsen et al. [9] and
the MiniMac protocol by Damgard and Zakarias [7]. [7] presents a theoretical
comparison between the two: For security parameter &, it was shown that where
TinyOT requires each player to do ©(k) elementary bit operations per gate in
the circuit, MiniMac requires only O(log x) operations (or even O(1) for some in-
stantiations, when the number of players is large). The same overhead was found
for communication and the amount of preprocessing-data each player stores.

It is, however, very unclear whether these theoretical advantages translate to
greater efficiency in practice. Indeed, TinyOT has been implemented with promis-
ing results, and the ©(k) bit operations required per gate can in most cases be
performed in parallel using a single or small number of CPU instructions. On
the other hand, the fact that TinyOT has larger storage requirements and com-
munication complexity remains even on a massively parallel machine.

Our Contribution In this paper we present the first implementation of MiniMac.
We compare this to a TinyOT implementation running on the same hardware
with the goal of making a meaningful comparison of the two approaches in
practice. As benchmark, we use parallel computation of many AES encryptions
using a binary circuit; AES is often used as the de facto standard benchmark
and performing multiple parallel executions has practical relevance, e.g., when
encrypting data in counter mode. Additionally, we propose a new modification
of MiniMac which increases the efficiency of binary circuit evaluation in both
theory and practice. Our implementation is optimized for the two party case but
works for any number of players.

MiniMac is based on an error correcting code of length n and dimension k over
some finite field, F, and allows k parallel evaluations of some arithmetic circuit
over F. It further uses an IT-secure authentication scheme that is based on
the code; a forged message authentication code (MAC) will be accepted with
probability 27 where t = log(|F|) - (n — 2k + 1).

Our implementation uses a Reed-Solomon code over Fys with (n, k) = (256, 120)
or (255, 85), depending on the underlying implementation of operations on code-
words; this implies (at least) 128-bit security. We note that [7] suggests alter-
native constructions of binary codes based on algebraic geometry, however, the
constants involved are very large and no truly efficient encoding algorithm is
known, thus, using these were not seen as a viable approach.

Using Fos as the underlying field is a natural choice; elements can be encoded
as bytes and addressed separately, while the field is sufficiently small to allow
efficient multiplication through table-lookup. Further, Fos has characteristic two
implying that binary-XOR is simply addition.

Regarding the choice of (n, k), we strove to maximize parallel computation, i.e.,
maximize k. Since n is bounded by the cardinality of the field, Fos, we have
(n,k) = (256,120) when aiming for security level ¢ > 128. However, for these

parameters, our best encoding algorithm is quadratic: the naive multiplication
by the generator matrix. We found this matrix multiplication to be quite costly
in practice. As an alternative, we suggest to implement it using a variant of Fast
Fourier Transform (FFT) — 85 divides 255 which is the order of the multiplicative
group implying that roots of unity of order 255 and 85 exist in Fas. This reduces
encoding- and decoding-time, but requires that the input-size divides 255. This
sets (n,k) = (255,85), however, despite the reduced parallelization we found
that this still pays off.

In addition to the above implementation suggestions, we also present an im-
provement of the protocol when the overall goal is Boolean circuits. Taking a
closer look at the choice of field, we see that using a code over Fys with the
original MiniMac protocol to compute a Boolean circuit, implies that every bit
is encoded as a byte, i.e., we “waste” a factor of 8 in terms of space. We pro-
pose an optimization that allows us to use every bit in every data byte; this
increases parallelization to 8 - 120 = 960 or 8 - 85 = 680 instances. To reach this
goal, we redesign the multiplication operation in MiniMac: the original protocol
implements multiplication of data bytes as multiplication in Fas. Instead, we
compute bit-wise AND of two bytes. Our solution for this generalizes to other
characteristic 2 fields (and even other protocols, e.g., [6]) and while it requires
a small amount of extra local computation, it saves communication and stor-
age compared to the original MiniMac. More precisely, in [7] they compute the
cost per player per gate of their protocol, where the cost can be the amount of
data stored from the pre-processing, the communication and the computational
work. For the case of two players, these costs can be O(1),0(1), O(poly(n)), or
all three can be O(polylog(n)), depending on the underlying code used. For the
case of computing the same function many times in parallel, our solution obtains
O(log(n)), O(1), O(polylog(n)) and so is better than both previous solutions on
the parameters that matter most for efficiency. This is not only a theoretical
improvement: in our implementation, we obtain more than an 8-fold speedup.

Another performance boost was obtained by exploiting the structure of the AES
circuit: only AND gates require communication, and we form a number of batches
of gates, such that gates of one batch can all be executed in parallel. We collect
the required communication in packets that each span the entire batch. This way
we send fewer but larger packets and this turns out to reduce the time we wait
for communication to happen. However, profiling showed that significant time
was still spent waiting for communication. We therefore tried a new setup, where
several instances of the program were started at slightly different times. The idea
was that this would keep both CPUs busy almost all the time and give us larger
throughput. Indeed, we gained a factor almost 2 from this. Finally experimenting
with the best setting for compiler optimizations gave another factor of 2.

