
A preliminary version of this paper appears in Fast Software Encryption 2014, LNCS, Springer, 2014.

Efficient Fuzzy Search on Encrypted Data

Alexandra Boldyreva∗ Nathan Chenette†

March 31, 2014

Abstract

We study the problem of efficient (sub-linear) fuzzy search on encrypted outsourced data, in
the symmetric-key setting. In particular, a user who stores encrypted data on a remote untrusted
server forms queries that enable the server to efficiently locate the records containing the requested
keywords, even though the user may misspell keywords or provide noisy data in the query. We
define an appropriate primitive for a general closeness function on the message space that we call
efficiently fuzzy-searchable encryption (EFSE ). Next we identify an optimal security notion for
EFSE. We demonstrate that existing schemes do not meet our security definition and propose a
new scheme that we prove secure under basic assumptions. Unfortunately, the scheme requires
large ciphertext length, but we show that, in a sense, this space-inefficiency is unavoidable for a
general, optimally-secure scheme. Seeking the right balance between efficiency and security, we
then show how to construct schemes that are more efficient and satisfy a weaker security notion
that we propose. To illustrate, we present and analyze a more space-efficient scheme for supporting
fuzzy search on biometric data that achieves the weaker notion.

1 Introduction

Motivation and related work. Cloud storage, which is remote storage accessible over a net-
work, has moved from hype to reality and is currently experiencing explosive growth. One of the
major challenges in cloud storage adoption is providing security against an untrusted server without
compromising functionality and efficiency. Numerous works have addressed the problem of symmetric
searchable encryption in recent years, e.g. [24, 12, 13, 2, 9]. The solutions differ in the level of security
and efficiency they provide, however most of them only support exact-match queries.

These solutions, however, are not suitable for practical situations where queried keywords differ
slightly from those corresponding to stored encrypted data. A user can use different spellings over
time, such as “1 800 555-66-77” and “1(800)555 66 77”. Google queries can tolerate typos, but such
functionality is much more challenging to support when the data is encrypted. Moreover, data can
be inherently noisy, e.g. for biometric identification: investigators querying a criminal database using
data from a crime scene should allow for “fuzziness” in fingerprint readings and witness description
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of the suspect. In this work we consider the problem of efficient (sub-linear) search on encrypted
data that supports fuzzy search queries. Sub-linear and, in particular, logarithmic-time search is
essential because a linear scan of the whole data is unacceptable for any application dealing with large
databases. Typically, this requirement for efficient search is irreconcilable with achieving a conventional
“strong” security notion. But practitioners are willing to compromise security for functionality and
thus it is important to identify suitable (possibly “weak”) levels of security and provide provably-secure
solutions.

Several recent papers pertain to fuzzy-searchable encryption. The scheme from [19] is designed
to address the general problem, though it lacks formal security analysis and we later show that, in
spite of being space-inefficient, its security is not strong enough. The construction from [1], as well as
related schemes for the public-key setting [10, 11] and recent work [17] for the symmetric-key setting
require the user to know all the data in advance, analyze the entire data and pre-compute the index
before data outsourcing. This requirement is unsuitable for many broad applications, such as when
data is frequently updated or streaming. The paper [26] motivates and discusses the problem of fuzzy
search, but does not provide any solutions. Fully homomorphic encryption [14, 25] could be used to
implement fuzzy search queries; however, even a (future) computationally efficient FHE scheme would
require search time linear in the length of the database. Hence the task of finding a provably-secure
efficient (sub-linear) fuzzy-searchable encryption scheme supporting on-the-fly encryption has been
open prior to our work.

The major contribution of this work is to initiate the study of a highly relevant problem, efficient
fuzzy-searchable encryption, from a cryptographic (provable-security) standpoint. It should be viewed
as a “first step” in this effort and should not be considered a complete treatment of the subject,
which has strong possibilities for future directions of research. Nevertheless, our work provides the
foundations for the study of the subject, including basic definitions, impossibility results, and basic
schemes. Our work continues a line of recent research on studying encryption schemes providing
more functionality while satisfying weaker security notions, such as deterministic, order-preserving,
format-preserving, property-preserving, predicate, and functional encryption [4, 9, 7, 22, 16, 18].

We now give an overview of our results.

Defining closeness. To even define our problem, we first need to establish what “close” means for
messages. At its core, closeness is a function assigning a value (“close”, “far,” or “near”) to any pair
of messages from a space. Thus, we introduce the concept of a closeness domain which consists of a
domain along with a closeness function.

Efficiently fuzzy-searchable encryption and its security. Next we define the central prim-
itive, efficiently fuzzy-searchable encryption (EFSE), defined on a closeness domain. In addition to
the standard functions of a symmetric encryption scheme, an EFSE scheme should provide a public
function that takes a ciphertext and returns all ciphertexts in a database that are equal or close to
(but none that are far from) the queried ciphertext. We also allow for optional false-positives, i.e.
the function may return ciphertexts of some near messages. Furthermore, this function should be
sub-linearly efficient. We then discuss the details of how a user and the server perform search using
an EFSE scheme. We note that an EFSE scheme leaks equality and “closeness” of queried messages
in order to provide efficient exact-match and fuzzy search. Thus, an optimal security notion for EFSE
would be a natural relaxation of the standard IND-CPA security definition prohibiting queries that
trivially exploit this leakage of closeness and equality—we call this optimal security indistinguishability
under same-closeness-pattern chosen-plaintext attacks (IND-CLS-CPA) and define it formally.

Template EFSE construction and its security. For generality and convenience, we propose
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a general template EFSE construction providing the basis of all specific EFSE constructions that
we discuss later. The template construction, which is inspired by the scheme from [19], formalizes
and extends their construction by building an EFSE scheme from three elements, listed with security
notions as follows.

1. An efficient searchable encryption (ESE) scheme, which was defined in [2] and is essentially
a symmetric encryption that leaks equality, and is thus is a generalization of deterministic
encryption; the relevant security notion is indistinguishability under distinct chosen-plaintext
attack or IND-DCPA [5].

2. A closeness-preserving tagging function that maps domain elements to “tags” so that only close
messages map to overlapping tags; the relevant security condition is called consistency.

3. A batch-encoding family, each instance of which maps batches of elements according to a deter-
ministic function from domain to range; the relevant security notion is privacy-preserving under
chosen batch attacks (PP-CBA) and is related to IND-DCPA.

Note that the latter two primitives and their security notions are novel.
The template scheme works as follows: a ciphertext contains an ESE-encryption of the message, as

well as a batch-encoding of all of the message’s “tags,” as defined by the closeness-preserving tagging
function. The ESE-encryption leaks equality, and the batch-encoded tags leak closeness. We show that
a scheme based on the template is secure if the ESE scheme is IND-DCPA-secure, the batch-encoding
family is collision-free and PP-CBA-secure, and the tagging function is consistent. We also suggest
how to instantiate an IND-DCPA-secure ESE scheme and a PP-CBA-secure batch-encoding family
out of blockciphers for use in constructions, leaving the remaining task of finding a consistent tagging
function (discussed later, individually for each particular scheme.)

Analysis of scheme from [19]. Next, we present the first cryptographic security analysis of the
scheme from [19] (which was missing a formal definition of security and proof.) We first define a
scheme based on our template construction that is essentially equivalent, in that the scheme’s core
component is a tagging function that for a message outputs its “neighbors,” i.e. the other messages
in the message space that are close to a message. However, this tagging function is not consistent in
general, which means that this construction is not IND-CLS-CPA-secure in general: to prove this, we
present a simple efficient adversary with high advantage. The attack exploits a simple observation
that looking at two encoded tags one can with high probability tell how many neighbors the associated
messages share. Leaking such information is not required for the functionality of EFSE and hence
is a security breach according to our definition. We also note that the scheme from [19], besides
being IND-CLS-CPA-insecure, is not very efficient in terms of ciphertext length. The constructions
we propose target either strong security with the same efficiency, or much improved efficiency (with a
necessarily weaker security guarantee.)

New optimally-secure construction. We propose a new general EFSE scheme. It relies on the
notion of the closeness graph, whose vertices are the unique elements of the message space, and edges
indicate closeness between elements. Defined according to the template model, the tagging function
for this scheme sends a message to its set of incident edges (rather than neighboring vertices á la [19])
in the closeness graph. This tagging function is consistent, and so the scheme is IND-CLS-CPA-secure
assuming the other components of the scheme satisfy the appropriate security notions.

One might worry that our construction is rather inefficient in the ciphertext length, which is
linear in the maximum degree of the closeness graph. However we show that an EFSE scheme that
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works on general closeness domains (i.e. the scheme’s algorithms do not depend on the structure of
the closeness domain) must, in fact, require ciphertext length linear in the maximum degree of the
closeness graph. The argument is information theoretic and relies on the functionality, rather than
security, of the primitive. Thus, in achieving EFSE on arbitrarily-defined closeness domains the new
IND-CLS-CPA-secure construction is (asymptotically) space-optimal, and moreover optimally secure.

Constructions with improved efficiency. In many (even most?) practical applications, vertices
of the closeness graph have massive degrees. Degrees can even be infinite, e.g. on continuous spaces—
consider, for example, searching a massive database of website access-records for one that accessed a
webpage at approximately 6:59:59.95 PM on May 20, 2012 (where the time query must be fuzzy to
account for inherent lag-time in the network)—here, depending on the granularity of measurements
and the closeness tolerance, there could be a huge number of neighbors. This situation can grow
even worse for multi-dimensional spaces, as the number of “close neighbors” increases exponentially
with dimensionality for closeness defined on a metric. Consider, for example, querying a criminal
database with a large array of biometric measurements taken from a crime scene, in an attempt to
find suspects—here, multi-dimensional closeness (closeness in every measurement) is needed, and if
there are (say) a few dozen measurements, and even a narrow definition of closeness in each, the
number of neighbors could again be huge. In such situations our optimally-secure scheme, as well as
the less-secure scheme from [19], are unacceptably inefficient—and the aforementioned lower bound
result shows that we cannot expect to do better for arbitrary domains.

We seek the right balance between the desired efficiency and security of EFSE, and look at closeness
domains with a well-defined structure. We argue that IND-CLS-CPA-security is too strong to be useful
in characterizing EFSEs on “non-rigid” closeness domains (where near messages could be encrypted
to either close or far ciphertexts), and so to do this we introduce a new security definition. The new
definition requires schemes to hide all information about plaintexts except nearness and a certain
aspect of “local structure”—essentially, messages’ offsets from a predetermined fixed regular lattice
L on the space. Importantly, this implies that no major relative information (i.e., nothing above the
least-significant-bit level) is leaked about a pair of “disconnected messages,” that is, messages that
cannot be connected through a chain of near known corresponding ciphertext pairs. Hence, we call
this notion macrostructure-security. Note that this security may be useful in applications such as the
website access-record and biometric matching examples above, where it is not a big deal to reveal
aspects of local structure (does it matter if an adversary knows, say, the least significant bits relating
to biometric measurements in the criminal database?) but it is important to hide large differences
between messages.

Our security definition and construction strategy focus on a practical choice of domains with
associated metric and close, near, and far distance thresholds, that we call metric closeness domains;
in particular, we consider real multidimensional space. Critically, on these domains, closeness is
defined in a “regular” manner across the space—namely, for any regular lattice in the space, closeness
is invariant under translation by a lattice vector. The security definition is then defined in terms of
a fixed lattice, demanding that nothing is leaked except “local structure” of near clusters of messages
with respect to the lattice. To provide a blueprint for building specific schemes, we introduce the
concept of an “anchor radius” for a metric closeness domain and a lattice, and use it to construct
a tagging function to build an EFSE via our usual template. We show that a valid anchor radius
implies an EFSE construction that is macrostructure-secure. Then, to enhance understanding, we
present a practical example, filling in details of the blueprint to build a (relatively) space-efficient,
macrostructure-secure EFSE scheme supporting fuzzy search on fingerprint data. Finally, we observe
that an efficient scheme that probabilistically acts like an EFSE scheme can be constructed out of
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locality-sensitive hash (LSH) functions. But the theory behind these schemes and their security is
beyond the scope of this work.

Future work. Our work provides the basis for cryptographic study of fuzzy-searchable encryption.
Our template constructions invite exploration of more efficient schemes that will automatically satisfy
our security notions. In addition, future studies might achieve more efficient and secure schemes—
circumventing our impossibility result by defining closeness and EFSE primitives in a different manner.
For instance, one could consider only closeness domains with certain natural structure, or closeness
could be defined quantitatively or probabilistically.

