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Abstract. We improve the main result of Brody and Verbin [7] from FOCS 2010 on the power of constant-width
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1 Introduction

In [7] Brody and Verbin studied the question of distinguishing flips of a coin with a slight bias towards
heads from those of a coin with a slight bias towards tails. More precisely, say that a coin isǫ-biasedif
Pr[Heads] = 1

2 + ǫ. Givenn flips of a coin which is eitherǫ-biased or(−ǫ)-biased, the question is to
determine which type of bias is present. Since taking a majority vote of the tosses constitutes an optimal
distinguishing strategy this question is uninteresting when the distinguisher is powerful enough to count (in
which case a bias ofǫ = Ω(1/

√
n) is both necessary1 and sufficient to distinguish with constant advantage2).

However, the problem seems both natural and interesting forspace-bounded distinguishers, and in particular
for distinguishers having only a constant amount of space.

As their main result, Brody and Verbin [7] give bounds on the ability of constant widthread-once
branching programs(ROBPs) to distinguish biased coins. A read-once branchingprogram is a model of
(non-uniform) space bounded computation in which each bit of input is accessed only once, in order. (We
give a formal definition of read-once branching programs in Section 2. A glance at Figure 1, however, should
suffice to understand the model.) They show, among others, that ROBPs of widthw ≥ 3 can distinguish
coins of suprisingly small bias: by computing a recursive tribes function, a lengthn ROBP of widthw can
distinguish anǫ-biased coin from a(−ǫ)-biased coin already forǫ = 1/ log(n)w−2. (By “can distinguish” we
mean, here and later, “can distinguish with constant (i.e.Ω(1)) advantage”.) In particular, a width 3 ROBP
of lengthn can distinguish a(1/ log n)-biased coin from a(−1/ log n)-biased coin. (This last observation
was also made, essentially, by Braverman et al. [6].)

On the lower bound side, Brody and Verbin show that, for constantw, a lengthn widthw ROBP cannot
distinguish±ǫ-biased coins unlessǫ = Ω(1/ log(n)w). The lower bound is therefore off from the upper
bound by a factorlog(n)2, which seems substantial for programs of small width (e.g.,width 3, for which
the upper bound isǫ = O(1/ log(n)) and the lower bound isǫ = Ω(1/ log(n)3)). In this paper we give
an improved lower bound that matches the upper bound of [7]. Namely, we show that, for constant3 w, the
smallest biasǫ that can be distinguished by a widthw lengthn ROBP isΩ(1/ log(n)w−2). Our analysis
is also shorter than Brody and Verbin’s. More interestinglythan simply achieving a tight lower bound,
however, is the fact that our result introduces new proof techniques that could be of independent interest for
the study of ROBPs and, more generally, for the problem of derandomizing space-bounded computations.
These techniques are described further below.

Note that a sequence ofn independent tosses of a biased coin is a special case of a product distribution.
(A sequence of random variablesX = (Xi)

n
i=1 is aproduct distributionif and only theXi’s are (totally)

independent.) One can consider, more generally, the power of a lengthn read-once branching program
whose edges are labeled by elements of some finite alphabetΣ at distinguishing two product distributions
X = (Xi)

n
i=1, Y = (Yi)

n
i=1 whereXi, Yi ∈ Σ for all i.

Generalizing results on the distinguishability of biased coins to the distinguishability of arbitrary product
distributions presupposes some kind of metric for measuring the closeness of two product distributions (i.e.,
requires generalizing the parameterǫ). As explained in [7], it makes more sense, in this context, to measure
closeness by probability ratios (bounding these to be near 1) rather than by probability differences (bounding
these to be near 0). We say two product distributionsX = (Xi)

n
i=1 ∈ Σn, Y = (Yi)

n
i=1 ∈ Σn areǫ-close

1 A possible approach for proving necessity (since the relevant statistical distance is not so obvious to upper bound fromfirst
principles) is to use Hellinger distance. See for example [4].

