
A practical state recovery attack on the stream
cipher Sablier v1?

Xiutao FENG and Fan ZHANG

Key Laboratory of Mathematics Mechanization, Academy of Mathematics and
Systems Science, CAS, China (e-mail: fengxt@amss.ac.cn)

Abstract. Sablier is an authenticated encryption cipher submitted to
the CAESAR competition, which is composed of the encryption Sablier
v1 and the authentication Au. In this work we present a state recovery
attack against the encryption Sablier v1 with time complexity about 244

operations and data complexity about 24 of 16-bit keywords. Our attack
is practical in the workstation. It is noticed that the update of the internal
state of Sablier v1 is invertible, thus our attack can further deduce a key
recovery attack and a forgery attack against the authenticated encryption
Sablier. The result shows that Sablier v1 is far from the goal of its security
design (80-bit level).

Keywords: CAESAR, stream ciphers, Sablier, state recovery attack.

1 Introduction

Authenticated cipher is a cipher combining encryption algorithm with authen-
tication algorithm, which can provides confidentiality, integrity and authentic-
ity assurances on the data simultaneously and has been widely used in session
communications such as SSL/TLS [1, 2], etc. Since the security of authenticat-
ed ciphers depends on both encryption ciphers and authentication ciphers, and
an adversary possesses extra information such as authentication tag except for
plaintext/ciphertext and has more choices in the execution of attacks (he may
attack any one of the encryption cipher and the authentication cipher, or attack
both of them simultaneously), thus it is more difficult to design a good authen-
ticated cipher than a usual encryption cipher. CAESAR is a new competition
calling for submissions of authenticated ciphers [3]. This competition follows a
long tradition of focused competitions in secret-key cryptography. It is expected
to have a tremendous increase in confidence in the security of authentication
ciphers.

Sablier is an authenticated cipher designed by B. Zhang et al and has been
submitted to the CAESAR competition [4]. The encryption of Sablier is a stream
cipher named Sablier v1 with a new internal structure to generate the keystream

? This work was supported by the Natural Science Foundation of China (Grant No.
61121062, 11071285), the 973 Program (Grant No. 2011CB302401)

from a 80-bit key and a 80-bit IV. As the designers said, since Sablier v1 is
designed based on 16-bit words and adopts only some bitwise XOR, bitwise
logical AND and bitwise intra-word rotation, its hardware implementation can be
16 times faster than that of Trivium [5]. The authentication mechanism of Sablier
is similar to Grain-128a [6]. In this work we mainly focus on the encryption of
Sablier, i.e., Sablier v1. As for Sablier v1, we present a state recovery attack with
time complexity about 244 operations and about 24 of 16-bit key words, which
is practical in the workstation. What is more, since the update of the internal
state of Sablier v1 is invertible, our attack can further deduce a key recovery
attack and a forgery attack for Sablier. So Sablier is insecure.

The rest of this paper is organized as follows: in section 2 we recall Sablier
v1 briefly, and in section 3 some observations on Sablier v1 are provided. Based
on these observations, in section 4 we present a state recovery attack on Sablier
v1 and further provide the complexity analysis of our attack. Finally section 5
concludes the paper.

2 Description of Sablier v1

In this section we will recall Sablier v1 briefly, and more details on Sablier v1
can be found in [4].

The structure of the authenticated encryption Sablier is shown in Fig. 1.
It is composed of the encryption Sablier v1 and the authentication Au. The
primary recommended parameter set of Sablier is 10-byte key, 10-byte nonce
and 4-byte tag. The input of Sablier includes a plaintext P , associated data A
and a public message number N , and the output of Sablier is (C, T), where C
is an unauthenticated ciphertext and T is an authenticated tag.

Fig. 1 The structure of the authenticated encryption Sablier

Sablier v1 is a 16-bit word-based stream cipher, which is shown in Fig. 2. The
design of Sablier v1 is inspired by sandglass, and the operation of Sablier can be
imaged as the mixing of the sand in a sandglass, or as the shaking of the cocktail
in a shaker in the bar. Sablier v1 contains five registers Li (i = 1, 2, ..., 5), which
are used as below:

– L1 and L5: the two largest registers, each with four 16-bit words, namely
L1,i,L5,i with 1 ≤ i ≤ 4;

– L2 and L4: the two second largest registers, each with two 16-bit words,
namely L2,i,L4,i with 1 ≤ i ≤ 2;

– L3: the smallest register, consists of one 16-bit word.