Combining all the tricks we came up with, we obtain an amortized time of about
4 ms per AES encryption with (at least) 128 bit security and about 9 seconds
latency. This is almost 10 times faster than the best time reported for TinyOT
evaluating the same circuit on the same hardware, where we note that this
TinyOT implementation runs with only 64 bit security and much larger latency.

In [8], a different secure AES implementation is reported on, based on the SPDZ
protocol [6]. It is a bit faster than ours, but is incomparable as the hardware is
different and the security level lower (40 bit). Most importantly, however, the
circuit used there is an arithmetic circuit over Fos plus some “bit-decomposition”
tricks to evaluate the S-boxes. Our study should be seen primarily as targeted
against at using MiniMac as efficiently as possible to evaluate a Boolean cir-
cuit. Finally, [8] reports that much of their efficiency comes from a very careful
scheduling of operations and messages. We have optimized our implementation
to some extent w.r.t. scheduling but based on measurements of the time we
spend waiting for messages, we believe there is further potential.

2 MiniMac

The MiniMac protocol supports the operations described in Figure 1. It does
this by representing values occurring in the computation in a certain format.
In the original MiniMac paper this representation is optimized for the case of
many players. In this paper, however, we concentrate on the two-player case and
therefore we set up the representation in a way that resembles more the way it is
done in the TinyOT protocol (which is inherently a two-player protocol). More
precisely, whereas in the original MiniMac, each secret value, as well a Message
Authentication Code (MAC), is additively secret shared among the players, we
keep the additive secret sharing of the value, but add instead a MAC on each
share. Whereas this is sub-optimal for the multiple player case, it makes the
check of Macs simpler and adds no significant other cost for two players.

Functionality Fuipc

Initialize: On input (init, k) from all parties, each initialize the store for block
length k.

Rand: On input (rand, P;, vid) from all parties P;, with vid a fresh identifier, pick
r + F* and store (vid, 7).

Input: On input (input, P;, vid,) from P; and (input, P;, vid,?) from all other
parties, with vid a fresh identifier, store (vid, x).

Add: On command (add, vidi, vida, vids) from all parties (if vidy, vida are present
in memory and vids is not), retrieve (vid1,), (vid2, y) and store (vids, € +y).

Multiply: On input (mult, vidi, vids, vids) from all parties (if vidi,vid2 are
present in memory and vids is not), retrieve (vidi,x), (vide,y) and store
(vidz, @ * y).

Output: On input (output, vid) from all honest parties (if vid is present in mem-
ory), retrieve (vid,x) and output it to the environment. If the environment
returns “OK”, then output (vid,) to all players, else output L to all players.

Fig. 1: The ideal functionality for MPC.

Representation of values A clear text value x is k-element vector over some finite
field, in our case always [Fos. We consider a systematic linear error correcting
code C of length n and dimension k, and let C(x) denote the encoding of « in C.
We also need to consider the Schur-transform C* of C, which is the linear span
of all products of form ¢; *ca, where ¢1, co € C' and * denote the coordinate-wise
product of vectors.

In our set-up, players P; and P, hold random n-element vectors a; and ao,
serving as (parts of the) keys for the MACs. A representation of x has the
following form:

[[:13]] = ((C(ml)a my, /8372)7 (C(.’Bg), ma, IB’L'l))

where the first component is held by P; and the second by P». It should hold
that @ = &1 + @, that my = MAC(x1) = as xC(x1) + 8,,, and by symmetry
that my = MAC(x2) = a1 x C(x2) + B,,.

A representation can be opened if players exchange C(x1),mq and C(x3), mo.
Py checks that C(x3) is indeed in C, and that my = MAC(x2) = ay xx2 + 3,
holds; P, does the symmetric check on what he receives. Then both players can
add the additive shares to get C(x) and hence .

This way to open a representation is secure against a corrupt P if 3,, is uni-
formly chosen, independently for each representation since then P, has no a
priory information on a;. From this it is easy to see, using essentially the same
argument as in [7], that P; will accept an incorrect value of C(x3) with prob-
ability at most S~ where S is the size of the field used and d is the minimum
distance of C. The point is that P, wold have to switch to a different code word
and hence change C(x2) in at least d positions. But then he could only pro-
duce the required MAC value by guessing a; in d positions. Of course, a similar
arguments works for a corrupt P;.

It is trivial to verify that [x] + [y] = [4 y] where the +-symbol denotes that
each player locally adds corresponding components he knows from the represen-
tations.

xy1?

We can easily define a similar representation [x]*, this is exactly the same as
[x], except that the code C* is used for encoding. This will mean that the MACs
can now be cheated with probability S—¢ where d* is the minimum distance of
C*. This is a potential problem since in general d* < d, so we need to take care
when we choose C.