2 Theadvantageof a distinguisherD at distinguishing distributionsX andY is |Pr[D(X) = 1]− Pr[D(Y ) = 1]|. See Section
2 for more precise definitions.

3 The fact thatw is constant in particular implies thatΩ(·)- andO(·)- notation refers exclusively to function growth with respect
to n, and may hide constants that depend onw. In [7] the hidden constant is1000−w . Our hidden constant is2−w.
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Fig. 1: A width 3 read-once branching program (computing a tribes function).

in ratio if for every 1 ≤ i ≤ n and for everyα ∈ Σ, eitherPr[Xi = α] = Pr[Yi = α] = 0, or else
Pr[Xi = α] 6= 0, Pr[Yi = α] 6= 0 and

Pr[Xi = α]

Pr[Yi = α]
≥ 1− ǫ,

Pr[Yi = α]

Pr[Xi = α]
≥ 1− ǫ.

It is easy to see, for example, that anǫ-biased coin is4ǫ-close in ratio to a(−ǫ)-biased coin.

Our results are most easily phrased and proved in the contextof ǫ-close in ratio product distributions.
Our main result is that a lengthn ROBP of constant widthw cannot distinguish twoǫ-close in ratio product
distributions unlessǫ = Ω(1/ log(n)w−2). This directly implies our lower bound on the distinguishability
of ǫ-biased coins, and also matches the upper bounds of Brody andVerbin (given byǫ-biased coins). In
fact, ǫ-close in ratio product distributions were already considered by Brody and Verbin themselves, who,
by reducing to the case ofǫ-biased coins, proved thatǫ = Ω(1/ log(|Σ|n)3w) is necessary to distinguish
two ǫ-close in ratio product distributions overΣn, and thatǫ = Ω(1/ log(n)2w) is necessary when|Σ| = 2.
Our own lower bound shows there is essentially no differencebetween the cases|Σ| = 2 and |Σ| > 2: a
larger alphabet size does not help the distinguisher.

The techniques used in our proof are roughly threefold. We use, firstly, thecollision lemmaof Brody
and Verbin, which is a structural observation about ROBPs that are optimal distinguishers, and which we
strengthen slightly for our purposes. A second component ofthe proof is a hybrid argument whose two
endpoints are the product distributions(Xi)

n
i=1 and(Yi)

n
i=1. Here the bits that change distribution from one

hybrid to the next form each time an arithmetic progression (which is important for the argument). As these
various arithmetic progressions are parallel and interleaved, we call our set of hybrids a set ofinterwoven
hybrids(we are not aware of a similar set of such hybrids being used before). Our hybrid argument replaces
a more standard random restriction argument by Brody and Verbin. Finally, the third main proof technique
we use isprogram randomizationwhich, in a nutshell, randomizes the distinguisher in orderto compensate
for certain helpful initial modifications made to the input distributions(Xi)

n
i=1 and(Yi)

n
i=1 (see Section 4

for more details). Program randomization is also an original contribution of the paper. While it is crucial
to the final bounds, we consider it of secondary importance compared to the collision lemma and to the
interwoven hybrid technique.

In Appendix D we give a second application of the same basic set of techniques (program randomization
excluded) to the upper bounding of the maximum total influence of monotone functions computable by
width w ROBPs. Our main result is that a ROBP of widthw ≥ 2 and of lengthn ≥ 2 that computes a
monotone function has total influence at most4⌈1.5 log(n)⌉w−2. This bound is also tight, as can be verified
by considering a recursive tribes function.
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2 Definitions

A branching program of widthw and lengthn is a directed acyclic graph withn layers ofw nodes each and
a final layer with two nodes (accept and reject). Each non-ouptut node is labeled by a coordinate(k, j) ∈
[n]× [w]; output nodes are labeled by coordinates{n + 1} × {1, 2}, with (n + 1, 1) being the accept node
and(n+ 1, 2) being the reject node.