Fig. 2 The structure of the stream cipher Sablier v1

The keystream generation of Sablier v1 mainly consists of two half round
operations, namely the lower half round and the upper half round, as shown
below:

The keystream generation

t = 0;

repeat until enough keystream bits are generated.

{
The lower half round :

1 : L5 ← (L5,1 ⊕ L5,2 ⊕ L5,3 ⊕ L4,2, L5,1 ⊕ L5,2, L5,3 ⊕ L5,4,

L5,2 ⊕ L5,3 ⊕ L5,4 ⊕ L4,1)

2 : L4 ← (L4,1 ⊕ L3||L4,2 ⊕ L3) ≫ 5

3 : L3 ← L3 ⊕ ((L2,1 ⊕ 1) · L2,2)⊕ C1

4 : L2 ← (L2,1 ⊕ ((L1,1 ⊕ 1) · L1,2), L2,2 ⊕ ((L1,3 ⊕ 1) · L1,4))

5 : (L1, L2, L3, L4, L5)← (L5, L4, L3, L2, L1)

The upper half round :

6 : L5 ← (L5,1 ⊕ L5,2 ⊕ L5,3 ⊕ L4,2, L5,1 ⊕ L5,2, L5,3 ⊕ L5,4,

L5,2 ⊕ L5,3 ⊕ L5,4 ⊕ L4,1))

7 : L4 ← (L4,1 ⊕ L3||L4,2 ⊕ L3) ≫ 5

8 : L3 ← L3 ⊕ ((L2,1 ⊕ 1) · L2,2)⊕ C2

9 : L2 ← (L2,1 ⊕ ((L1,1 ⊕ 1) · L1,2), L2,2 ⊕ ((L1,3 ⊕ 1) · L1,4))

10 : (L1, L2, L3, L4, L5)← (L5, L4, L3, L2, L1)

Output the keystream

11 : zt = L2,2 ⊕ L3 ⊕ L5,3

12 : t = t + 1

}
end-repeat

where C1 = 0x1735 and C2 = 0x9cb6.
Since our attack does not involve in the initialization of Sablier v1 and the

authentication Au, thus we omit them here, and if the readers are interested in
them, please refer to [4].

3 Some properties of Sablier v1

In this section we will reveal some properties of the keystream generation of
Sablier v1. First we introduce some notations.

Sablier v1 contains 13 of 16-bit word registers. We denote by L these registers,
that is,

L = (L1,1, L1,2, L1,3, L1,4, L2,1, L2,2, L3, L4,1, L4,2, L5,1, L5,2, L5,3, L5,4).

For 0 ≤ i ≤ 15, define

L[i] = (L1,1[i], L1,2[i], L1,3[i], L1,4[i], L2,1[i], L2,2[i], L3[i], L4,1[i], L4,2[i],

L5,1[i], L5,2[i], L5,3[i], L5,4[i]),

and call L[i] the i-th facet of the registers L, where x[i] means the i-th bit
register of x for a 16-bit word register x, 0 ≤ i ≤ 15. At time t ≥ 0, we denoted
by Lt and Lt[i] the state of the registers L and the facet L[i] respectively, where
0 ≤ i ≤ 15.

Set the sequence

i0i1 · · · i16 = (0, 11, 6, 1, 12, 7, 2, 13, 8, 3, 14, 9, 4, 15, 10, 5, 0).

Our attack is mainly due to the following three observations:

Observation 1 For any 1 ≤ j ≤ 16 and time t ≥ 0, the update of the state
Lt[ij] of the facet L[ij] only depends on Lt[ij] and the 4-bit information coming
from the state Lt[ij−1] of the facet L[ij−1].

The above observation follows directly from the keystream generation of Sablier
v1. Indeed the operations of all steps except steps 2 and 7 in the procedure of
the keystream generation are done in the current facet since both the exclusive
or “⊕” and the dot multiplication “·” are bitwise. At steps 2 and 7 only the
rotation “<<<” needs the data from other facets. If both the 2-bit values of L4

after the update at step 2 and the 2-bit values of L4 after the update at step 7
are known, then the update of the state of the facet L[ij] is done well.