Now, to multiply a value on the representation with a publicly known k-vector
u, u is turned into a codeword, C'(u) and then we define

C(u) = [z] = ((C(u) * C(x1), C(u) * my, C(u) * B,,),
(C(u) * C(x2),C(u) * my,C(u) x3,,).

It is easy to see that this is indeed a well-formed representation of w*x, however,
using the code C*, so we can write this as C(u) * [z] = [u * z]*.

We can also add a public constant u to a representation, namely we define
C(u) + [z] = ((C(u) + C(z1), m1, B,,), (C(x2), M2, By, — a2 *u)) = [u+].

The protocol Ilypc using this representation and its linear properties is de-
scribed in Figure 2. In the original protocol [7] there was also a sub-protocol for
permuting entries internally in the represented vectors. However, since we only
want to do several instance of one computation in parallel, we do not need this
step.

Protocol Ilvpc

Initialize: The parties first invoke the preprocessing to get a sufficient number
of multiplication triples ([a], [b], [c]"), random values and single values ([r]),
(Is], [s1°), [£]:

Rand: The parties take an available single [¢].

Input: To share P;’s input x;, take an available single [r] and do the following:

1. [r] is opened privately to P; only.

2. P; broadcasts € + C(x;) — C(r).

3. The parties verify that € is a codeword and if so, compute [x;] < [r] + €.
Add: To add representations [x], [y], parties locally compute [x+y] < [x]+ [y].
Multiply: To multiply [«], [y], parties take a triple ([a], [b],[c]") and a pair of

random values [s], [s]* from the set of the available ones and do:

1. Open [x] — [a] to get € and [y] — [b] to get § to every player (note that

€ and § are code words in C).

2. Compute [z * y]* < [c]* + €= [b] + 6 * [a] + € x 6.

3. Open [z = y]"—[s]" to every player who gets o* € C*. P, extracts xxy—s

and encodes this value into a codeword o € C' which he broadcasts.

4. All players check that o*, o are codewords for the same value and then

compute [z * y] «+ o + [s].

Output: This stage is entered when the players have [y]. In the [-] MACs are
checked immediately and thus the players do the following:

1. [y] is opened privately to each player P;.

Fig. 2: The online protocol.

2.1 Reed-Solomon codes

MiniMac[7] requires that the code C and its Schur transform C* are systematic.
In this section we recall how Reed-Solomon works, what it means for a code to
be systematic and how it is achieved for Reed-Solomon which is not systematic
out of the box.

A Reed-Solomon code is an error correcting code described by three parameters:
(n,k,d) where n is the length of the code, k is the dimension (the length of
messages that can be encoded) and d the distance of the code (the amount

of redundancy). There are two algorithms, one for encoding a message into a
codeword and one for checking a codeword is valid.

To encode a message of k field elements say a = [aq, ..., ax—1] as a Reed-Solomon
codeword we consider the polynomial fo(z) = ap + a1z + -+ + ap_125 1 of
degree k — 1. For n > k distinct points vj,j = 0,...,n — 1 we define the vector
¢ = (fa(vo),-.., fa(vn—1)) to be a codeword for a. Evaluating a polynomial
fa in n distinct points is strongly connected to n by k Vandermonde matrices,
Vixk- Encoding a polynomial f, corresponds to multiplying such a Vandermonde
matrix with the column vector a = (ag, ...,ar_1)7 as follows:

’U8 vo~-~v§_1_ ag
v vy - v’f_l ay
Vaxk-a = . . =
00 vy e oF | ag—
k—1
ap +ai1vo + -+ ag-19, fa(vo)
k—1
ap +ai1v; + -+ ag-19; fa(v1)
Lag + a1 +vn + -+ ap_qvh ! fa(vn)

Observe that from k points from a codeword we can find our message a (the
coefficient of f,) again using interpolation. Thus, one naive way to validate a
given codeword, ¢ is to go through each of the 2¢ subsets of k elements from ¢
and check that each interpolate to the same message a.

As noted in the beginning of this section this way of encoding messages is not
systematic in the following sense: A systematic code is a code where the encoded
message directly appears in fixed positions of the codeword. In our case we will
have the first k positions of a codeword to be the actual encoded message.

To encode a systematic Reed-Solomon codeword we fix an encoding matrix V,,
where n is the desired codeword length and k the length of our messages. Then
we take the upper k x k matrix Vi of V,,xx which by construction is guaranteed
to be invertable and do the following:

Co = Qo

-1 T Ck—1 = Q-1
Vaxk(Viexk)”a” =c o

Cpn—1

We take F = ank(kak)_l to define our encoding matrix. Notice that the first
k rows of E will yield the k x k identity matrix, ensuring systematic codewords
as desired.