2 Preliminaries

We let LR (left-or-right) denote the “selector” that on input m0,m1, b returns mb. For x ∈ Z, the
notation [x] denotes the set {1, 2, . . . , x}. In some of the algorithm descriptions, for ease and clarity
of analysis, we use abstract set notation. In a practical implementation, the sets can be implemented
by some specialized data structure, or by vectors/lists with a common predetermined order (e.g.,
numerical order.) We recall the syntax and security for symmetric encryption in Appendix A. We
wait until Section 4 to define efficiently searchable encryption, privacy-preserving batch-encoding, and
closeness-preserving tagging functions. Here, we introduce a metric space, closeness domains and
associated graph-theoretical concepts.

Metric spaces. (D, d) is a metric space if D is a set and d (the metric) is a real-valued function on
D ×D such that for all x, y, z ∈ D,

d(x, y) ≥ 0 d(x, y) = 0 iff x = y

d(x, y) = d(y, x) d(x, z) ≤ d(x, y) + d(y, z).

Closeness domain. We refer to the pair Λ = (D,Cl) as a closeness domain if

1. D is a (finite or infinite) set, called the domain or message space;

2. Cl is the closeness function that takes a pair of messages and outputs a member of {eq, close,
near, far}, so that Cl is symmetric (i.e., Cl(m,m′) = Cl(m′,m) for all m,m′ ∈ D) and
Cl(m,m′) = eq if and only if m = m′.

According to the output of Cl, we say a pair of messages is equal, close, near, or far. Note that a
closeness domain can be defined by describing which distinct message pairs of a domain D are close and
which are far (the rest are then near.) For convenience, we say Λ is rigid if Cl(m,m′) ∈ {close, far}
for all m 6= m′ ∈ D. When these quantities exist, the degree of a message m in Λ is ∆m = |{m′ ∈ D |
Cl(m,m′) = close}|, and the max degree of Λ is ∆ = maxm∈D∆m.

As a special case, let d be a metric1 on domain D, and let δ > 0. The metric closeness domain(
D,MδC,δF

d

)
on domain D with respect to metric d, close threshold δC ≥ 0, and far threshold δF ≥ δC,

has the following closeness function: for distinct m,m′ ∈ D, MδC,δF

d =

{
close if d(m,m′) ≤ δC ;

far if d(m,m′) > δF .
For

instance,
(
{0, 1}80,M1,2

Ham

)
, where Ham is Hamming distance, is a closeness domain of all length-80

1So in particular, d obeys the triangle inequality.
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strings where strings differing in 1 bit are close, differing in 2 bits are near, and differing in more than
2 bits are far.

Closeness and nearness graph, induced subgraph. Let Λ = (D,Cl) be a closeness domain,
VΛ = D and

ECΛ = {{u, v} | u 6= v ∈ VΛ and Cl(u, v) = close} ;

ENΛ = {{u, v} | u 6= v ∈ VΛ and Cl(u, v) ∈ {close, near}} .

Then GCΛ = (D, ECΛ) is the closeness graph and GNΛ = (D, ENΛ) is the nearness graph of Λ. For graph
G = (V, E) and H ⊆ V let G(H) = (H, E(H)) be the subgraph induced by H where E(H) = {{u, v} ∈
E | u, v ∈ H}.

3 Efficiently Fuzzy-Searchable Symmetric Encryption

We now define our main primitive and show how can it be used for efficient search. Following that,
we formulate the optimal level of security for EFSE schemes.

Defining efficiently fuzzy-searchable encryption. FSE = (K, Enc,Dec, makeDS, fuzzyQ) is a
structured fuzzy-searchable symmetric encryption (StructFSE) scheme on closeness domain Λ = (D,Cl)
if (K, Enc,Dec) is a symmetric encryption scheme on D, and for any key K output by K,

• makeDS takes a set of ciphertexts C (the database) encrypted under K and outputs a data
structure DSC;

• fuzzyQ, given database C, data structure DSC, and query ciphertext c, outputs two subsets E,F
of C such that

E = Ceq(c) and Cclose(c) ⊆ F ⊆ Cnear(c),

where for m = Dec(K, c), m′ = Dec(K, c′),
Ceq(c) = {c′ ∈ C | Cl(m,m′) = eq}
Cclose(c) = {c′ ∈ C | Cl(m,m′) = close}.
Cnear(c) = {c′ ∈ C | Cl(m,m′) ∈ {close, near}}.

One could easily relax the above syntax to not require the returned ciphertexts to equal those from the
database. This would allow one to consider, for example, schemes based on homomorphic encryption.
We stick with a stricter definition for simplicity. To ease discussion, for implicit fixed key K we
say that ciphertexts c and c′ are close (respectively, far) if their decryptions m = Dec(K, c) and
m′ = Dec(K, c′) are close (far). Notice that in a StructFSE scheme, fuzzyQ(C, DSC, c) returns all
ciphertexts in C close to c and no ciphertexts far from c. Any near ciphertext may be returned as
well—these can be thought of as “legal false positives” in a fuzzy search query. In this sense, FSE on
a rigid closeness domain cannot have any false positives. But of course, even on a non-rigid domain,
we must limit false positives to ensure efficiency.

We say StructFSE scheme FSE = (K, Enc,Dec, makeDS, fuzzyQ) is an efficiently fuzzy-searchable
symmetric encryption (EFSE) scheme if for any (sufficiently large) database C, data structure DSC,
key K generated by K, and query ciphertext c with |Cclose(c)| sub-linear in the size of C, the running
time of fuzzyQC,DSC(c) is sub-linear in the size of C. Notice this condition on the running time limits
the number of false positives for a fuzzy query.
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We note that EFSE defined for rigid domains makes a special case of property-preserving encryption
from [22] (for the property of “closeness”), but the general case of EFSE does not seem to fit the class
of schemes from [22].

Using an EFSE scheme. Let FSE = (K, Enc,Dec, makeDS, fuzzyQ) be an EFSE scheme and K a
valid key. In a practical scenario, let C be the set of ciphertexts currently in an encrypted database,
encrypted under K. The server runs makeDS(C) to create a data structure DSC, and upon a new query
c = EncK(m), runs fuzzyQ(C, DSC, c) and returns the results, E and F, to the user. By correctness
of the scheme, F consists of all ciphertexts in C whose messages are close to m, and no ciphertexts
whose messages are far from m. Since the scheme is efficient, such a query will take time sub-linear in
the size of the database C (assuming the number of close messages itself is also sub-linear in the size
of C.) Also note that the scheme supports efficient exact-match search through E.

As a side note, in a practical implementation, additional functions (e.g. add, remove, edit) would
be useful to efficiently update the data structure as the database changes. In our analysis, we are
less focused on efficiency of the data structure maintenance, so for simplicity we just let the (possibly
inefficient) function makeDS construct the data structure from the entire database. And we leave it as
an interesting open problem for future work to extend and realize the primitive so that “closeness” be
specified during encryption.

Finally, observe that the “difficult” part of building an EFSE scheme is ensuring that fuzzyQ

is efficient. Thus, the construction of Enc might as well be designed with the efficiency of fuzzyQ

in mind. In our constructions, as detailed in Section 4, ciphertexts outputted by Enc will contain
“encoded tags” such that ciphertexts of close messages share a common encoded tag. Thus, indexing
ciphertexts by encoded tags in an efficiently searchable data structure, like a binary search tree, leads
to an efficient construction of fuzzyQ.

Optimal security for EFSE schemes. We construct the following indistinguishability-based
security definition, called IND-CLS-CPA2, for analyzing the security of EFSE schemes. Intuitively,
this notion is identical to IND-CPA with the additional condition that left-right queries have the same
closeness pattern (in the second requirement below.)

Definition 3.1 Let FSE be an EFSE scheme on closeness domain Λ = (D,Cl). For bit b ∈ {0, 1} and

adversary A, let Expind-cls-cpa-b
FSE (A) be the standard IND-CPA experiment Expind-cpa-b

FSE (A) recalled in
Figure 4, Appendix A, but with the following restriction: if (m1

0,m
1
1), . . . , (mq

0,m
q
1) are the queries A

makes to its LR encryption oracle Enc(K, LR(·, ·, b)), then

1. |mi
0| = |mi

1| for all i ∈ [q];

2. for all i, j ∈ [q], Cl(mi
0,m

j
0) = Cl(mi

1,m
j
1).

For an adversary A, define its IND-CLS-CPA advantage against FSE as

Advind-cls-cpa
FSE (A) = Pr

[
Expind-cls-cpa-1

FSE (A) = 1
]
− Pr

[
Expind-cls-cpa-0

FSE (A) = 1
]
.

We say that FSE is indistinguishable under same-closeness-pattern chosen-plaintext attacks (IND-
CLS-CPA-secure) if the IND-CLS-CPA advantage of any adversary against FSE is small34.

2We do not study chosen-ciphertext security here as it can be achieved using the encrypt-then-MAC method [6].
3We use the informal term “small” because the main building blocks of symmetric cryptography, blockciphers, have

keys of fixed length in practice. Thus, instead of requiring advantages to be negligible in a security parameter, we leave
appropriate concrete bounds to be determined on a case-by-case basis depending on the application.

4According to our definitions, advantage can be negative; note that “small” refers to an advantage close to zero. For
every adversary with negative advantage there is one with positive advantage, who just outputs the complement bit.
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It should be apparent that IND-CLS-CPA-security is optimal for EFSE schemes on rigid closeness
domains: revealing equality/closeness patterns of LR-queries is unavoidable as an adversary can run
the (public) fuzzyQ function on ciphertexts to test for equality and closeness. It may seem that the
optimal security definition on general closeness domains, where fuzzyQ is given flexibility over near
message pairs, should not allow distinguishing near messages as it is not needed for search functionality.
However, while a stronger security definition than IND-CLS-CPA would be possible, the notion would
necessarily depend on the scheme’s construction, i.e., the left-right query restriction would rely on
how fuzzyQ sends near message pairs to close or far ciphertexts. To define a security notion that is
independent from the construction of fuzzyQ, the IND-CLS-CPA experiment forces left-right query
pairs to match near-to-near, as fuzzyQ is permitted to distinguish near ciphertexts from close and far
ciphertexts.

4 Template Tag-Encoding Construction for EFSE

In this somewhat technical section, we build up to a general construction of an EFSE scheme given
a valid “tagging function” on the desired closeness domain. In addition, we show that under cer-
tain conditions, the scheme is IND-CLS-CPA-secure. First, though, we define several primitives,
along with relevant security notions, that will be components of the construction. The primitives
are: efficient searchable encryption (ESE) schemes [2], closeness-preserving tagging functions, and
privacy-preserving batch-encoding families. We emphasize that, despite the technical language, these
primitives are conceptually simple and can be instantiated in natural ways—the formalism is simply
aimed to achieve fuller generality in isolating theoretical requirements from possible instantiations.

Efficient searchable encryption and security. The ESE scheme primitive [2] is recalled
in Appendix B. Intuitively, an ESE is an encryption scheme that “leaks equality,” that is, there is a
(public) way to tell if two ciphertexts are encryptions of the same message. In particular, deterministic
functions F , G are provided such that if c1 and c2 are both encryptions of m under key K, G(c1) =
F (K,m) = G(c2) (and this is unlikely if c1 and c2 are encryptions of different messages.) The
appropriate security notion for ESE was defined by [5] and is called indistinguishability under distinct
chosen plaintext attacks (IND-DCPA)—it is also recalled in Appendix B. The notion is identical to
IND-CPA except that LR-queries must have the same “equality pattern” (and so avoiding the obvious
attack, as ESE leaks equality.) Note that any PRF implies an IND-DCPA-secure ESE scheme [5] so
there are many options for instantiation.

Closeness-preserving tagging functions. Fix a closeness domain Λ = (D, Cl). Let TagUniv be
a (finite or infinite) set and let Tags : D → 2TagUniv be a function assigning a subset of TagUniv to every
domain element. We call Tags a closeness-preserving tagging function (CPTF) from Λ into TagUniv

if for every x, y ∈ D with Cl(x, y) = close, there exists t ∈ TagUniv such that t ∈ Tags(x) ∩ Tags(y);
and for every x, y ∈ D with Cl(x, y) = far, Tags(x) ∩ Tags(y) = ∅.

Further, a CPTF Tags is consistent with respect to closeness domain Λ if for any message sets{
m1

0, . . . ,m
q
0

}
and

{
m1

1, . . . ,m
q
1

}
having the same closeness pattern5, we have

∣∣∣⋂i∈[q] Tags(mi
0)
∣∣∣ =∣∣∣⋂i∈[q] Tags(mi

1)
∣∣∣. Consistency can be understood intuitively as follows: whenever a set of messages

has the same closeness pattern as another set of messages, each set should have the same number of
common tags.