We consider the state Lt[ij] of the facet L[ij] at time t for some integer
1 ≤ j ≤ 16, and view them as some unknown variables. Suppose that all extra bit
information from the facet L[ij−1] are known, below we consider how to establish
equations on the state variables Lt[ij] by the output keystream {zt}t≥0.

By step 11 in the keystream generation we have

zt+i[ij] = Lt+i
2,2 [ij]⊕ Lt+i

3 [ij]⊕ Lt+i
5,3 [ij], i ≥ 0. (1)

For any i ≥ 1, first we get by steps 8, 5 and 3

Lt+i
3 [ij] = L

t+(i−1)+0.5
3 [ij]⊕ (L

t+(i−1)+0.5
2,1 [ij]⊕ 1) · Lt+(i−1)+0.5

2,2 [ij]⊕ C2

= L
t+(i−1)
3 [ij]⊕ (L

t+(i−1)
2,1 [ij]⊕ 1) · Lt+(i−1)

2,2 [ij]⊕ C1

⊕ (L
t+(i−1)+0.5
2,1 [ij]⊕ 1) · Lt+(i−1)+0.5

2,2 [ij]⊕ C2,

where L
t+(i−1)+0.5
2,1 [ij] and L

t+(i−1)+0.5
2,2 [ij] means the state of L2,1[ij] and L2,2[ij]

respectively after the lower half round in the (i − 1)-th round. Note that all

Lt+i
2,2 [ij], L

t+(i−1)+0.5
2,1 [ij] and L

t+(i−1)+0.5
2,2 [ij] come from the facet L[ij−1] and are

known, thus at last Lt+i
3 [ij] only depends on both Lt

3[ij] and (Lt
2,1[ij]⊕1)·Lt

2,2[ij].
Second, by steps 10, 5 and 1 we get

Lt+i
5,3 [ij] = L

t+(i−1)
5,3 [ij]⊕ L

t+(i−1)
5,4 [ij].

When i ≥ 2, further we have

Lt+i
5,3 [ij] = L

t+(i−2)
5,2 [ij]⊕ L

t+(i−2)
4,1 [ij].

By steps 10, 9 and 5 it is easy to check that the update of Lt+i
4 [ij] only depends

on L
t+(i−1)
4 [ij] and L

t+(i−1)
5 [ij]. Thus we have

Observation 2 For any given 1 ≤ j ≤ 16, we always assume that all extra
bit information from the facet L[ij−1] are known during the update of the state
of the facet L[ij]. If we view the state Lt[ij] of the facet L[ij] at time t as
the unknown variables, then we get an equation system on at most six variables
Lt
5,1[ij], L

t
5,2[ij], L

t
5,3[ij], L

t
5,4[ij], L

t
4,1[ij], L

t
4,2[ij] and two intermediate variables

Lt
3[ij]⊕ Lt

2,2[ij] and Lt
2,1[ij] · Lt

2,2[ij].

By Observation 2 it is known that the 4-bit information of Lt
1[ij] will never

be got whatever we retrieve equations (1). Thus during the execution of the
attack we always need to guess these bit variables.

For i = 0, 1, · · · , 7, the exact equations on the state Lt[ij] of the facet L[ij]
has been established in Appendix A. By these equations it is easy to see that
the following conclusion holds:

Observation 3 For any two distinct facets L[ij1] and L[ij2], the equation sys-
tems constructed by equations (1) at the facets L[ij1] and L[ij2] have the same
form, which only depends on the values of seven parameters Lt+i+0.5

2,1 , Lt+i+0.5
2,2

and Lt+3.5
2,2 , where i = 0, 1, 2.

4 A state recovery attack

In this section we will present a state recovery attack on Sablier v1 based on the
above three observations and provide the complexity analysis of our attack.

4.1 The pre-computation

By Observation 2 and 3 we can set up a table to compute six variables Lt
5,1[ij],

Lt
5,2[ij], L

t
5,3[ij], L

t
5,4[ij], L

t
4,1[ij], L

t
4,2[ij] and two intermediate variables Lt

3[ij]⊕
Lt
2,2[ij] and Lt

2,1[ij] ·Lt
2,2[ij] in the facet L[ij] at time t from equations (1) got by

zt+i, where 0 ≤ i ≤ 7. Since these equations involve some bit information from
other facet, we need to set up a table for each possible values of those involved
bit information. Fortunately these involved bit information can be finally syn-
thesized into seven independent intermediate variables Lt+i+0.5

2,1 , Lt+i+0.5
2,2 and

Lt+3.5
2,2 , where i = 0, 1, 2. So in practice we only need to set up 27 tables, and

each table contains 28 items, each item one byte. The time complexity of the
pre-computation is about 215 and the size of the memories used to storing the
tables is 215B = 32KB.