Now it is easy to check whether a vector is a codeword, namely given ¢ we
multiply £ with the column vector consisting of the first k entries in ¢, and
check the result yields ¢ again e.g. E[cy,...,cx_1]" Z ¢. If not the codeword is
invalid.

As noted in the introduction, Fas is a natural choice as an underlying field.
In particular as efficient encoding is important for MiniMac, we benefit from
Fos being small enough that multiplication can be done by table look-up. With
respect to Reed-Solomon the choice of Fys introduces some restrictions on the
parameters (n,k,d). Namely, that as there are only 256 elements, the length
of a (checkable) Reed-Solomon code can be at most 256, as we need a distinct
evaluation point for each codeword position. Furthermore, the error probability
for the MACs is at most 2567 ; aiming for 128-bit security implies a minimum
distance of (at least) 16 field elements for C*. We can summarize the restrictions

we get on the Reed-Solomon code parameters as follows:

— n < |Fas| = 256 - The length of the codewords can be at most 256.

— d' = min(d,d*) > 16 - Altering a message to another codeword implies
modifying d’ positions.

— k< (n—d)/241-1f C has dimension k it is generated from polynomials of
degree k — 1, so the Schur transform is generated from polynomials of degree
2(k —1) and hence has minimum distance d* = n —2(k —1). For d* = 16 we
get £ < 121 when n = 256. We have chosen to round this to £k = 120 as this
slightly simplifies implementation.

2.2 Preprocessing

We will not explicitly consider the preprocessing in this paper. Note, however,
that since MACs are set up as in [9] and our field is characteristic 2, it is straight-
forward to modify the TinyOT preprocessing to obtain the one presently needed.

3 Evaluation and Comparison with TinyOT

In this section we evaluate MiniMac in practice. To put our work in perspective
we wish to compare MiniMac to the previous state of the art protocol, TinyOT,
in [9]. We present performance numbers for AES encryption for both protocols
in our framework and their interpretation.

3.1 Empirical setup and performance measurements

In the following empirical study of TinyOT and MiniMac, we use the same two
computers on an Aarhus University’s network. Both machines have the following
specifications:

In many of our experiments we start multiple processes on the two test machines
that pair-wise execute the protocol to maximize CPU and network utilization.
When more pairs of processes are executing the protocol a third machine, the

CPU Intel(R) Xeon(R) CPU X3430 @ 2.40 GHz
CPU op-mode(s) 32-bit, 64-bit

CPU(s) 4

Thread(s) per core 1

CPU MHz 2393.859

L1d cache 32K

L1i cache 32K

L2 cache 256K

L3 cache 8192K

RAM 32 GB

Net Gigabit LAN with 0.215 ms avg. latency measured using the ping tool.

Fig. 3: Hardware spec.

Monitor, listens for all of them to report ready. When all processes are ready
the Monitor broadcasts a “Go!” signal and records the time. When the pairs of
processes running the protocol reports back to the Monitor that they are done
the Monitor records the time of the last process. These two numbers are recorded
as the start and end time of the experiment and their difference is taken to be
the measured elapsed time of the experiment.

In summary performance numbers are presented in tables with these columns:

Instances This column report how many protocol instances are run in parallel.
That is, the number of processes started on each of the two test machines
pair-wise carrying out the protocol.

Total (ms) This column reports on the total execution time in milliseconds.
For one instance, this is also the latency, e.g. the time from initiating com-
putation until some result is ready.

No AES This reports the total number of single block 128-bit AES encryptions
carried out.

Time per AES (ms) This column shows the amortized time in milliseconds
used per AES circuit.

To even out fluctuations, every line in tables like the one below reports on the
mean time from at least five runs. When appropriate, we present results with in
a 95% confidence interval, indicated as 35 & 8 ms for an experiment with mean
35 with a 95% confidence interval in [27;43] ms.

Instances |[No AES|Total Time (ms) |Time per AES (ms)
3 102000 960 380 £69 ms

Fig.4: An example performance measurement, these numbers are made up.

3.2 The benchmark - AES circuit and relevance

We run our experiments with a binary AES circuit encrypting one block of
plaintext with a 128 bits key. The key is additively secret shared between the
two test machines. The plain-text to encrypt is publicly known as well as the
circuit gates. Both test machines learns the cipher-text but learns nothing new
about the key. There are several practical scenarios where key material split
between several servers might mitigate a potential compromise of one server.
Our concrete circuit has 6800 AND-gates and 26816 XOR-gates.

Throughout all experiments MiniMac is run with at least 128-bit security.

3.3 MiniMac test runs with no optimizations

In this Section we run our implentation with all optmizations and tricks turned
off to present a baseline of performance. This baseline is compared to TinyOT
also implemented in our framework.

To only measure the AES circuit we exclude input and output gates. Thus when
running our experiments all MiniMac processes run to the point where all parties
has completed their input gates. Likewise, when the last XOR-gates of the circuit
is computed the computation is recorded as complete before running any of the
output gates.