5That is, Cl(mi
0,m

j
0) = Cl(mi

1,m
j
1) for all i, j ∈ [q].
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Examples of CPTFs are integral to our constructions and several are introduced in the remainder
of this paper.

Privacy-preserving batch-encoding. We say that F = (K, En) is an encoding family on domain
D and range R if K outputs random keys and En takes a key K and an element of D and outputs
an element of R such that En(K, ·) is a (deterministic) function from D to R. We further say that
FBen = (KBen, En, Ben) is a batch-encoding family if (KBen, En) is an encoding family and Ben takes a
key K and a set of elements M ⊆ D and outputs {En(K,m) | m ∈ M}. Given a function family
(K′, En′) it is easy to construct a batch-encoding family (KBen, En, Ben): let KBen = K′ and En = En′,
and define Ben(K, ·) to take a set of messages, run En(K, ·) on each, and return the set of results.

Experiment Exppp-cba-b
FBen (A)

K
$←KBen

b′
$←ABen(K,LR(·,·,b))

Return b′ ,

Figure 1: The PP-CBA experi-
ment.

We say that a encoding family (KBen, En) or a batch-encoding
family (KBen, En, Ben) is collision-free if for any key K, En(K, ·) is
one-to-one on D. Now, we define security for batch-encoding fami-
lies. Called privacy-preserving under chosen batch attacks, it is es-
sentially the IND-DCPA generalized to objects of the batch-encoding
primitive.

Definition 4.1 Let FBen = (KBen, En, Ben) be a batch-encoding fam-
ily on domain D and range R. For an adversary A and b ∈ {0, 1}

consider the experiment defined in Figure 1, where it is required that, if (M1
0 ,M

1
1 ), . . . , (M q

0 ,M
q
1 ) are

the queries that A makes to its LR-batch-encoding oracle (note: each M i
j is a set of elements of D),

for all I ⊆ [q] we have
∣∣⋂

i∈IM
i
0

∣∣ =
∣∣⋂

i∈IM
i
1

∣∣ .
For an adversary A, define its PP-CBA advantage against FBen as

Advpp-cba
FBen (A) = Pr

[
Exppp-cba-1

FBen (A) = 1
]
− Pr

[
Exppp-cba-0

FBen (A) = 1
]
.

We say that FBen is privacy-preserving under chosen batch attacks (PP-CBA-secure) if the PP-CBA
advantage of any adversary against FBen is small.

Notice that the requirement rules out an obvious attack: suppose to the contrary that, without

loss of generality, the adversary could query (M1
0 , M

1
1 ), . . . , (M q

0 ,M
q
1 ) with

∣∣∣⋂i∈[q]M
i
0

∣∣∣ > ∣∣∣⋂i∈[q]M
i
1

∣∣∣ .
If En(K, ·) is collision-free,

∣∣∣⋂i∈[q] Ben(K,M i
b)
∣∣∣ =

∣∣∣⋂i∈[q]{En(K,m) | m ∈M i
b}
∣∣∣ =

∣∣∣⋂i∈[q]M
i
b

∣∣∣ , so by

computing
∣∣∣⋂i∈[q] Ben(K,M i

b)
∣∣∣ from the oracle responses the adversary can identify b.

On how to instantiate a privacy-preserving, collision-free batch-encoding scheme.
Anticipating that our EFSE constructs will use PP-CBA-secure batch-encoding schemes, how can we
construct one? In fact, a PP-CBA-secure batch-encoding scheme can be created straightforwardly out
of a pseudorandom function (PRF), as we now demonstrate.

Let PRF = (KPRF,FPRF) be a function family on domainD to some rangeR. Let FBen = (KBen, En, Ben)
where KBen = KPRF, En = FPRF, and Ben is defined in the standard way using En as described above.
We claim that if PRF is a PRF, then FBen is PP-CBA-secure. See the following result, which is proved
in Appendix C.

Proposition 4.2 For FBen constructed as above out of function family PRF, and any adversary A,
there exist PRF adversaries F0 and F1 such that

Advpp-cba
FBen (A) = Advprf

PRF(F0) + Advprf
PRF(F1) .

9



Further, if A submits queries of total length γ to its oracle, then F1 and F2 each submit queries of
total length γ to their oracles as well.

As will soon become clear, what we actually need is a PP-CBA-secure collision-free batch-encoding
scheme, a natural extension of a IND-DCPA deterministic encryption scheme. To theoretically achieve
collision resistance, a pseudorandom permutation (PRP) would be necessary. But concretely, statistical
collision resistance should suffice—i.e. on random inputs, a collision occurs after

√
|R| inputs with

probability approximately 1/2. We suggest using any blockcipher (permutation) that is a PRF (and
thus PP-CBA-secure), though one may have to augment the blockcipher into a variable-input-length
blockcipher [8] as described in [21], or into an encryption scheme like those of [23, 2].

Template tag-encoding EFSE construction. We now provide a general “template” construc-
tion for an EFSE scheme given a closeness-preserving tagging function Tags, batch-encoding family
FBen, and ESE scheme ESE. We remark that this template is a generalization of the technique used
in [19], though we have expanded, formalized, and refined it significantly. All forthcoming EFSE
constructions use this general construction as a template.

Let Λ = (D,Cl) be a closeness domain, Tags a function from D to subsets of a set TagUniv,
FBen = (KBen, En, Ben) a batch-encoding family on domain DEn = TagUniv and range REn, and ESE =
(KESE, EncESE,DecESE, F,G) an ESE scheme on D. Then we define a general tag-encoding StructFSE
scheme FSEEtag[Tags,FBen, ESE] in Figure 2.

FSEEtag[Tags,FBen, ESE] = (K, Enc,Dec, makeDS, fuzzyQ) where

• K runs KBen
$←KBen and KESE

$←KESE, and returns KBen‖KESE.

• Enc(KBen‖KESE,m) runs Tm ← Tags(m) ; Etags← Ben(KBen, Tm) ; cR ←
EncESE(KESE,m), and returns c← Etags‖cR.

• Dec(KBen‖KESE, c) parses c as Etags‖cR and returns DecESE(KESE, cR).

• makeDS(C) initializes an efficient self-balancing search tree T representing an associative
array from elements of REn to ciphertexts. For each ciphertext c ∈ C parsed as c =
Etags‖cR, and for each t ∈ Etags, add the node (t 7→ c) to T . Output DSC ← T .

• fuzzyQC,DSC(c) parses c as Etags‖cR and interprets DSC as search tree T . Let E,F = ∅.
For each t ∈ Etags, search T for nodes indexed by t; for any (t 7→ c′) that exist, parse
c′ = Etags′‖c′R. Then, if G(cR) = G(c′R), add c′ to E; otherwise, add c′ to F. Return
E,F.

Figure 2: General tag-encoding construction of a StructFSE scheme given Tags, FBen, ESE.

Conditions for correctness and efficiency.

Theorem 4.3 If FBen is collision-free and Tags is closeness-preserving, then FSEEtag[Tags,FBen, ESE]
is StructFSE. In addition, it is an EFSE scheme if Tags, FBen, and ESE are efficient and µ =
maxm |Tags(m)| is small.

Proof of Theorem 4.3: We first show that the output E,F of fuzzyQ is correct. Fix a key K, and
let c be a query ciphertext to fuzzyQ, let m = Dec(K, c), and for c′ ∈ C, let m′ = Dec(K, c′). Then:
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• m = m′ implies G(cR) = G(Enc(KESE,m)) = F (KESE,m) = F (KESE,m
′) = G(c′R), so c′ ∈ E.

• Cl(m,m′) = close implies Etags∩ Etags′ 6= ∅ as Tags is a CPTF and Ben(KBen, ·) is determin-
istic, so c′ ∈ F.

• Cl(m,m′) = far implies Etags∩Etags′ = ∅ as Tags is a CPTF and Ben(KBen, ·) is collision-free,
so c′ /∈ F.

Thus, the scheme is a StructFSE scheme.

Now, suppose Tags, FBen, and ESE are efficient and µ = maxm |Tags(m)| is small. It is left to prove
that fuzzyQ operates in sub-linear time. To see this, suppose database C contains k ciphertexts, and
assume k � µ. Then tree T will have at most kµ nodes, and a single search for a tag in the tree takes
O(log(kµ)) ∈ O(log(k)) time. Any matching tag points to at most |Cnear(c)| ciphertexts. fuzzyQ

performs O(µ) searches on T , so the running time of fuzzyQ is at most O(µ|Cnear(c)| log(k)) times
the size of a ciphertext (i.e. the input size). This is sub-linear in k as long as |Cnear(c)| is sub-linear
in k.

Conditions for optimal security. Now, fix a closeness domain Λ = (D,Cl), and let Tags be a
CPTF from Λ into a set TagUniv, FBen a collision-free batch-encoding family on TagUniv, and ESE

an ESE scheme on D, so that FSEEtag[Tags,FBen, ESE] is a valid StructFSE scheme by Theorem 4.3.
The next result, proved in Appendix D, gives sufficient conditions for FSEEtag[Tags,FBen, ESE] to be
IND-CLS-CPA-secure.

Theorem 4.4 If Tags is consistent with respect to Λ, µ = maxm |Tags(m)| is small, FBen is PP-
CBA-secure, and ESE is IND-DCPA-secure, then FSEEtag[Tags,FBen, ESE] is IND-CLS-CPA-secure.

Finally, the following result, proved in Appendix E, shows that consistency of Tags is a necessary
condition for the template scheme to be IND-CLS-CPA-secure.

Theorem 4.5 If Tags is not consistent, then valid EFSE FSEEtag[Tags,FBen, ESE] is not IND-CLS-
CPA-secure.

Summing up, if CPTF Tags is consistent, µ = maxm |Tags(m)| is small, batch-encoding oracle
FBen is PP-CBA-secure and collision-free, and ESE scheme ESE is IND-DCPA-secure, then the scheme
FSEEtag[Tags,FBen, ESE] is a valid, (optimally) IND-CLS-CPA-secure EFSE. If Tags is not consistent,
the scheme is not IND-CLS-CPA-secure.

5 Toward an Optimally-Secure Scheme

We now seek an EFSE construction achieving the optimal level of security, IND-CLS-CPA, as defined in
Definition 3.1. First, we show that the only previously existing candidate is, in general, not IND-CLS-
CPA-secure due to Theorem 4.5. Then, we construct the first IND-CLS-CPA-secure EFSE scheme
using the template from Section 4. Finally, we show that in a sense, the space-inefficiency of the secure
scheme is necessary to accommodate general closeness domains.

Analysis of an EFSE scheme similar to [19]. The only previously existing EFSE-type scheme is
presented in [19]. As noted, the basic structure of our template tag-encoding scheme is a generalization
of their method, so it is natural to define a tag-encoding scheme in our model that captures the essence
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of (and perhaps improves) the [19] scheme. Here we show that this scheme has poor space-efficiency
(length of ciphertext linear in the degree of a message) and yet fails to achieve IND-CLS-CPA-security.
(Moreover, it only works on certain closeness domains.) In contrast, the schemes we develop in later
sections either achieve IND-CLS-CPA-security, or have much better space-efficiency.

In [19], the authors construct several variants of a fuzzy-searchable scheme; here we present
a variant/generalization6. This construction only works on closeness domains Λ = (D,Cl) with
the following constraint: for any m1,m2 ∈ D, if Cl(m1,m2) = far, then there exists no m with
Cl(m1,m) = Cl(m2,m) = close. (In particular, this generally rules out rigid closeness domains.) We
define the neighbor set of an element m to be Nbm = {m′ ∈ D | m′ 6= m,Cl(m,m′) = close}. Define
TagNbs : D → VΛ as TagNbs(m) = Nbm ∪ {m}, where VΛ is the power set of D.

Note that if Cl(m,m′) = close then TagNbs(m) ∩ TagNbs(m′) ⊇ {m,m′} 6= ∅, and if Cl(m,m′) =
far, TagNbs(m) ∩ TagNbs(m′) = ∅ by the condition on Λ, so TagNbs is a CPTF on Λ. Let FBen be
a collision-free batch-encoding family on VΛ and ESE an ESE scheme on D, and define FSEtagNbs to
be FSEEtag[TagNbs,FBen, ESE] as per Figure 2. If the max degree ∆ = maxm∈D |Nbm| of Λ is small,
FSEtagNbs is an EFSE. However, the ciphertext size is linear in ∆.