4.2 Online attack

In the online attack we need to retrieve about 24 of 16-bit key words zt+i, where
0 ≤ i ≤ 23. Our attack may start on an arbitrary facet L[ij]. Without loss of
generality, we start at j = 0, and the details are shown as below:

1. Set j = 0;
2. For each time t + i (0 ≤ i ≤ 7), we first guess the 4-bit information from

other facet and look up the table to get the 8-bit values of Lt
5[ij], Lt

4[ij],
Lt
3[ij] ⊕ Lt

2,2[ij] and Lt
2,1[ij] · Lt

2,2[ij]; We further guess the 5-bit values of

Lt
1[ij] and Lt

3[ij], and recover 8 states Lt+i[ij] (i = 0, 1, 2, · · · , 7) of the facet
L[ij].

3. Consider the next facet L[ij+1]. According to each possible states Lt+i[ij]
(0 ≤ i ≤ 7 + j) of the previous facet L[ij], we can get 9 + j equations on
the state Lt[ij+1]. If these equations have no solution, then we try the next
possible states Lt+i[ij] (0 ≤ i ≤ 7 + j); otherwise, similar to step 2, we
further guess the rest 5-bit values and finally get 9 + j states of the L[ij+1].

4. Set j = j + 1. If j = 16, output the state Lt; otherwise, go to step 3.

4.3 The complexity of our attack

In step 2 we need to guess total 4× 7 + 5 = 33 bits and get about 233 possible
states Lt+i[i0] (0 ≤ i ≤ 7) of the facet L[i0] on average. Suppose that there are
Nj possible states of the facet L[ij]. Since we get 9 + j equation on the state
Lt[ij+1] of the facet L[ij+1] in step 3, thus about Nj × 28−(9+j) possible states

can be remained on average. So Nj+1 ≈ Nj × 28−(9+j)× 25 = Nj × 24−j , and we
have

Nj ≈ 233 ×
j−1∏
i=0

24−i = 233+4j− 1
2 (j−1)j .

For each possible solutions on the facet L[ij] the time of the computation of
the state Lt[ij] by looking up the pre-computation table is very low and we
ignore these time consuming. Thus we can get an evaluation of the total time
complexity of our attack, that is,

T ≈
15∑
j=0

Nj ≈ 244.

5 Conclusion

In this paper we study the encryption algorithm Sablier v1 of the authenticated
encryption Sablier, and give a state key recovery attack on Sablier v1, whose
time complexity is about 244 operations and is practical in the workstation.
Since the update of the state of Sablier v1 is invertible, thus our attack can
further deduce a key recovery attack and a forgery attack on the authenticated
encryption Sablier.

References

1. RFC 6101: The Secure Sockets Layer (SSL) Protocol Version 3.0.

2. RFC 5246: The Transport Layer Security (TLS) Protocol, Version 1.2.

3. CAESER: http://competitions.cr.yp.to/index.html.

4. Sablier v1: B. Zhang, Z.Q. Shi, C. Xu, Y. Yao, Z.Q. Li, submission to CAESAR,
available from: http://competitions.cr.yp.to/round1/sablierv1.pdf.

5. Christophe De Canniere and Bart Preneel, Trivium specifications, eSTREAM
Projet, http://www.ecrypt.eu.org/stream/e2-trivium.html.

6. Martin Agren, Martin Hell, Thomas Johansson and Willi Meier, Grain-
128a: A New Version of Grain-128 with Optional Authentication,
http://lup.lub.lu.se/record/2296437/file/2296485.pdf.