Instances (No AES|Total Time (ms) |Time per AES (ms)
1 120 161651 1347 + 1243

2 240 128283 644 £ 578

4 480 188824 393 £ 138

8 960 264596 144 £ 233

16 1920 598799 311 £+ 108

Fig. 5: Running MiniMac without tricks and optimizations.

3.4 Introduction to TinyOT

The protocol in [9] is nicked named TinyOT. MiniMac and TinyOT are both
targeted at evaluating binary circuits. TinyOT uses Oblivious Transfer to obtain
multiplication triples as described in [1].

First a short piece of history about TinyOTs implementation. A great deal of
work was put in to implementing of TinyOT in Java for the publication and the
performance-numbers presented in [9]. The best times achieved there were on a
gigantic circuit doing 16384 AES encryptions in parallel. With this set-up, they
achieved 32 ms amortised time per AES block. This circuit was not available to
us here as it was custom built into a circuit generator written in Java.

Later Nielsen et. al. did experimentation with implementing TinyOT in C++.
This later C++ implementation has been adapted to our set-up in plain C.

This allows us to measure TinyOT performance on a single AES circuit in our
framework. It is faster than the Java implementation used in [9] for one instance,
probably because of the cost involved in starting up a Java process.

3.5 Empirical results with TinyOT

The table below presents TinyOT runs on the test circuit in our setup. To get
some parallelism we try to run several TinyOT processes. From the numbers
it is evident that running multiple TinyOT processes in parallel actually hurts
performance making each AES circuit slower. The explanation for this is that
TinyOT exhausts the CPU resource on our test machines, probably in part
because the administration involved in running several separate processes hurts
performance.

Instances (No AES|Total Time (ms) |Time per AES (ms)
1 1 1079 1079 £ 251

2 2 1414 707 £ 183

4 4 4740 1185 + 229

8 8 10451 1306 £ 187

16 16 41998 2624 + 261

Fig. 6: Running TinyOT (the C version) on one instance of our AES circuit.

4 MiniTrix
In this section we boost MiniMac in a number of ways.

4.1 Making the protocol symmetric for Multiplications

In MiniMac one player has a special role when transforming [o]* back to [o]
where all players wait on one player to do the re-encoding of o as codeword in
C. This happens both when multiplying with a public constant and when mul-
tiplying two secret values. This step, transforming a C* codeword to C requires
communication in the order of 2/N-codeword for N players.

With this trick we make the protocol symmetric, by opening [o]* among all
players. Now each party in parallel can extract (o) and reencode it in C. This
increases the overall communication complexity from 2N to N2, however for
small N and in particular in the two party case this makes no difference, and
evens out the workload for the parties. However, we did not see any significant
impact of this optimization.

4.2 Use Fast Fourier Transform for encoding

The naive MiniMac implementation spends most of its CPU-time in matrix by
vector multiplications during the encoding of codewords.

Naive matrix by vector multiplication is quadratic in the length of the codeword,
n, and hence there is a lot to gain by reducing this using the Fast Fourier
Transform (FFT[4,3]).

In its basic form, FFT can be thought of as a recursive algorithm for multiplying
a vector by an n X n Vandermonde matrix M, or its inverse. In order for this to
work, the matrix must contain powers of an n’th root of unity. More specifically,
starting indices from 0, the (7, 7)’th entry in the matrix should be w*, where w™ =
1. We call this matrix M,,. If we think of a vector & as containing coefficients
of a polynomial of degree (at most) n — 1, then computing M,z will evaluate
the polynomial in the points w®, w?, ..., w™ ™!, it can therefore be used for Reed-
Solomon encoding.

FFT works by breaking the problem into two instance of size n/2 each, and in
order for this to work recursively, it is usually assumed that n is a two-power.
In this case, the algorithm takes time O(nlogn) field multiplications. However,
even if n is not a two-power but factors into smaller primes, variants of the
algorithm can still be used to break the problem into smaller pieces and improve
performance.

In our field Fys, the multiplicative group has order 255, which factors into 3-5-17.
The field therefore contains a root of unity w of order 255, which means that
w? is a root of unity of order 85. This allows us to use a Reed-Solomon code
of length 255 and dimension 85, where all the required operations can be done
using (a variant of) FFT:

Systematic encoding can be done by multiplying the data vector & by the 85 x 85
matrix Mu},l to get y containing coefficients of a polynomial that evaluates to
the coordinates of & in the points (w?)?, i = 0...84. Then we compute M,y to
get the full codeword. Note that the protocol only requires to encode in C, not in
C*. We can test if ¢ is in C' (or C*) by computing M e. This should reconstruct
the polynomial underlying the purported codeword, and then we simply test if
the degree is low enough.

Even using one level of recursion in FFT reduces significantly the work we need
for these operations. Because 17 divides the size of both matrices, we can break
both problems in 17 smaller pieces, and for multiplication by M,,, for instance,
this reduces the work from 2562 = 65536 field multiplications to 255 % 15 + 255
17 = 8160.