We claim that FSEtagNbs is IND-CLS-CPA-insecure for the closeness domains considered by [19],
as well as most other conceivably useful domains. Suppose, for example, that the closeness domain
has two pairs of close messages with different numbers of common close neighbors: i.e.,

Cl(m0,m2) = Cl(m1,m2) = close ; |Nbm0 ∩ Nbm2 | 6= |Nbm1 ∩ Nbm2 |. (1)

Then the condition of Theorem 4.5 is satisfied for q = 2, so that FSEtagNbs is IND-CLS-CPA-insecure
for any domain having m0,m1,m2 that satisfy (1).

The schemes of [19] are, essentially, instantiations of FSEtagNbs on closeness domains defined
in terms of keywords and edit distance (the minimum number of operations—insertions, deletions,
substitutions—required to transform one string into the other.) If δ > 2 is the threshold edit distance,
take m2 to be any message of length at least δ + 1. Let m0 be m2 but with the first letter changed.
Let m1 be m2 but with the last δ letters changed. Then m0 and m2 share more neighbors than m1

and m2 share, so these messages satisfy (1) and FSEtagNbs is IND-CLS-CPA-insecure in this case.

Construction of the first secure EFSE scheme. We now improve on the scheme of [19]
and construct an EFSE scheme that is IND-CLS-CPA-secure even on rigid closeness domains. Let
Λ = (D,Cl) be a closeness domain with D finite. Let GΛ = (VΛ, EΛ) be the closeness graph of Λ. For
m ∈ D, let Em = {{m,m′} ∈ EΛ | m′ ∈ VΛ} be the set of incident edges to m in GΛ, and note that
message degree ∆m = |Em| and max degree ∆ = maxm∈D∆m.

So that all messages have the same number of close neighbors, we introduce dummy messages.
Construct a new graph Gdum = (Vdum, Edum) where Vdum = VΛ∪{w1, . . . , w∆}, and Edum consists of all edges
in EΛ, plus for any m ∈ VΛ, if ∆−∆m > 0 then let Edum also contain edges {m,w1}, . . . , {m,w∆−∆m}.
We call these additional edges dummy edges and w1, . . . , w∆ dummy vertices. Gdum is thus a graph in
which every element of VΛ ⊂ Vdum has degree ∆.

Define TagEdges : D → Edum as TagEdges(m) = {e ∈ Edum | m ∈ e}. Note: if Cl(m,m′) = close

then TagEdges(m) ∩ TagEdges(m′) ⊇ {{m,m′}} 6= ∅; and if Cl(m,m′) = far then TagEdges(m) ∩
TagEdges(m′) = ∅. So TagEdges is a CPTF.

6There are minor differences—notably, FSEtagNbs uses an IND-DCPA-secure ESE rather than a (stronger) IND-CPA-
secure scheme, but this is not an issue as [19] leaks equality already through its encoding strategy. Moreover, we could
instantiate FSEtagNbs with an IND-CPA-secure scheme in place of ESE and the attack described would still work, since
the attack exploits the FBen-tagged neighbors, not ESE. Other differences in [19] are inconsequential to the analysis.
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Let FBen be a collision-free batch-encoding family on domain Edum and some range REn, and let ESE
be an ESE scheme on D. Define the StructFSE scheme FSEtagEdges as FSEEtag[TagEdges,FBen, ESE]
according to Figure 2. Notice that for all m ∈ D, |TagEdges(m)| ≤ ∆. So, if Λ has small max degree,
FSEtagEdges is efficient.

Now, Theorem 5.1 provides the security guarantee of FSEtagEdges. The proof is in Appendix F,
and simply shows the main condition of Theorem 4.4 (i.e., consistency of TagEdges) is satisfied in this
case.

Theorem 5.1 If the max degree ∆ of the closeness domain is small, and if ESE is IND-DCPA-secure
and FBen is PP-CBA-secure, then FSEtagEdges is IND-CLS-CPA-secure.

Recall that certain blockcipher-based constructions (discussed earlier) satisfy the necessary effi-
ciency, security, and functionality conditions for ESE and FBen. The final missing piece to achieve an
efficient IND-CLS-CPA-secure scheme is that TagEdges should be efficient; i.e., for any message m ∈ D
it should be easy to compute Em. Thus, FSEtagEdges is an IND-CLS-CPA-secure EFSE scheme on
Λ if the following two conditions hold:

(1) the max degree of Λ is small; (2) Em is predetermined or calculated on-the-fly.

Of course, whether these conditions are satisfied depends on the closeness domain Λ. It is an inter-
esting question to identify when (1) holds, and how to achieve (2) in those situations. However, the
possibilities are wide-ranging and so we leave this as a topic of future research.

Now, we have successfully created a IND-CLS-CPA-secure scheme, but at what cost? It is apparent
that, even if the max degree ∆ is small enough for the scheme to be efficient, its size can lead to huge
space-inefficiency, since ciphertexts in FSEtagEdges have length linear in ∆. And ∆ could certainly
be quite large—for instance, on a dense or high-dimensional metric closeness domain, even a small
threshold supplies each message with many close neighbors.

Nevertheless, if we desire a general FSE construction to work on arbitrary closeness domains, such
long ciphertexts are necessary. We explain in the following section.

Lower bound on ciphertext length of an FSE scheme for general closeness domains.
Notice that our FSEtagEdges scheme is defined independently of the closeness graph—in particular,
the algorithms makeDS and fuzzyQ did not exploit any special structure of the closeness graph. In the
following result, we show that to have such a scheme construction that is valid for “general” closeness
domains, it requires ciphertext length linear in the max degree of the closeness domain. Moreover,
note that this is an informational theoretic requirement, and relies only on functionality, rather than
security, of the schemes. The proof of the theorem is in Appendix G.

Theorem 5.2 Let D be a fixed domain and ∆ an integer with 2 ≤ ∆ � |D|. There exists a family
of closeness domains {Λi = (D,Cli)}i∈I , each with max degree at most ∆, so that if {FSEi}i∈I is
a family of FSE schemes on the respective closeness domains that have common makeDS and fuzzyQ

algorithms and a common ciphertext space, then the ciphertext length is at least ∆/2.

The bound on ciphertext length asymptotically matches the space-efficiency of scheme FSEtagEdges

from the previous section, demonstrating that FSEtagEdges is “best-possible” for FSE schemes that
work on general closeness domains.
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6 Space-Efficient Schemes

Theorem 5.2 indicates that it is costly to construct EFSE schemes on general closeness domains. A
natural question is whether we can improve efficiency by focusing on closeness domains that have nice
structure. In particular, to avoid the strict conditions leading to Theorem 5.2 we should consider non-
rigid closeness domains, where near message pairs enable “false positives” in a fuzzy query. However,
note that if an adversary has any probabilistic edge in distinguishing near message pairs that lead
to false positives and those that don’t, he can easily break IND-CLS-CPA-security. To avoid such
an attack, one must force the probability a near message pair is sent to a close ciphertext pair to be
uniform over all near message pairs. But this negates the flexibility advantage of near messages—we
expect an EFSE scheme satisfying this uniformity condition on near pairs would be as inefficient as the
FSEtagEdges scheme. Thus, it appears that IND-CLS-CPA-security is too strong for more efficient
EFSEs to achieve, even on non-rigid closeness domains. So to evaluate more efficient schemes, we need
a new, weaker notion of security.

Intuitively, what information must a EFSE scheme on a non-rigid closeness domain Λ leak, given
that some number of ciphertexts are known? Let H be the set of messages corresponding to known
ciphertexts. For two messages in the same component of the induced nearness subgraph GNΛ(H) (we
say they are in the same nearness component) an EFSE is designed so that anyone might discover
this fact by running fuzzyQ on their ciphertexts. So, by using EFSE we automatically give up a large
amount of information about messages in the same nearness component (namely, their link through a
chain of known near pairs.) It is a natural step to consider allowing more information leakage relating
messages within the same nearness component, while protecting as much as possible about messages
in different components, and hiding the “general location” of a message in the domain. We also might
restrict our view to schemes on “regular” closeness domains—that is, domains where message closeness
is defined in a similar manner in all parts of the space. Otherwise, irregularities in the domain would
inherently reveal message locations.

Toward this end, we focus on real `-dimensional domains where closeness of messages is defined
regularly throughout the space. In particular, there is a regular lattice L such that the closeness
function is invariant by L-translations. Our new security notion then requires schemes to hide all
information about plaintexts in different nearness components except for their “local structure” with
respect to this lattice. The important implication is that nothing major (i.e., only “local structure”)
is revealed about the relationship between a pair of disconnected messages (i.e., messages that cannot
be connected through a chain of near known corresponding ciphertext pairs). Hence, it is a sort of
“macrostructure security” across disconnected nearness components.

In this section we focus on schemes achieving this security on certain metric closeness domains
over R`. Suppose we can select a lattice L ⊂ R` and “anchor radius” ρ > 0 so that close messages are
each within distance ρ of a common lattice point, and far messages are not. Then an obvious tagging
strategy is to send a message to its anchor points: the lattice points within distance ρ of the message.
We prove that the resulting scheme is secure with respect to L under the new definition. This new
“macrostructure-secure” construction leads to a more detailed discussion. We pose an optimization
problem related to the general construction, present some simple scheme constructions and a way to
stitch simple constructions together to build useful schemes, then describe a practical instantiation
of the scheme for fuzzy search on biometric data. Finally, we propose a direction of further research
toward “probabilistic EFSE” schemes built out of locality-sensitive hash functions.
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6.1 Macrostructure security on lattice-regular closeness domains

Our new notion of security will apply to closeness domains over R` for which closeness is defined in a
“regular” manner over the entire space. We characterize this regularity using a regular lattice on R`.
Then, the security notion will hide everything about plaintexts except for how they locally relate to
this regular lattice.

Lattice-regular closeness domains. Let L be a regular lattice in R`, that is, a set of vectors
characterized as all integer combinations of a finite set of linearly independent basis vectors. We
say a closeness domain Λ = (R`,Cl) is L-regular if for any x,y ∈ R` and any w ∈ L, Cl(x,y) =
Cl(x + w,y + w). That is, closeness relations are invariant under translation by any lattice vector.
We say L is a regularity lattice of Λ. Also, if z = x + w for some x, z ∈ R` and w ∈ L, we say that x
and z are in the same L-class and that w is the L-witness from x to z.

Macrostructure security. Let L be a regular lattice on R` and let Λ =
(
R`,Cl

)
be a L-regular

closeness domain on R`. The security notion is as follows.

Definition 6.1 Let FSE = (K, Enc,Dec, makeDS, fuzzyQ) be an EFSE scheme on L-regular closeness

domain Λ. For an adversary A and b ∈ {0, 1}, let Expind-nrL-cpa-b
FSE (A) be identical to IND-CPA

experiment Expind-cpa-b
FSE (A) in Figure 4, but with the restriction: for LR-queries (mi

0,m
i
1), i ∈ [q]

made by the adversary, letting H0 = {m1
0, . . . ,m

q
0} and H1 = {m1

1, . . . ,m
q
1}, require

1. |mi
0| = |mi

1| for all i ∈ [q];

2. ∀i ∈ [q], mi
0 and mi

1 are in the same L-class; furthermore, the L-witness from mi
0 to mi

1 is also
the L-witness from mj

0 to mj
1 whenever mi

0 and mj
0 are in the same connected component of

GNΛ(H0).

For an adversary A, define its IND-NRL-CPA advantage against FSE as

Advind-nrL-cpa
FSE (A) = Pr

[
Expind-nrL-cpa-1

FSE (A) = 1
]
− Pr

[
Expind-nrL-cpa-0

FSE (A) = 1
]
.

We say that FSE is indistinguishable under same-nearness-component-L-class chosen-plaintext at-
tacks (IND-NRL-CPA-secure) or, alternatively, macrostructure-secure with respect to anchor lattice
L (MacroStruct-L-secure) if the IND-NRL-CPA advantage of any adversary against FSE is small.