A node isin layer k, 1 ≤ k ≤ n+ 1, if its label is of the form(k, ·). The edges of the graph are labeled
by elements of theinput alphabetΣ (a finite set). Each node in every layerk ≤ n has one outgoing edge
labeledα for each elementα ∈ Σ whose endpoint is a node in layerk + 1. The branching program has a
designatedstart nodein the first layer, typically the node(1, 1). The computation of a branching program
of lengthn on a stringx = x1 · · · xn ∈ Σn is defined the natural way, by following the edge labeledxi at
stepi, starting from the start node. We note the type of branching program just described isread-oncesince
each character ofx is examined at exactly one layer of the program.

Let f be a (read-once) branching program of lengthn and widthw. If α is an element of the input
alphabetΣ andk ∈ [n], theα-transition function off at layerk is the functionτα : [w] → [w] such that
τα(i) = z iff the edge labeledα leaving node(k, i) has endpoint(k + 1, z). We sayτα contains a collision
if τα is not a permutation, i.e. if τα(i) = τα(j) for somei 6= j.

Thek-th layer of a ROBPf equalsthe j-th layer of a ROBPg if f andg have the same widthw, are
defined over the same input alphabetΣ, and if theα-transition function off at layerk is identical to the
α-transition function ofg at layerj for everyα ∈ Σ.

The statistical distance of two random variablesX, Y of same range is written∆(X,Y ). Namely, ifX
andY take values in a setS, then

∆(X,Y ) =
1

2

∑

b∈S

|Pr[X = b]− Pr[Y = b]|.

If f is a ROBP of lengthn over the alphabetΣ and ifX,Y ∈ Σn are two random variables, thenf ’s
advantageat distinguishingX andY is defined as the statistical distance

∆(f(X), f(Y )).

(We note this is a statistical distance between two probability distributions on the output nodes off .) This
differs from the traditional definition off ’s advantage as|Pr[f(X) = 1] − Pr[f(Y ) = 1]|, but it is easy to
see the two definitions are equivalent.

We writeX ∼ X ′ whenX, X ′ induce identical probability distributions over their (identical) ranges.

3 Results

Our main result is an upper bound on the advantage∆(f(X), f(Y )) of a widthw ROBPf at distinguishing
ǫ-close product distributionsX,Y ∈ Σn for an arbitrary finite alphabetΣ. While our original interest lies
with constant values ofw, our main result, given by the next theorem, is slightly moregeneral, as it also
allows “small” non-constantw.

Theorem 1. There is a function4 λ(n) = o(1) such that for any positive integersn,w with 2 ≤ w ≤
log n/ loglog n, for any product distributionsX, Y ∈ Σn that areǫ-close in ratio, and for any read-once
branching programf over the alphabetΣ of widthw and lengthn,

∆(f(X), f(Y )) ≤ ǫ(2 log(n))w−2(1 + λ(n)). (1)

4 I.e., limn→∞ λ(n) = 0.
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In particular, ifw is constant,ǫ needs to be at leastΩ(1/ log(n)w−2) in order forX andY to be distin-
guishable with constant advantage, where the hidden constant5 (depending onw but not onn) is 2−w. This
lower bound onǫ is tight up to a constant factor: as shown in [7], widthw, lengthn ROBPs can distinguish
coins of bias±ǫ already forǫ = O(1/ log(n)w−2). (For full disclosure, the hidden constant in the latter
O(·) is 3w; hence, there is still a gap between the upper and lower bounds as far as the constant factors are
concerned.) Theorem 1 will be proved as a corollary of a slightly more fine-grained statement (Theorem 4)
in Appendix B.

In Appendix D we also prove an upper bound on the maximum totalinfluence of monotone ROBPs (see
relevant definitions in Appendix D), which constitutes our second main result and is as follows:

Theorem 2. Let f : {0, 1}n → {0, 1} be a monotone boolean function computable by a ROBP of widthw
and lengthn. Then

Inf(f) ≤ 4⌈1.5 log(n)⌉w−2.

For constantw this bound is also tight up to a multiplicative factor, as canbe seen using a recursive tribes
function of depthw − 1 with the same tribe sizes as in [7]. (See also [2].)