4.3 Preprocessing dedicated for Binary circuits

Minimac provides secure field arithmetic, and basing everything on Fy directly
seems natural if the overall goal is secure Boolean circuit evaluation. However,
constructing binary codes with the right properties is non-trivial as explained
earlier. In this paper we solved this issue by using codes over Fys. But this means
that, although every data vector we encode will have binary entries, positions

Instances |[No AES|Total Time (ms) |Time per AES (ms)
1 85 53699 631
2 170 59505 424
4 340 79092 207
8 680 107512 146
16 1360 257609 115

Fig. 7: Running a varying number MiniMac instances using FFT encoding.

in the resulting codeword will be bytes where only the least significant position
contains data; all other bit positions are identically 0. It is natural to ask if we
can exploit all eight positions in each data byte. Thus, the goal here will be to
evaluate not k, but 8k (log |F| - k in general) identical circuits in parallel, using
the same code as before and therefore (ideally) at the same cost.

We can certainly encode a vector x that contains data in all bit positions, to get
[x], and our addition [x] + [y] = [x+y] indeed implements 8k XOR operations
in parallel, simply because the addition in Fgs is the same as bit-wise XOR on
bytes.

This means that we just need to redesign the multiplication protocol so that
from [x], [y], we can compute [x Ay], where for € = (x1,...,2x),y = (Y1, .-, Yk)
we define [x Ay] = (z1 Ay, ..., Tk A Yk), and where x; Ay; denotes bit-wise AND
on bytes.

To get started, let us recall the MiniMac multiplication protocol (since we are
in characteristic 2, we simplify some expressions by replacing some minus signs
by plus).

To multiply [z], [y], parties take a triple ([a], [b], [c]*) and a pair of random
values [s], [s]* from the set of the available ones and do:

1. Open [x] + [a] to get € and [y] + [b] to get to every player.

2. Compute [x * y]* < [c]* + € * [b] + & * [a] + € * & to every player.

3. Open [x * y]* + [s]* to every player who gets o* € C*. P| extracts x*y+ s
and encodes this value into a codeword o € C' which he broadcasts.

4. All players check that o*, o are codewords for the same value and then
compute [z x y] + o + [s].

Note here that € and § are codewords. In general for ¢ € C we will let C~(c)
denote the k-vector that ¢ encodes. The reader should notice that the reason
why step 2 above works is that C~1(e) =« +a and C~1(8) =y + b.

Now, the idea is to change the computation in step 2. above. Instead we will
compute:

[z Ayl* =[CTH @) ACTH O] +[CT'(e) Aa]* +[CTH(8) Ab]" + [anb]*

It is easy to see that this equation is true, simply because the A operation
distributes over bit-wise XOR just like the x-operation does. Essentially, we
are simply using Beaver triples for 5, where the product is stored as a Fas-
element. Note that it makes sense to add [] and []*-representations since our C'

is contained in C*. Therefore [C71(8) A C~1(€)] is also a []*-representation of
the same vector (albeit not a random such representation).

Now we need to figure out how we can compute the 4 terms on the right-hand
side. The last term can be obtained by requiring that the preprocessing supplies
us with [¢]* = [a A b]*. Also, the first term can be computed on public values
by all parties.

The “mixed terms” [C~1(e) Aa]*, [C~1(8) Ab]* constitute a challenge. To com-
pute these, the multiplication triples from the preprocessing phase are extended
so that in addition to [a] and [b], the “bit decomposition” of a and b is also
provided.

To explain what this means we need some notation. Say a = (aq, ..., ax) where
each a; € Fas. Let (a;); be the byte that equals a; in the ¢’th bit position and
is 0 elsewhere. Furthermore, (a;);; denotes (a;); shifted down ¢ — 1 positions,
so that the “important” bit is in the least significant position. Then we define
a; = ((al)i, ceeey (ak)i) and a; = (((11)“.‘..7 (ak)“—).

The assumption on the preprocessing now is that we that we are given [a;], [b;]
for i = 0...7.

One can now observe that we can compute the missing terms as follows:

7
C(C™1(8)) *[as) = Y _ICT ()1 * ai]* = [C7'(8) A a]”

7
1=0 =0

Note that we multiply by the public constant C(C~1(§),;) using the normal
MiniMac procedure that works over Fos. Hence the result will indeed be a vector
in the []*-representation. That the vector inside the representation is indeed
C~1(8) A a can be seen from the fact that each byte in C~*(8),; has the value 0
or 1, depending on the value of the corresponding bits from C'~1(§). It therefore
acts as a “selector” that decides whether to include the bits from a;.

A final modification concerns that last two steps in the original protocol, where
the result is converted from []* to []-representation. This costs communication
that we would like to avoid. To do this, consider what happens if we simply omit
this conversion. This would mean that data would be passed from one gate to
another using the []*-representation instead. This presents no problem for doing
linear computation, as the [[*-representation is also linear.