The second LR-query requirement asks that a left-query component of GNΛ(H0) is a L-translation
(translation by a vector in L) of the corresponding right-query component of GNΛ(H1). This implies
that left and right queries have the same equality/closeness pattern, which we can see by the following.
If mi

0 = mj
0 then these messages are in the same nearness component (as they are the same vertex)

so ∃l ∈ L with mi
1 = mi

0 + l = mj
0 + l = mj

1. If Cl(mi
0,m

j
0) ∈ {close, near} then these messages are

in the same nearness component so ∃l ∈ L with mi
1 = mi

0 + l, mj
1 = mj

0 + l, implying d(mi
1,m

j
1) =

d(mi
1 + l,mj

1 + l) = d(mi
0,m

j
0), so Cl(mi

1,m
j
1) = Cl(mi

0,m
j
0). Thus, MacroStruct-L-security is clearly

weaker than IND-CLS-CPA-security.
Returning to the big picture, an MacroStruct-L-secure scheme may leak how all messages in a

nearness component lie with respect to nearby points in the regularity lattice. However, since the
lattice itself is regular, no information is leaked about where those nearby lattice points actually are.
Thus, for messages in different nearness components, an adversary learns nothing about the distance
between them, or their approximate locations in the space, besides some bits with low significance,
and that the distance is above δF (which is by design.)
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Practitioners should be aware that, depending on the application, MacroStruct-L-security is not
always an appropriate security guarantee. For instance, consider a scenario where IP addresses are
encrypted by a MacroStruct-L-secure scheme and the lattice points are IP addresses with the final
byte equal to 0. The scheme could possibly leak the last byte of each IP address, perhaps revealing
the particular types of conversants in IP traffic data. In general, when the “least significant” bits of
data contain sensitive information, MacroStruct-L-security may not be enough.

6.2 General macrostructure-secure construction on metric closeness domains

We aim to construct space-efficient EFSE schemes that meet our new notion of MacroStruct-L-security
for some regularity lattice. For practicality, we focus on the metric closeness domain on R`, Euclidean

metric d, close threshold δC > 0, and far threshold δF ≥ δC, i.e., Λ =
(
R`,MδC,δF

d

)
. Notice that Λ is

L-regular for any lattice L ⊂ R`. We now define a few useful objects that will play a leading role in
the general construction. Then, the construction follows.

Anchor radii and points. Fix a lattice L in R`. For ρ > 0, we say that ρ is an anchor radius on
closeness domain Λ and lattice L, and {v ∈ L | d(m,v) ≤ ρ} is the set of anchor points of message m,
if (1) any two close messages m,m′ ∈ D have a common anchor point, and (2) any two far messages
m,m′ ∈ D have no common anchor points.

General macrostructure-secure construction and its security. If ρ is an anchor radius
on Λ and L, then TagsAnc

ρ
L : R` → L defined as TagsAnc

ρ
L(m) = {v ∈ L | d(m,v) ≤ ρ} is a

CPTF on Λ, as condition (1) implies that whenever d(m,m′) ≤ δC, there exists v ∈ L such that
TagsAnc

ρ
L(m) ∩ TagsAnc

ρ
L(m′) ⊇ {v} ; and condition (2) implies TagsAnc

ρ
L(m) ∩ TagsAnc

ρ
L(m′) = ∅

whenever d(m,m′) > δF. Thus, if ρ is an anchor radius on Λ and L, FBen = (KBen, En, Ben) is a
collision-free batch-encoding family on domain DEn = L, and ESE is an ESE scheme on D, then the
scheme FSEtagAnc

ρ
L = FSEEtag[TagsAnc

ρ
L,FBen, ESE] is a StructFSE scheme by Theorem 4.3. The

following result is proved in Appendix H.

Theorem 6.2 FSEtagAnc
ρ
L defined ias above is MacroStruct-L-secure provided ESE is IND-DCPA-

secure, FBen is PP-CBA-secure, µ = max
m∈D

|{v ∈ L | d(m,v) ≤ ρ}| is small, and we can efficiently

compute anchor points.

Together, Theorem 4.3 and Theorem 6.2 say that if we can find an anchor radius ρ on closeness
domain Λ and lattice L such that the maximum number of anchor points µ is small, and we can
efficiently compute anchor points, FSEtagAncρL as constructed above is an MacroStruct-L-secure EFSE
scheme on Λ.

Note that the problem of finding a given message’s anchor points is essentially the ρ-close vectors
problem (ρ-CVP) on the appropriate parameters. Unfortunately, this problem is harder (assuming
fixed maximum number of anchor points µ) then the standard closest vector problem with unlimited
preprocessing, which has been shown to be NP-hard in general [20]. Thus, to ensure both efficiency
and security in our specific constructions, it is vital to demonstrate how to efficiently compute anchor
points.

The general “anchor-point” construction above provides a template for defining macrostructure-
secure schemes. We now analyze some of the ramifications and possibilities. In Section 6.3, we pose the
general open problem of how to choose anchor lattice and anchor radius to optimize space-efficiency
and flexibility of a scheme. Section 7 presents a practical model for building schemes by stitching
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together simple schemes on small spaces “conjunctively”. In Section 7.5, to enhance understanding,
we describe and analyze a scheme for a practical application: supporting fuzzy search on biometric
(fingerprint) data.

6.3 On optimizing space-efficiency and far threshold

Suppose that we are given a close threshold δC > 0 and are asked to provide an EFSE scheme on

Λ =
(
R`,MδC,δF

d

)
where far threshold δF can be chosen as needed. We would like to choose a lattice

L and a valid anchor radius ρ to build a scheme in the FSEtagAnc
ρ
L model that attains MacroStruct-

L-security. Thus, we are faced with the following informal problem.

Problem 6.3 Given a space R` and close threshold δC > 0, choose a lattice L ⊂ R` and anchor
radius ρ with three objectives: (1) assure that a short L-basis enables efficient solution of ρ-CVP,
(2) minimize ρ (to accommodate stricter closeness domains), (3) minimize ciphertext length, which
depends on the distribution of |TagsAncρL(m)| for m ∈ D.

Note that if L is chosen first, ρ should be the smallest constant such that every pair of close points
in R` are each within ρ of the same point in L. Then, the scheme will support any metric closeness
domain with far threshold δF ≥ 2ρ, and minimizing ρ given these constraints will optimize objectives
(2) and (3). Faced with the challenge, though, it is unclear what anchor lattice L to start with, even
given that short-L-basis ρ-CVP must be easy: a denser lattice enables smaller anchor radius ρ but
means larger ciphertext length, while a sparser lattice implies the opposite.

Addressing Problem 6.3 with any formality is beyond the scope of this work, and is left as an open
problem. Instead, we aim for practical schemes, by first choosing an appropriate, simple lattice L that
will enable efficient solving of ρ-CVP, and then picking the smallest possible ρ to optimize the latter
objectives.

7 Examples of Anchor-Based Schemes

We first present several simple anchor-based schemes that satisfy the conditions of Section 6.2, and so
are macrostructure-secure EFSE schemes. For simplicity, in each of these examples we assume close
threshold δC = 1; other close thresholds are possible by scaling. The constructions are summarized in
Table 7 and described concretely in the next several sections, using the TagsAnc

ρ
L construction from

Section 6.2 as a template. These constructions are quite simple and may be viewed as the “most
basic” macrostructure-secure EFSE schemes.

Name Domain Anchor radius ρ |TagsAncρL(·)| range Minimum far threshold δF

Integer lattice R1 1 {2, 3} 2

Triangular lattice R2
√

5/2 {3, 4, 5, 6, 7}
√

5 ≈ 2.24
Rectangular grid R`, ` ≥ 1 3/2 see Table 7.3 3

Table 1: Summary of space-efficiency and minimum far threshold values for specific anchor-based
EFSE schemes on real spaces with close threshold 1.
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7.1 Integer lattice for R1

Let Λ =
(
R,M1,δF

)
. Set L = Z, and set ρ = 1. Then ρ is a valid anchor radius: if d(m,m′) ≤ 1, then

there exists an integer z such that d(m, z) ≤ 1 and d(m′, z) ≤ 1. Also, obviously, it is easy to compute
anchor points by rounding.

• Minimum far threshold: 2.

• Space efficiency: |TagsAncρL(m)| ∈ {2, 3} for all m ∈ D.

7.2 Triangular lattice for R2

Let Λ =
(
R2,M1,δF

)
. Set L to be the regular triangular lattice generated by the vectors (1, 0) and(

1
2 ,
√

3
2

)
, and set ρ =

√
5/2. Then ρ is a valid anchor radius, by the following argument. Let m ∈ R2,

and let v1,v2,v3 ∈ L be the vertices of (one of) the triangular region(s) T containing m. The union

of three balls, each of radius
√

5
2 and centered at the three points v1,v2,v3, cover all of T as well as

every point within distance 1 of a point of T . (A point on the border of this region that is closest

to T is one at the intersection of two of these balls, which is distance

√(√
5

2

)2
−
(

1
2

)2
= 1 from a

midpoint of one of T ’s edges.) Thus, for any m′ ∈ R with d(m,m′) ≤ 1, we have d(m′,vi) ≤
√

5
2 for

some i ∈ {1, 2, 3}.
Space-efficiency. Notice that every triangular region of the lattice has the same pattern of
|TagsAncρL(m)| values. For instance, a point in the middle of a triangular region always has 3 an-
chor points, while a point in the corner of a triangular region always has 7 anchor points. Figure 3
indicates these numbers for points in various sectors of a triangular region, and this pattern holds for
all such regions. We conclude that |TagsAncρL(m)| ∈ {3, 4, 5, 6, 7} for all m ∈ R2.

Computing anchor points. The picture of Figure 3 also indicates that each triangular region T
can be split into a finite number of subregions such that points in each subregion have the same anchor
points. Then, there is a fixed mapping of subregions of a triangular region T to neighboring anchor
points that works identically for all regions T . This mapping has a short description and immediately
allows one to find the anchor points of a message.

• Minimum far threshold:
√

5.

• Space efficiency: |TagsAncρL(m)| ∈ {3, 4, 5, 6, 7} for all m ∈ D. (See discussion.)

7.3 Rectangular grid for arbitrary dimension

Fix a dimension ` ≥ 1, and let Λ =
(
R`,M1,δF

d

)
. Set L = Z`√

`
=
{(

z1√
`
, . . . , z√̀

`

)
| z1, . . . , z` ∈ Z

}
. Set

ρ = 3/2, and ρ is a valid anchor radius by the following argument. Let m,m′ ∈ R` with d(m,m′) ≤ 1.

Note that the points in R` furthest from elements of L are the half-grid points, e.g.
(

1
2
√
`
, . . . , 1

2
√
`

)
,

which are distance 1/2 from a grid point. So let z ∈ L be a grid point that is within distance 1/2 of
m. Then d(m′, z) ≤ d(m′,m) + d(m, z) ≤ 1 + 1/2. Hence d(m, z) and d(m′, z) are both at most 3/2.
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Figure 3: |TagsAncρL(m)| values according to m location in a region of the triangular lattice

Space-efficiency. Notice that |TagsAncρL(m)| equals the number of points in Z`√
`

whose distance

from m is at most 3/2. Equivalently, this is the number of integer-valued points whose distance from
m
√
` is at most 3

√
`/2.

We informally conjecture that, in general, it is difficult to describe the distribution of this number.
In fact, if there is an efficient algorithm for the number of integer points in the ball in R4 of radius
x > 0 centered at 0 = (0, 0, 0, 0), then we could efficiently factor integers of the form n = pq with p, q
prime as follows.

Suppose f(x) is the number of integer points in R4 contained in the ball B(0, x) of radius x centered

at 0 = (0, 0, 0, 0). Then for integer n, f(n) − f
(√

n2 − 1
)

gives the number of integer points on the

boundary of B(0, n), as for any four integers x1, . . . , x4, if
∑4

i=1 x
2
i ≤ n2 then either

∑4
i=1 x

2
i = n2 or∑4

i=1 x
2
i ≤ n2 − 1. Now suppose that n = pq for p, q odd primes. By Jacobi’s four-square theorem,

the number of ways to represent n as the sum of four squares is eight times the sum of the divisors of
n, or 8(1 + p+ q+n). Thus, the number of ways n can be written as a sum of four squares

∑4
i=1 x

2
i is

8(1 + p+ q + n) = f(n)− f(
√
n2 − 1).

So, knowing n = pq, if we can calculate f(n) and f
(√

n2 − 1
)

efficiently, we can easily determine p

and q. Though this is a different scenario (as factoring is difficult only for p, q large) it contributes
evidence that calculating the number of (and finding!) integer points within an `-dimensional ball
centered at some point is difficult.

Thus, to describe space efficiency of the rectangular grid scheme, we resort to empirical findings and
the following loose theoretical bound. Let B(x, r) denote the `-dimensional ball of radius r centered
at x. For each integer-valued point x, let Hx be the hypercube x + [0, 1]`, and let H = {Hx | x ∈
B(m

√
`, 3
√
`/2)}. Since each such hypercube has volume 1, |TagsAncρL(m)| equals the total volume of
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the hypercubes in H. Now, we claim that
⋃
H∈HH ⊂ B(x, 5

√
`/2). This follows from noting that any

point in a hypercube Hx is at most
√
` from a point in B(x, 3

√
`/2), and using the triangle inequality.