The proof of Theorem 2 is given in Appendix D and the proof of Theorem 1 is divided between Appen-
dices A, B and C. We proceed with an outline of the proof of Theorem 1.

4 Proof Overview

This section gives a self-contained overview of the proof ofTheorem 1. For simplicity, we sketch the proof
for the caseΣ = {0, 1} (which anyway captures the full complexity of the problem).Moreover, we first
sketch the proof for the case of distinguishing±ǫ-biased coins and, later, discuss how to handleǫ-close in
ratio distributions (which, indeed, require an additionalidea).

Let X ∈ {0, 1}n be the product distribution of anǫ-biased coin, and letY ∈ {0, 1}n be the product
distribution of a(−ǫ)-biased coin. LetXj be thej-th bit of X.

LetFw be the set of all (binary) ROBPs of lengthn and widthw (the parametern is elided for simplic-
ity). Let

δw = max
f∈Fw

∆(f(X), f(Y ))

be the maximum distinguishing advantage. The proof boundsδw by establishing the recurrence

δw = O(log n)δw−1 + o(1) (2)

and by showing thatδ2 ≤ ǫ. In fact theo(1) term is1/poly(n), so that recursively “unfolding” the inequality
gives

δw ≤ O(log n)w−2ǫ+ o(1).

Tweaking the constants then yields Theorem 1. We now sketch how (2) is established.
Let

Fmax
w = {f ∈ Fw : ∆(f(X), f(Y )) = δw}

be the set of “best distinguishers”. NoteFmax
w is nonempty sinceFw is finite. A crucial observation, due to

Brody and Verbin [7], is thatFmax
w contains an elementf0 in which every transition function is either the

5 In fact, for constantw, (1) can be replaced with∆(f(X), f(Y )) ≤ ǫ(δ log(n))w−2 + λδ(n) whereδ > 1 is any constant and
whereλδ(n) → 0 now depends onδ. Thus a sharper statement would say that the hidden constantis really “δw for anyδ > 1”.
We refer to Appendix B for more details.
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identity from [w] to [w], or else is not a permutation of[w] at all, but contains a collision. We call an ROBP
with this property acollision ROBP, or cROBP for short. To upper boundδw it thus suffices to upper bound
∆(f(X), f(Y )) for an arbitrary cROBPf of lengthn and widthw. (A nearly identical observation is called
the collision lemmain [7]. We maintain this terminology, even while our own collision lemma is slightly
different. The difference is explained in Section 5.)

Let f , therefore, be a cROBP of lengthn and widthw. By dropping layers off at which both transition
functions are the identity (these have no effect), one can assume that every layer off has at least one
transition function with a collision.

To upper bound∆(f(X), f(Y )) we use a hybrid argument over distributionsZ0, . . . , Zc log(n) on{0, 1}n,
such thatZ0 = X andZc log(n) = Y . Herec > 0 is a constant we will set later (in fact,c = 2 will do). More
precisely, assumingc log(n) is an integer (otherwise substitute⌈c log(n)⌉ for c log(n) throughout),Zi is the
product distribution whosej-th coordinateZi,j is given by

Zi,j =

{

Yj if (j modc log(n)) < i,

Xj otherwise.

For example,Z1 is the distribution such that

Z1,j =

{

Yj if j ≡ 0 modc log(n),

Xj otherwise.

Clearly, then,Z0 = X andZc log(n) = Y .
We note thatZi andZi+1 differ on a set of bits whose indices form an arithmetic progression of step size

c log(n). This is the key feature of these hybrids; in fact any sequence ofc log(n) hybrids with this property,
starting withX and ending withY , would do as well (there are(c log n)! possible such sequences). Let
Zi ⊆ [n] be the set of bits at which (the definitions of)Zi andZi+1 differ. We callZ0, . . . , Zc log(n) a
sequence of “interwoven hybrids” becauseZ0, . . . ,Zc log(n)−1 are interwoven arithmetic progressions of
equal step size.