For the multiplication protocol to take input in the []*-representation, we can
just modify the preprocessing so that it would supply [a]*,[b]* in stead of
[a], [b]. The only effect of this is that then €,d will be C*-codewords, but this
has no effect on the rest of the protocol, since we anyway need to decode them
and re-encode the bits in C; thus, C* ! will simply denote the extraction of the
first k data-entries of a C* codeword.

To summarize, the multiplication triples have been replaced by a different set of
data, namely

la]*, [b]*, [@Ab]*, {[a:]| i=0...7}, {[b:]|¢i=0..7}

The multiplication protocol works as follows:

1. Open [x]* + [a]* to get € and [y]* + [b]* to get 4, for every player. The
following steps are then done using local operations only.

Compute [C* ' (e) A C*7(8)]

Compute ZZ 0 C(C*71(8)) * [ai] = [C* () A a]*.

Compute Zz 0 C(C*H(e) i) * [b:] = [C* ' (e) A B]™.

Compute [C*) AC*H(€)]+[C* () Aa]* +[C* () Ab]* +[aAb]* =
[= Ayl

A

Theoretical Analysis of the Binary Preprocessing It is easy to see that
the above methods generalizes to any field of characteristic 2. In general the field
should be of size O(log(n)) to allow the use of Reed-Solomon codes and hence
allow for efficient encoding using FFT.

Following [7], we compute the cost of the protocol per player per gate in the
circuit we compute. By simple inspection, one sees that the storage needed from
the preprocessing is O(log(n)) (namely O(1) field elements). The communication
is O(1) bits because we only do 2 openings in each multiplication protocol,
and each such protocol does log(n) AND gates. Finally the computational work
s O(polylog(n)) bit operations due to the use of FFT. As explained in the
Introduction, this improves on the original MiniMac for communication and
computational work. We also save one round of communication.

Experimentation and Performance numbers In the above we actually
present two tricks. The first trick allows us to utilize all eight bits of each field
element. We call this the bit-packing trick. In the second trick we reduce the
communication complexity of the protocol by removing the down conversion
from codewords in the Schur transform to codewords in C, we call this the zero-
degree constants trick because it takes advantage of the fact that all constants
in our circuit is the same value repeated many times and thus the underlying
encoding polynomial must be constant.

Instances |No AES|Total Time (ms) |Time per AES (ms)
1 960 58127 60 £ 2
2 1920 104840 76 £ 6
4 3840 224146 58 £ 2
8 7680 591523 ==
16 15360 1094454 71£6

Fig.8: Running MiniMac with bit-packing-trick only, with standard matrix en-
coding

Instances |[No AES|Total Time (ms) |Time per AES (ms)
1 680 19410 24+ 4

2 1360 36235 26 &+ 3

4 2720 71082 24 + 8

8 5440 196322 34 £ 30

16 10880 428458 39 £ 1

Fig.9: Running MiniMac with bit-packing-trick only, with Fast Fourier Trans-
form encoding

4.4 Simultaneous multiplication gates

The present optimization is based on the observation that network utilization is
much higher for large batches of data. Thus, collecting a larger amount of data
before communication should give better performance.

In the previous sections our MiniMac implementation was general and works
even if the circuit is streamed, e.g. without any knowledge of what is coming
ahead. If our circuit description is extended with hints about which gates can be
run simultaneously, then the protocol can be made to run faster. In particular, we
extend our implementation to use such hints to compute blocks of multiplication
(AND) gates. The hints that we allow in the circuit description describe how
many of the following multiplications are independent (e.g. the number of AND
gates in the following that will not read the results of each other).

Lets us recap the communication pattern in MiniMac during a multiplication
from one players pointer of view:

1 The codewords for § and € are sent to every other player along with their
MACs. This requires 4+nx N bytes of communication. Where n is the length
of a codeword and N is the number of players.

2 Receive § and € with MACs from every other player.

3 Local computation, including checking the incoming MACs.

The idea is to collect say M independent AND gates before initiating commu-
nication. Then on the M’th gate the peers exchange M - and e-values with
MAC:s.

Instances (No AES|Total Time (ms) |Time per AES (ms)
1 960 55917 58 + 20

2 1920 95321 70 £ 56

4 3840 205667 85 £ 148

8 7680 334529 43 + 24

16 15360 282940 42 £ 20

Fig. 10: Running MiniMac with bit-packing-trick and simultaneous multiplica-

tion trick, with matrix encoding

Instances |[No AES|Total Time (ms) |Time per AES (ms)
1 680 14313 21 £2

2 1360 27893 28 + 22

4 2720 69452 25+ 4

8 5440 140540 25+ 6

16 10880 257556 23 £ 3

Fig.11: Running MiniMac with bit-packing-trick and simultaneous multiplica-

tion trick, with FFT encoding.