Hence, we have the loose upper bound |TagsAncρL(m)| ≤ Vol(B(x, 5
√
`/2)).

Table 7.3 in contains information about |TagsAncρL(m)| for small dimensions `. The first col-
umn evaluates the loose upper bound. The second column is the empirically-computed value of
|TagsAncρL(m)| at a grid point. The third and fourth columns give empirical lower and upper bounds
(calculated exactly using brute-force) on the value of |TagsAncρL(m)| among 10000 points randomly
selected in the space.

Loose Value at Empirical Empirical
` upper bound lattice point lower bound upper bound

1 5 3 3 4
2 39 13 12 16
3 340 81 68 81
4 3084 425 425 1023
5 28736 2463
6 272516 12277
7 2616999 69779
8 25366951 469457
9 247667506 2634777

10 2432025947 14763893
11 23994113427 81598773
12 237648085570 578480129

Table 2: An analysis of |TagsAncρL(m)| values for m ∈ L, for various dimensions `. The first col-
umn evaluates the loose upper bound. The second column is the empirically-computed value of
|TagsAncρL(m)| at an actual lattice point. The third and fourth columns give empirical maxima and
minima of |TagsAncρL(m)| among 10000 points randomly selected in the space.

Computing anchor points. Obviously, computing anchor points is harder than computing the
number of anchor points, so it is hard for general (and even moderately sized) `. However, for small
fixed `, one can reasonably construct the mapping from points in a general hypercubic region to its
anchor points that works analogously in all regions, in a similar manner to the triangle diagram of
Figure 3. Such a mapping would enable efficient calculation of anchor points.

• Minimum far threshold: 3.

• Space efficiency: depends on `; likely only viable for very small `. See Table 7.3.

7.4 Conjunctive closeness for multiple attributes

While the above schemes are perhaps too basic to be useful independently, the idea is that we can
“stitch” these basic schemes together in a conjunctive manner to accommodate appropriate closeness
domains on high-dimensional space. We present the straightforward explanation of this conjunctive
strategy.

In many fuzzy search applications, we may desire fuzziness to cover many attributes in a conjunctive
(AND) manner. As a motivating example, consider the criminal database application suggested in
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the introduction, where the database contains records of biometrics such as height, weight, fingerprint
data, and iris scan data. Such attributes are generally each 1- or 2-dimensional, but taken together
a person’s set of biometric data defines a point in a high-dimensional space. In such an application,
we desire closeness (since biometrics are inherently fuzzy) on every individual biometric measurement
independently to achieve a match.

Let Λ1, . . . ,Λr be closeness domains, where Λi =
(
R`i ,MδC,δF

di

)
for all i ∈ [r]. For i ∈ [r], let Li

be a regular lattice on Di and ρi a valid anchor radius on Λi, Li. Define conjunctive closeness domain
Λ = (D,Cl) where D = R`1 × · · · × R`r and Cl : D → {close, near, far} as

Cl(m,m′) =


close if di(mi,m

′
i) ≤ δC for all i ∈ [r];

far if di(mi,m
′
i) > δF for any i ∈ [r];

near otherwise.

Define TagsAnc
ρ1,...,ρr
L : D → L as where L = L1 × · · · × Lr. Then TagsAnc

ρ1,...,ρr
L is a CPTF on Λ:

• if Cl(m,m′) = close then Cli(mi,m
′
i) = close for all i ∈ [r], so for each i ∈ [r] there exists

li ∈ Li such that di(mi, li) ≤ ρi and di(m
′
i, li) ≤ ρi and thus (l1, . . . , lr) ∈ TagsAnc

ρ1,...,ρr
L (m) ∩

TagsAnc
ρ1,...,ρr
L (m′);

• if Cl(m,m′) = far then Cli(mi,m
′
i) = far for some i ∈ [r], so @li ∈ Li with di(mi, li) ≤ ρi,

di(m
′
i, li) ≤ ρi, so TagsAnc

ρ1,...,ρr
L (m) ∩ TagsAncρ1,...,ρrL (m′) = ∅.

A similar argument to that of Theorem 6.2 shows that the scheme FSEtagAnc
ρ1,...,ρr
L , which is

FSEEtag[TagsAnc
ρ1,...,ρr
L ,FBen, ESE] is MacroStruct-L-secure provided ESE is an IND-DCPA-secure ESE

scheme on D and FBen is a PP-CBA-secure collision-free batch-encoding family on L.

7.5 Macrostructure-secure scheme for fuzzy search on biometric data

We conclude our presentation of example anchor-based schemes with a practical example.
Fingerprints are quantified by identifying the locations and orientations of recognizable features

such as ridge endings and bifurcations, collectively called minutiae. As a toy example, suppose a
fingerprint image has 100 × 100 pixels, exactly 4 minutiae all of the same type, and we have a way
to normalize a fingerprint image and order its minutiae so that the locations of the ordered minutiae
should be close in different images. Say, (xi, yi) ∈ [100]2 are the coordinates (in pixels) of the ith
minutiae in this ordering. Then we might encode fingerprints, define a metric and closeness domain,
and instantiate an anchor-point scheme FSEtagAnc

ρ
L as follows.

Fingerprint encoding: m = (x1, y1, x2, y2, x3, y3, x4, y4) ∈ [100]8

Metric: d(m,m′) = maxi∈[4]

√
(x′i − xi)2 + (y′i − yi)2

Close threshold: δC = 2

Far threshold: δF = 5

Lattice: L = L4
tri

Anchor radius: ρ =
√

5

Above Ltri is the triangular lattice generated by (2, 0) and (1,
√

3). The metric and thresholds indicate
that two fingerprints are close if the distance between each corresponding minutiae is at most 2
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pixels, and far if any distance is more than 5 pixels. Note that ρ =
√

5 is a valid anchor radius:
as shown in Section 7.2, for any x,x′ ∈ R2 with ||x′ − x|| ≤ 2, there exists some xL ∈ Ltri such
that ||xL − x|| ≤

√
5 and ||xL − x′|| ≤

√
5. So if d(m,m′) ≤ 2 there exists some mL ∈ L with

d(m,mL) ≤
√

5 and d(m′,mL) ≤
√

5. On the other hand, if d(m,m′) > 5 then for some i we have
||(x′i, y′i) − (xi, yi)|| > 5 > 2

√
5 so there exists no mL ∈ L that is distance at most

√
5 from m and

m′. Finally, Section 7.2 explains how to construct a mapping that computes the at-most-7 Ltri anchor
points of a message in R2 efficiently. So in our application, anchor points are efficiently computable
and the number of anchor points of a message is bounded by µ = 74 = 2401.

Thus, our sample space-efficient scheme FSEtagAncρL requires at most 2401 (and usually fewer) tags
per ciphertext, compared to the 124 > 20000 tags needed for each ciphertext in the corresponding IND-
CLS-CPA-secure FSEtagEdges scheme of Section 5. (Intuitively, this space-efficiency savings improves
if we can validly use a sparser lattice, or a smaller anchor radius, with respect to the domain.) In
addition, FSEtagAnc

ρ
L is MacroStruct-L-secure by Theorem 6.2. So if an adversary sees a set of

ciphertexts, the only information he can deduce besides nearness is how each nearness component
locally relates to lattice points of L. Intuitively, he can learn nothing more than the “least significant
bits” of each minutia coordinate (x, y)—information that is hardly useful.

8 Space-Efficient Schemes using Locality-Sensitive Hashing

In this section we discuss constructing a tag-encoding scheme via locality-sensitive hashing (LSH).
Let d be a metric on domain D = Rs. For close threshold δC and far threshold δF, fix metric

closeness domain
(
D,MδC,δF

d

)
. Let H be a family of hash functions mapping Rs to some universe U .

H is called (δC, δF, p1, p2)-sensitive (and a locality-sensitive hashing scheme or LSH) if p1 > p2 and for
any x,y ∈ Rs,

• if d(x,y) ≤ δC then Pr
h

$←H [h(x) = h(y) ] ≥ p1,

• if d(x,y) > δF then Pr
h

$←H [h(x) = h(y) ] ≤ p2.

An explicit LSH construction is usually augmented in the following way. For positive integers k, L,
choose random hi,j ∈ H for i ∈ [L], j ∈ [k] and define composite hashes

gi(m) = (hi,1(m), hi,2(m), . . . , hi,k(m)) for i ∈ [L].

Then for x,y ∈ Rs,

• if d(x,y) ≤ δC then Pr
hi,j

$←H [∃i ∈ [L] : gi(x) = gi(y) ] ≥ 1− (1− pk1)L = P1,

• if d(x,y) > δF then Pr
hi,j

$←H [∃i ∈ [L] : gi(x) = gi(y) ] ≤ 1− (1− pk2)L = P2.

Since p1 > p2, by increasing k and L (L much faster than k) we can make P1 very close to 1 and P2

very close to 0.
Naturally, we can use the above composite hashes to build a tag-encoding scheme. For m ∈ D,

define
TagLSH(m) = {gi(m) | i ∈ [L]}.

Assume for the moment that P1 = 1 and P0 = 0 for H, k, L. Then for m,m′ ∈ D, it is obvious that
Cl(m,m′) = close implies TagLSH(m) ∩ TagLSH(m′) 6= ∅ and Cl(m,m′) = far implies TagLSH(m) ∩
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TagLSH(m′) = ∅, so TagLSH is a CPTF. Let FBen be a batch-encoding family from Uk to a range REn,
and let SE be a symmetric encryption scheme on D. Then FSEtagLSH = FSEEtag[TagLSH,FBen, ESE] is
a valid EFSE for Λ.

Of course, in selecting k and L at random and large enough, we can only guarantee P1 very close
to 1 and P2 very close to 0. Thus FSEtagLSH is not an EFSE scheme per se, but with arbitrarily
high probability it behaves like one. One might call it a “probabilistic EFSE” scheme. Note that
FSEtagLSH acts more like an EFSE the higher the value of L, but this also makes the scheme less
space-efficient as ciphertext length is O(L).

It is also an open question to study the security of LSH-based schemes. Obviously, in general
FSEtagLSH is IND-CLS-CPA-insecure as TagLSH is not usually consistent. Moreover, a practically
useful IND-CLS-CPA-secure LSH-based scheme may be out of reach. State-of-the-art LSH schemes,
such as those found in [3] (for Euclidean distance metric on Rs), [15] (for Hamming distance in the
discrete cube), etc, were designed with speed and reliability in mind.

Therefore, we propose the following directions for future work.

Problem 8.1 Develop a formal framework to study efficiency, accuracy, and security of “probabilistic
EFSE” schemes and especially LSH-based schemes. Find an alternative secure, efficient LSH-based
construction. Or, show that FSEtagLSH or another scheme satisfies some weaker notion of security
than IND-CLS-CPA-security that is meaningful for applications.
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A Supplementary Definitions

A symmetric encryption scheme SE = (K, Enc,Dec) with associated plaintext space D and ciphertext
space R consists of three algorithms.

• The randomized key generation algorithm K returns a secret key K.

• The (possibly randomized) encryption algorithm Enc takes a secret key K and a plaintext m to
return a ciphertext c.

• The deterministic decryption algorithm Dec takes a secret key K and a ciphertext c to return a
plaintext m or a special symbol ⊥ indicating that the ciphertext was invalid.

We require the usual correctness condition, Dec(K, (Enc(K,m)) = m for all K output by K and all
m ∈ D. Finally, we say that SE is deterministic if Enc is deterministic.

Indistinguishability under chosen-plaintext attacks. For symmetric encryption scheme
SE = (K, Enc,Dec), adversary A, and b ∈ {0, 1} consider the IND-CPA experiment in Figure 4,
where it is required that each query (m0,m1) that A makes to its oracle satisfies |m0| = |m1|.

Experiment Expind-cpa-b
SE (A)

K
$←K

b′
$←AEnc(K,LR(·,·,b))

Return b′ .

Figure 4: The IND-CPA experiment.

For an adversary A, define its IND-CPA advantage against SE as

Advind-cpa
SE (A) = Pr

[
Expind-cpa-1

SE (A) = 1
]
− Pr

[
Expind-cpa-0

SE (A) = 1
]
.

We say that SE is indistinguishable under chosen-plaintext attacks (IND-CPA-secure) if the IND-CPA
advantage of any adversary against SE is small.