A Equations on the state Lt[ij] at time t + i
(i = 0, 1, · · · , 7)

When all bit information from the facet L[ij−1] are known, we can establish
equations on the state Lt[ij] of the facet L[ij], which are shown as below:

zt[ij] = L
t
2,2[ij] ⊕ L

t
3[ij] ⊕ L

t
5,3[ij],

zt+1[ij] ⊕ Gt+1 = x[ij] ⊕ L
t
5,3[ij] ⊕ L

t
5,4[ij],

zt+2[ij] ⊕ Gt+2 = x[ij] ⊕ L
t
5,2[ij] ⊕ L

t
4,1[ij],

zt+3[ij] ⊕ Gt+3 = x[ij] ⊕ (L
t
5,1[ij] ⊕ L

t
5,2[ij])(L

t
5,3[ij] ⊕ L

t
4,2[ij] ⊕ 1),

zt+4[ij] ⊕ Gt+4 = x[ij] ⊕ (L
t
5,3[ij] ⊕ L

t
4,2[ij])((L

t
5,3[ij] ⊕ L

t
5,4[ij] ⊕ 1)(L

t
5,2[ij] ⊕ L

t
4,1[ij] ⊕ 1) ⊕ L

t+0.5
2,2 [ij]),

zt+5[ij] ⊕ Gt+5 = x[ij] ⊕ (L
t+1
5,3 [ij] ⊕ L

t+1
4,2 [ij])((L

t+1
5,3 [ij] ⊕ L

t+1
5,4 [ij] ⊕ 1)(L

t+1
5,2 [ij] ⊕ L

t+1
4,1 [ij] ⊕ 1) ⊕ L

t+1.5
2,2 [ij]),

zt+6[ij] ⊕ Gt+6 = x[ij] ⊕ (L
t+2
5,3 [ij] ⊕ L

t+2
4,2 [ij])((L

t
5,3[ij] ⊕ L

t+2
5,4 [ij] ⊕ 1)(L

t+2
5,2 [ij] ⊕ L

t+2
4,1 [ij] ⊕ 1) ⊕ L

t+2.5
2,2 [ij]),

zt+7[ij] ⊕ Gt+7 = x[ij] ⊕ (L
t+3
5,3 [ij] ⊕ L

t+3
4,2 [ij])((L

t+3
5,3 [ij] ⊕ L

t+3
5,4 [ij] ⊕ 1)(L

t+3
5,2 [ij] ⊕ L

t+3
4,1 [ij] ⊕ 1) ⊕ L

t+3.5
2,2 [ij]),

where Gt+i (1 ≤ i ≤ 7) only depends on the data from the facet L[ij−1] and

x[ij] = L
t
3[ij] ⊕ L

t
2,2[ij] ⊕ L

t
2,1[ij]L

t
2,2[ij],

L
t+i+1
5,1 [ij] = L

t+i
5,1 [ij] ⊕ L

t+i
5,2 [ij] ⊕ L

t+i
5,3 [ij] ⊕ L

t+i
4,2 [ij],

L
t+i+1
5,2 [ij] = L

t+i
5,1 [ij] ⊕ L

t+i
5,2 [ij],

L
t+i+1
5,3 [ij] = L

t+i
5,3 [ij] ⊕ L

t+i
5,4 [ij],

L
t+i+1
5,4 [ij] = L

t+i
5,2 [ij] ⊕ L

t+i
5,3 [ij] ⊕ L

t+i
5,4 [ij] ⊕ L

t+i
4,1 [k],

L
t+i+1
4,1 [ij] = L

t+i+0.5
2,1 [ij] ⊕ L

t+i+1
5,1 [ij] · L

t+i+1
5,2 [ij] ⊕ L

t+i+1
5,2 [ij],

L
t+i+1
4,2 [ij] = L

t+i+0.5
2,2 [ij] ⊕ L

t+i+1
5,3 [ij] · L

t+i+1
5,4 [ij] ⊕ L

t+i+1
5,4 [ij]

for i = 0, 1, 2.
It is easy to see that the above equation system only depends on the values of

Gt+i (i = 0, 1, · · · , 7), Lt+i+0.5
2,1 [ij], L

t+i+0.5
2,2 [ij] (i = 0, 1, 2) and Lt+3.5

2,2 [ij]. When
these values are determined, on average we get one solution

(L
t
5,1[ij], L

t
5,2[ij], L

t
5,3[ij], L

t
5,4[ij], L

t
4,1[ij], L

t
4,2[ij], L

t
3[ij] + L

t
2,2[ij], L

t
2,1[ij]L

t
2,2[ij]).