4.5 Fast encoding of binary data

One should notice that in the above multiplication protocol we need to encode
C*_l(e)u for i = 0...7. However, each entry in these vectors is 0 or 1, due to
the shift down we did. Therefore, we can encode much faster than in general by
simply XOR-ing together those rows of the generator matrix that correspond
to positions in the vector that are 1. Packing bytes together in word-size chunk

allows us to do this on several bytes using one CPU instruction.

Instances (No AES|Total Time (ms) |Time per AES (ms)
1 960 18060 18£1

2 1920 37614 19+ 6

4 3840 118878 28 +£10

8 7680 252111 18 +10

16 15360 304846 19 £7

Fig. 12: Running MiniMac with bit-packing-trick, zero-degree-constants and si-

multaneous multiplication trick, with matrix bit encoding trick.

Instances |[No AES|Total Time (ms) |Time per AES (ms)
1 630 9962 14+1
2 1360 17553 14+5
4 2720 39886 15+£5
16 10880 195992 18£7

Fig. 13: Running MiniMac with bit-packing-trick, zero-degree-constants and si-

multaneous multiplication trick, with FFT bit encoding trick.

4.6 Final Optimizations

Just before the deadline for this version of the paper, we did some final experi-
ments that greatly improved the performance. First, we observed from profiling

the program that a lot of time was spent waiting for data to arrive on the com-
munication line. In other words, both players had idle time we should be able to
exploit. We therefore tried starting 8 copies of our original process with a time
interval of 200ms in between them, hoping to allow some instances to compute
while others were waiting. This improved the time per AES instance to about 9
ms (using 8 copies of the program seemed experimentally to be the best choice).
Finally, we experimented with compiler flags and found a setting that allowed
better exploitation of the CPU. This gave another factor of about 2, so that we
end up with about 4 ms per AES.

5 Conclusion

We have proposed several optimisations of the MiniMac protocol, both on im-
plementation and protocol level. In the fastest configuration of MiniMac using
Fast Fourier transform and bit encoding trick with simultaneous multiplications
gates we evaluate an AES circuit in 4 ms on our test setup. As far as we are
aware, this is the fastest published actively secure two-party implementation of
AES with 128-bit security based on a Boolean circuit.

6 Future directions

All experiments in this paper are run on the same AES circuit. To improve
performance one may try to optimize the AES circuit, for instance by reducing
further the number of AND gates. Since a lot of the description of AES uses
arithmetic over Fys it seems natural to try an arithmetic circuit over Fos. How-
ever, the circuits of this type that we know of are all significantly larger than
the binary circuit we use here. However, it is likely that adding the bit decom-
position trick used in [8] could help here, so this seems an obvious direction to
try in future work. However, AES leads to very specialized circuits, so it natural
to broaden the scope and consider other binary circuits, for instance for hash
functions such as SHA-1.

During our work with MiniMac many Operating System dependent obstacles
has been identified. In particular the handling of when the TCP actually sends
data. It is possible that tweaking Linux network stack parameters, and/or other
strategies for better scheduling may increase throughput further.

7 Acknowledgements

We would like to thank Nigel Smart, Stefan Tillich and their crew at Bristol
for providing a selection of excellent circuits at http://www.cs.bris.ac.uk/
Research/CryptographySecurity/MPC/. Also we would like to thank Jesper
Buus Nielsen for providing source code for the TinyOT C++4 implementation.

http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

References

1. Donald Beaver. Efficient multiparty protocols using circuit randomization. In
CRYPTO, pages 420-432, 1991.

2. Rikke Bendlin, Ivan Damgard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In FUROCRYPT, pages
169-188, 2011.

3. S.D. Conte and C. De Boor. Elementary Numerical Analysis: An Algorithmic Ap-
proach. International series in pure and applied mathematics. McGraw-Hill, 1980.

4. James W Cooley and John W Tukey. An algorithm for the machine calculation of
complex fourier series. Math. comput, 19(90):297-301, 1965.

5. Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P. Smart. Practical covertly secure mpc for dishonest majority - or: Breaking
the spdz limits. In ESORICS, pages 1-18, 2013.

6. Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In CRYPTO, pages 643—
662, 2012.

7. Ivan Damgard and Sarah Zakarias. Constant-overhead secure computation of
boolean circuits using preprocessing. In TCC, pages 621-641, 2013.

8. Marcel Keller, Peter Scholl, and Nigel P Smart. An architecture for practical actively
secure mpc with dishonest majority. In Proceedings of the 2013 ACM SIGSAC
conference on Computer € communications security, pages 549-560. ACM, 2013.

9. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology — CRYPTO
2012, volume 7417 of Lecture Notes in Computer Science, pages 681-700. Springer
Berlin Heidelberg, 2012.

	An Empirical Study and some Improvements of the MiniMac Protocol for Secure Computation