B Efficiently Searchable Encryption and its Security

As defined in [2], we say that ESE = (K, Enc,Dec, F,G) is an efficient searchable encryption (ESE)
scheme on domainD if (K, Enc,Dec) is a symmetric encryption scheme onD and F , G are deterministic
functions such that for every m ∈ D and efficient randomized algorithm A that outputs distinct
messages m0,m1 ∈ D,

Pr
K

$←K
[F (K,m) = G(Enc(K,m)) ] = 1, and

Pr
K

$←K
(m0,m1)

$←A

[F (K,m0) = G(Enc(K,m1)) ] is sufficiently small

Notice that an ESE scheme leaks equality, as if c1, c2 are both encryptions of m under key K, then
G(c1) = F (K,m) = G(c2), and this happens with low probability if c1 and c2 are encryptions of
distinct messages.
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Since ESE schemes leak equality, the following notion called indistinguishability under distinct
chosen-plaintext attacks [5] is appropriate to evaluate their security. For b ∈ {0, 1}, ESE scheme ESE,

and any adversary A, let Expind-cpa-b
ESE (A) be identical to IND-CPA experiment Expind-cpa-b

ESE (A) (see
Appendix A) but with the restriction that LR-queries have the same equality pattern. That is, for
LR-query pairs (m0,m1) and (m′0,m

′
1), we have m0 = m′0 if and only if m1 = m′1. For an adversary

A, define its IND-DCPA advantage against FSE as

Advind-dcpa
ESE (A) = Pr

[
Expind-dcpa-1

ESE (A) = 1
]
− Pr

[
Expind-dcpa-0

ESE (A) = 1
]
.

We say that ESE is indistinguishable under distinct chosen-plaintext attacks (IND-DCPA-secure) if the
IND-DCPA advantage of any adversary against ESE is small.

C Proof of Proposition 4.2

Proof of Proposition 4.2: Let A be a PP-CBA adversary against FBen. For α ∈ {0, 1}, construct
PRF adversary Fα against PRF as follows.

Adversary F
O(·)
α

Let Pα be the oracle that on input (M0,M1), runs:
Let Mα = {m1

α, . . . ,m
q
α}

ci ← O(mi
α) for i ∈ [q]

Return C = {c1, . . . , cq}
b′

$←APα(·,·)

Return b′

The query-length claims on F1 and F2 should be clear from the construction.

Now, we claim that

Advpp-cba
FBen (A) = Pr

[
Exppp-cba-1

FBen (A) = 1
]
− Pr

[
Exppp-cba-0

FBen (A) = 1
]

= Pr
[
Exppp-cba-1

FBen (A) = 1
]
− Pr
K

$←K

[
F
FPRF(K,·)
1 = 1

]
[I]

+ Pr
K

$←K

[
F
FPRF(K,·)
1 = 1

]
− Pr
f

$← FuncD,R

[
F
f(·)
1 = 1

]
[II]

+ Pr
f

$← FuncD,R

[
F
f(·)
1 = 1

]
− Pr
f ′

$← FuncD,R

[
F
f ′(·)
0 = 1

]
[III]

+ Pr
f

$← FuncD,R

[
F
f(·)
0 = 1

]
− Pr
K

$←K

[
F
FPRF(K,·)
0 = 1

]
[IV]

+ Pr
K

$←K

[
F
FPRF(K,·)
0 = 1

]
− Pr

[
Exppp-cba-0

FBen (A) = 1
]

[V]

= Advprf
PRF(F0) + Advprf

PRF(F1)

Note that [II] and [IV] evaluate to Advprf
PRF(F1) and Advprf

PRF(F0), respectively. It is left to show that
[I], [III], and [V] evaluate to zero.

26



[I] is zero: By construction of FBen, the oracle Pα(·) constructed by F
FPRF(K,·)
1 mimics the oracle in the

experiment Exppp-cba-1
FBen (A) on FBen. So A is given equivalent oracles in both cases, and F

FPRF(K,·)
1

outputs the result that A outputs.

[III] is zero: We show there is a bijection f ↔ f ′ between functions in FuncD,R such that P1 in adversary

F
f(·)
1 is equivalent to P0 in adversary F

f ′(·)
0 . Then, since A is given equivalent oracles in either

case, and either adversary outputs the output of A, the result follows.

Suppose (M1
0 ,M

1
1 ), . . . , (M q

0 ,M
q
1 ) are the queries A makes to its oracle in the PP-CBA ex-

periment. Then by the PP-CBA restriction, for all I ⊆ [q] we have
∣∣⋂

i∈IM
i
0

∣∣ =
∣∣⋂

i∈IM
i
1

∣∣ .
Intuitively, this means that if we draw two Venn diagrams, one of the sets M i

0 for i ∈ [q] and the
other of the sets M i

1 for i ∈ [q], the number of elements in corresponding (same-index) regions is
identical in both diagrams. This implies that there exists a bijection φ :

⋃
i∈[q]M

i
0 →

⋃
i∈[q]M

i
1

such that m ∈M i
0 if and only if φ(m) ∈M i

1, for all i ∈ [q].

Given f ∈ FuncD,R fixed, let f ′ be the function that is the same as f , except that for any
m ∈

⋃
i∈[q]M

i
0 corresponding to φ(m) ∈

⋃
i∈[q]M

i
1, f ′ sends m 7→ f(φ(m)) and φ(m) 7→ f(m).

This indicates a bijection between functions f and f ′ in FuncD,R where {f(m) | m ∈ M i
0} =

{f ′(m) | m ∈ M i
1}. Hence, for corresponding f, f ′ indicated by the bijection, P1 in adversary

F
f(·)
1 equivalent to P0 in adversary F

f ′(·)
0 .

[V] is zero: Analogous reasoning to [I].

D Proof of Theorem 4.4

Proof of Theorem 4.4: We show that if Tags is consistent with respect to Λ, then for any adversary
A there exist adversaries EA and FA such that

Advind-cls-cpa
FSEEtag[Tags,FBen,ESE](A) = Advind-dcpa

ESE (EA) + Advpp-cba
FBen (FA).

Further, let µ = maxm∈D |Tags(m)|, and suppose A submits q length-2` queries to its oracle. Then
we claim EA submits q queries to its oracle, each of length ≤ 4µ`; q queries to EncESE, each of length
`; and 2 queries to Tags, each of length `. And FA submits q queries to its oracle, each of length 2`;
q queries to Ben, each of length ≤ 2µ`; and 1 query to Tags, of length `. Otherwise, A, EA, and FA
have the same running time.

Let FSE = FSEEtag[Tags,FBen, ESE]. Let A be an efficient IND-CLS-CPA adversary to FSE. We
construct a PP-CBA adversary EA against FBen and an IND-DCPA adversary FA against ESE, as
follows.
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Adversary E
Ben(KBen,LR(·,·,b))
A

KESE
$←KESE

Define oracle P(m0,m1):
T0 ← Tags(m0)
T1 ← Tags(m1)
Etags← Ben(KBen,LR(T0, T1, b))
cR ← EncESE(KESE,m0)
Return Etags‖cR

b′
$←AP(·,·)

Return b′

Adversary F
EncESE(KESE,LR(·,·,b))
A

KBen
$←KBen

Define oracle Q(m0,m1):
T1 ← Tags(m1)

Etags← Ben(KBen, T1)
cR ← EncESE(KESE,LR(m0,m1, b))
Return Etags‖cR

b′
$←AQ(·,·)

Return b′

First, the efficiency claims about EA and FA should be clear from the definitions of oracles P and Q
and the fact that each adversary runs A once while simulating A’s oracle efficiently.

Now, we show that

Advind-cls-cpa
FSE (A) = Pr

[
Expind-cls-cpa-1

FSE (A) = 1
]
− Pr

[
Expind-cls-cpa-0

FSE (A) = 1
]

= Pr
[
Expind-cls-cpa-1

FSE (A) = 1
]
− Pr

[
Expind-dcpa-1

ESE (FA) = 1
]

[I]

+ Pr
[

Expind-dcpa-1
ESE (FA) = 1

]
− Pr

[
Expind-dcpa-0

ESE (FA) = 1
]

[II]

+ Pr
[

Expind-dcpa-0
ESE (FA) = 1

]
− Pr

[
Exppp-cba-1

FBen (EA) = 1
]

[III]

+ Pr
[

Exppp-cba-1
FBen (EA) = 1

]
− Pr

[
Exppp-cba-0

FBen (EA) = 1
]

[IV]

+ Pr
[

Exppp-cba-0
FBen (EA) = 1

]
− Pr

[
Expind-cls-cpa-0

FSE (A) = 1
]

[V]

= Advind-dcpa
ESE (FA) + Advpp-cba

FBen (EA).

Note that [II] evaluates to Advind-dcpa
ESE (FA) and [IV] evaluates to Advpp-cba

FBen (EA). It is left to show
that [I], [III], and [V] evaluate to zero.

[I] is zero: Knowing A is a valid adversary to experiment Expind-cls-cpa-1
FSE , we claim FA is a valid adversary

to Expind-dcpa-1
ESE . Within FA, suppose (m1

0,m
1
1), . . . , (mq

0,m
q
1) are the queries A makes to Q(·, ·).

Then for any i, j ∈ [q], |mi
0| = |mi

1|, and mi
0 = mj

0 if and only if mi
1 = mj

1, since A satisfies the

restrictions of Expind-cls-cpa-1
FSE . Thus, FA satisfies the restriction of Expind-dcpa-1

ESE .

In experiment Expind-dcpa-1
ESE , the oracle Q(·, ·) constructed by FA simulates A’s oracle in the

experiment Expind-cls-cpa-1
FSE (A), and FA outputs the result that A outputs.

[III] is zero: The oracle P(·, ·) constructed by EA in experiment Exppp-cba-1
FBen and the oracle Q(·, ·) constructed

by FA in Expind-dcpa-0
ESE are functionally equivalent: after keys KBen

$←KBen and KESE
$←KESE are

selected, both oracles take input (m0,m1) and output

Ben(KBen, T1)‖EncESE(KESE,m0).

So A is given equivalent oracles in the two cases, and each adversary outputs A’s output.
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[V] is zero: Knowing A is a valid adversary to experiment Expind-cls-cpa-0
FSE , we claim EA is a valid adversary

to Exppp-cba-0
FBen . Suppose (m1

0,m
1
1), . . . , (mq

0,m
q
1) are the queries A makes to the oracle P(·, ·).

Then for any i, j ∈ [q], either Cl(mi
0,m

j
0) = Cl(mi

1,m
j
1) or mi

0 = mj
0 and mi

1 = mj
1. Fix I ⊆ [q].

Then since Tags is consistent, ∣∣∣∣∣⋂
i∈I

Tags(mi
0)

∣∣∣∣∣ =

∣∣∣∣∣⋂
i∈I

Tags(mi
1)

∣∣∣∣∣ .
Thus EA satisfies the restriction of Exppp-cba-0

FBen . In experiment Exppp-cba-0
FBen , the oracle P(·, ·)

constructed by EA simulates A’s oracle in the experiment Expind-cls-cpa-0
FSE (A), and EA outputs

the result that A outputs, and the result follows.

E Proof of Theorem 4.5

Proof of Theorem 4.5: Let FSEEtag[Tags,FBen, ESE] be a valid StructFSE scheme defined in the
model of Figure 2 on closeness domain Λ, and suppose that CPTF Tags is not consistent on Λ. Then
we show there exists an adversary submitting q queries to its oracle whose IND-CLS-CPA-advantage
against FSEEtag[Tags,FBen, ESE] is 1.

If Tags is not consistent, there exist q > 1 and message sets {m1
0, . . . ,m

q
0} and {m1

1, . . . ,m
q
1} having

the same closeness pattern such that
∣∣∣⋂i∈[q] Tags(mi

0)
∣∣∣ 6= ∣∣∣⋂i∈[q] Tags(mi

1)
∣∣∣.

We construct an adversary A against the IND-CLS-CPA security of FSEEtag[Tags, PRTag, ESE] as fol-
lows. For i ∈ [q], A submits queries (mi

0,m
i
1) to its oracle, receiving ciphertexts ci = Etagsi‖c′i =

Enc(K,mi
b). A then compares

∣∣∣⋂i∈[q] Etagsi

∣∣∣ with
∣∣∣⋂i∈[q] Tags1

∣∣∣. If they are equal, A outputs 1, and

otherwise 0.

The attack is valid, as the corresponding messages have the same closeness pattern. Also, it is clear

that A makes q oracle queries. Further, note that
∣∣∣⋂i∈[q] Etagsi

∣∣∣ =
∣∣∣⋂i∈[q] Tagsb

∣∣∣ 6= ∣∣∣⋂i∈[q] Tags1−b

∣∣∣
since En(KBen, ·) is deterministic and collision-free for a given FBen-key KBen. So A always succeeds,
and the result follows.

F Proof of Theorem 5.1

Proof of Theorem 5.1: The result will follow if we simply show that Tags satisfies the conditions
of Theorem 4.4. Note that µ = ∆ in this case, so it is left to prove that Tags is consistent.

Let {m1
0, . . . ,m

q
0} and {m1

1, . . . ,m
q
1} be sets of messages having the same closeness pattern. That is,

either Cl(mi
0,m

j
0) = Cl(mi

1,m
j
1) or (mi

0 = mj
0 and mi

0 = mj
0) for all i, j ∈ [q].

For i ∈ [q], α ∈ {0, 1}, let Eiα = {e ∈ Edum | mi
α ∈ e}. Let I = [q]. Three cases arise:
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1. Suppose {mi
0 | i ∈ I} contains at least three messages, say mβ

0 6= mγ
0 6= mρ

0 for β 6= γ 6= ρ. Then

by the equality condition, mβ
1 ,m

γ
1 ,m

ρ
1 are all distinct. Three (or more) distinct vertices cannot

all share the same edge, so we conclude in this case that
∣∣⋂

i∈I E
i
0

∣∣ = 0 =
∣∣⋂

i∈I E
i
1

∣∣ .
2. Suppose {mi

0 | i ∈ I} contains exactly two distinct messages, say mβ
0 and mγ

0 . Let Iβ =

{i ∈ I | mi
0 = mβ

0} and Iγ = {i ∈ I | mi
0 = mγ

0}; then Iβ and Iγ are nonempty. Let

η = Cl(mβ
0 ,m

γ
0) ∈ {close, near, far}.

(a) For i, j ∈ Iβ, mi
0 = mj

0, so mi
1 = mj

1;

(b) For i, j ∈ Iγ , mi
0 = mj

0, so mi
1 = mj

1;

(c) For i ∈ Iβ, j ∈ Iγ , Cl(mi
1,m

j
1) = Cl(mi

0,m
j
0) = η.

Hence, if η = close, {mi
0 | i ∈ I} contains exactly two distinct close messages and {mi

1 | i ∈ I}
contains exactly two distinct close messages, so

∣∣⋂
i∈I E

i
0

∣∣ = 1 =
∣∣⋂

i∈I E
i
1

∣∣ .
On the other hand, if η = far, {mi

0 | i ∈ I} contains exactly two distinct far messages and
{mi

1 | i ∈ I} contains exactly two distinct far messages, so
∣∣⋂

i∈I E
i
0

∣∣ = 0 =
∣∣⋂

i∈I E
i
1

∣∣ .
3. Finally, suppose {mi

0 | i ∈ I} contains only one distinct message, say mβ
0 . Then by the equality

condition, {mi
1 | i ∈ I} also contains only one distinct message. So

∣∣⋂
i∈I E

i
0

∣∣ = ∆ =
∣∣⋂

i∈I E
i
1

∣∣ .
Thus, Tags satisfies the conditions of Theorem 4.4.

G Proof of Theorem 5.2

Proof of Theorem 5.2: Fix message space D and integer ∆. Let σ = 2∆(∆+1)/2. For i ∈ [σ] define
(any) rigid closeness domains Λi = (D,Cli) so that the closeness graphs of Λ1, . . . ,Λσ all have max
degree ∆ and on some H ⊂ D with |H| = ∆ + 1, the induced subgraphs GΛ1(H), . . . ,GΛσ(H) are the
distinct subgraphs of the complete graph K∆+1.

For i ∈ [σ], let FSEi = (Ki, Enci,Deci, makeDS, fuzzyQ) be an FSE scheme on closeness domain Λi,
where makeDS and fuzzyQ are common algorithms, and every scheme uses fixed ciphertext space R.
Suppose to the contrary that the ciphertext length is less than ∆, implying that |R| < 2∆/2.

Let m1, . . . ,m∆+1 be the vertices of H. For each scheme, consider the situation where the ciphertexts
of H are added, one at a time, to the database, and the resulting ciphertexts are ordered in the same
manner as their corresponding messages. Since |H| = ∆ + 1, the database then contains less than
∆
2 (∆ + 1) ordered bits of data. But σ = 2∆(∆+1)/2, so by the pigeonhole principle there exist i, j ∈ [σ]
so that under some keys, FSEi and FSEj in this situation form the same (ordered) database c, with “set”
(unordered) form C. Thus, both FSEi and FSEj will see the same outputs from fuzzyQ(C, makeDS(C), c)
in this situation, for all c ∈ c. Connecting these outputs to edges in the original closeness graph, we
see this violates the correctness of one of the schemes since GΛi(H) 6= GΛj (H). The result follows.
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H Proof of Theorem 6.2

Proof of Theorem 6.2: Let closeness domain Λ, anchor lattice L, anchor radius ρ, and EFSE
scheme FSEtagAnc

ρ
L be defined as above. We show that for any adversary A there exist adversaries

EA and FA such that

Advind-nrL-cpa
FSEtagAnc

ρ
L

(A) = Advind-dcpa
ESE (EA) + Advpp-cba

FBen (FA).

Further, let µ = max
m∈D

|{v ∈ L | d(m,v) ≤ ρ}|, and suppose A submits q queries to its oracle, of total

query length 2γ. Then EA submits q queries to its oracle, of total query length 2γ, and q queries to
Ben, of total query length at most 2µ(γ + q log2 ρ). And FA submits q queries to its oracle, of total
query length at most 4µ(γ + log2 ρ), and also submits q queries to EncESE, of total query length γ.
Otherwise, EA and FA run in the time of A plus the time it takes to find the set {v ∈ L | d(m,v) ≤ ρ}
for a single message m.

Let A be an IND-NRL-CPA adversary to FSEtagAnc
ρ
L. We construct a PP-CBA adversary FA against

FBen and an IND-DCPA adversary EA against ESE, as follows.

Adversary E
EncESE(KESE,LR(·,·,b))
A

KBen
$←KBen

Define oracle Q(m0,m1):
Anc1 ← {v ∈ L | d(m1,v) ≤ ρ}

Etags← Ben(KBen, Anc1)
cR ← EncESE(KESE,LR(m0,m1, b))
Return Etags‖cR

b′
$←AQ(·,·)

Return b′

Adversary F
Ben(KBen,LR(·,·,b))
A

KESE
$←KESE

Define oracle P(m0,m1):
Anc0 ← {v ∈ L | d(m0,v) ≤ ρ}
Anc1 ← {v ∈ L | d(m1,v) ≤ ρ}
Etags← Ben(KBen,LR(Anc0, Anc1, b))
cR ← EncESE(KESE,m0)
Return Etags‖cR

b′
$←AP(·,·)

Return b′

Notice that if mj is described with γj bits, the messages in Ancj can be described with at most
γj + log2 ρ bits. Then, the efficiency claims on EA and FA are clear from the definitions of oracles P
and Q and the fact that each adversary runs A once while simulating A’s oracle efficiently.

Now, we show that

Advind-nrL-cpa
FSE (A) = Pr

[
Expind-nrL-cpa-1

FSE (A) = 1
]
− Pr

[
Expind-nrL-cpa-0

FSE (A) = 1
]

= Pr
[

Expind-nrL-cpa-1
FSE (A) = 1

]
− Pr

[
Expind-dcpa-1

ESE (EA) = 1
]

[I]

+ Pr
[

Expind-dcpa-1
ESE (EA) = 1

]
− Pr

[
Expind-dcpa-0

ESE (EA) = 1
]

[II]

+ Pr
[

Expind-dcpa-0
ESE (EA) = 1

]
− Pr

[
Exppp-cba-1

FBen (FA) = 1
]

[III]

+ Pr
[

Exppp-cba-1
FBen (FA) = 1

]
− Pr

[
Exppp-cba-0

FBen (FA) = 1
]

[IV]

+ Pr
[

Exppp-cba-0
FBen (FA) = 1

]
− Pr

[
Expind-nrL-cpa-0

FSE (A) = 1
]

[V]

= Advind-dcpa
ESE (EA) + Advpp-cba

FBen (FA).
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Note that [II] evaluates to Advind-dcpa
ESE (EA) and [IV] evaluates to Advpp-cba

FBen (FA). It is left to show
that [I], [III], and [V] evaluate to zero.

[I] is zero: Knowing A is a valid adversary to experiment Expind-nrL-cpa-1
FSE , we claim EA is a valid adversary

to Expind-dcpa-1
ESE . Within EA, suppose (m1

0,m
1
1), . . . , (mq

0,m
q
1) are the queries A makes to Q(·, ·).

Then for any i, j ∈ [q], |mi
0| = |mi

1|, and mi
0 = mj

0 if and only if mi
1 = mj

1, since A satisfies the

restrictions of Expind-nrL-cpa-1
FSE . Thus, EA satisfies the restriction of Expind-dcpa-1

ESE .

In experiment Expind-dcpa-1
ESE , the oracle Q(·, ·) constructed by EA simulates A’s oracle in the

experiment Expind-nrL-cpa-1
FSE (A), and EA outputs the result that A outputs.

[III] is zero: The oracle P(·, ·) constructed by FA in experiment Exppp-cba-1
FBen and the oracle Q(·, ·) constructed

by EA in Expind-dcpa-0
ESE are functionally equivalent: after keys KBen

$←KBen and KESE
$←KESE are

selected, both oracles take input (m0,m1) and output

Ben(KBen, Anc1)‖EncESE(KESE,m0).

So A is given equivalent oracles in the two cases, and each adversary outputs A’s output.

[V] is zero: Knowing A is a valid adversary to experiment Expind-nrL-cpa-0
FSE , we claim FA is a valid adversary

to Exppp-cba-0
FBen . Suppose (m1

0,m
1
1), . . . , (mq

0,m
q
1) are the queries A makes to the oracle P(·, ·).

Then for any i, j ∈ [q], either Cl(mi
0,m

j
0) = Cl(mi

1,m
j
1) or mi

0 = mj
0 and mi

1 = mj
1.

For i ∈ [q], α ∈ {0, 1}, let Anciα = {v ∈ L | d(mi
α,v) ≤ ρ}. Fix I ⊆ [q]. Two cases arise:

1. Suppose ∃i 6= j ∈ I such that d(mi
0,m

j
0) > δF. Since A is a valid IND-NRL-CPA adversary,

its LR-queries have the same equality/closeness pattern, so this means d(mi
1,m

j
1) > δF as

well. Then by the construction of TagsAncρL, Anci0 ∩ Anc
j
0 = ∅ = Anci1 ∩ Anc

j
1 and thus∣∣∣∣∣⋂

i∈I
Anci0

∣∣∣∣∣ = 0 =

∣∣∣∣∣⋂
i∈I

Anci1

∣∣∣∣∣ .
2. Suppose d(mi

0,m
j
0) ≤ δF for all i 6= j ∈ I. Then messages {mi

0 | i ∈ I} are all in the same
nearness component of GNΛ(H0) where H0 = {m1

0, . . . ,m
q
0}. Since A is a valid IND-NRL-

CPA adversary, {mi
1 | i ∈ I} are all in the same nearness component of GNΛ(H1) where

H1 = {m1
0, . . . ,m

q
0}, and there exists some v ∈ L such that mi

0 +v = mi
1 for all i ∈ I. Note

that since L is regular, this means Anci0 + v = {w + v | w ∈ Anci1} = Anci1 for all i ∈ I.
Thus, for w ∈ R`,

w ∈
⋂
i∈I

Anci0 ⇔ w ∈ Anci0 for all i ∈ I

⇔ w + v ∈ Anci0 + v for all i ∈ I
⇔ w + v ∈ Anci1 for all i ∈ I

⇔ w + v ∈
⋂
i∈I

Anci1
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Hence, there is a bijection w↔ w + v between
⋂
i∈I Anc

i
0 and

⋂
i∈I Anc

i
1 and thus∣∣∣∣∣⋂

i∈I
Anci0

∣∣∣∣∣ =

∣∣∣∣∣⋂
i∈I

Anci1

∣∣∣∣∣ .
Thus FA satisfies the restriction of Exppp-cba-0

FBen .

In Exppp-cba-0
FBen , the oracle P(·, ·) constructed by FA simulates A’s oracle in Expind-nrL-cpa-0

FSE (A),
and FA outputs the result that A outputs, and the result follows.
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