By a standard argument, it suffices to bound the distance∆(f(Zi), f(Zi+1)) between two neighboring
hybrids. LetZ ∈ {0, 1}[n]\Zi be the value ofZi, Zi+1 on the bits outsideZi. Fixing a value ofZ induces
(in the natural way) a widthw, length |Zi| ROBP fZ : {0, 1}Zi → {0, 1} taking as input the bits in
Zi. Let X ′ ∈ {0, 1}Zi be anǫ-biased coin, and letY ′ ∈ {0, 1}Zi be a(−ǫ)-biased coin. Thenf(Zi) is
equidistributed tofZ(X

′), andf(Zi+1) is equidistributed tofZ(Y
′), with randomness taken overZ,X ′, Y ′.

By elementary properties of statistical distance, one has

∆(f(Zi), f(Zi+1)) ≤ EZ∆(fZ(X
′), fZ(Y

′)). (3)

The crucial observation is that, in fact,fZ is (equivalent to) a widthw − 1 ROBP with high probability
overZ. This uses the fact thatf is a cROBP. Consider the transition functionsτ0, τ1 at layerk of fZ . By
definition offZ , these transition functions depend onc log(n)−1 consecutive bits ofZ. Let thesec log(n)−1
bits have indicesj1, . . . , jc log(n)−1 in f . To picture howτ0, τ1 are induced byZ, considerw (distinguishable)
pebbles placed on thew nodes off at layerj1. Then for a fixed value ofZ, we can assign in the natural
way a path to each pebble, starting at layerj1 and ending at layerjc log(n)−1 + 1 = j1 + c log(n)− 1. Then
τ0 is the composition of the 0-transitionτ ′0 at layerj1 − 1 of f with the function from[w] to [w] given by
the pebble paths, and likewiseτ1 is the composition of the 1-transitionτ ′1 at layerj1 − 1 of f with the same
pebble paths. Moreover, note that if two pebbles collide, they cannot separate again; thus, if two pebbles
collide, τ0 andτ1 have at mostw − 1 nodes in the union of their ranges.
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Sincef is a cROBP, there are valuesb1, . . . , bc log(n)−1 ∈ {0, 1} such that thebi-transition at layerji of
f has a collision. By the above remarks, if thejh-th bit6 of Z is equal tobh for any1 ≤ h ≤ c log(n) − 1,
thenτ0, τ1 have joint range of size at mostw − 1. But any coordinate ofZ is equal to a given binary value
with probability at least12 − ǫ, since each coordinate ofZ is distributed either according toX or according
to Y ; namely,

Pr[Zjh = bh] ≥
1

2
− ǫ (4)

for any1 ≤ h ≤ c log(n)− 1. Thus the probability that no collisions occur among the pebbles as they travel
from layerj1 to layerjc log(n)−1 + 1 is, in the worst case, at most

(1

2
+ ǫ

)c log(n)−1 ≈ 1

nc
.

(Where we useǫ = o(1); we are being, here, a bit informal for the sake of the proof sketch.) By a union
bound, the probability thatanyof then/c log(n) pairs of transition functions offZ do not have joint range
of size at mostw − 1 is at most≈ 1/nc−1 log(n). Thus,fZ can be written as a widthw − 1 ROBP with
probability at least≈ 1 − 1

nc−1 log(n)
, with the probability taken overZ. This allows us to upper bound (3)

by

EZ∆(fZ(X
′), fZ(Y

′)) ≤ O
( 1

nc−1 log(n)

)

+ δw−1.

(In fact, one could even replaceδw−1 with the advantage of the best distinguisher of lengthn/c log(n) and
of width w − 1, but such an optimization has little effect for constant-width ROBPs.) Finally, summing
together the distances between thec log(n) pairs of neighborhing hybrids, one thus obtains that

δw = ∆(f(X), f(Y )) ≤ c log(n)O
( 1

nc−1 log(n)

)

+ c log(n)δw−1

= O
( 1

nc−1

)

+ c log(n)δw−1,

establishing (2).
Finishing the proof also requires showing thatδ2 ≤ ǫ. This is not trivial and requires the collision lemma

as well as a coupling argument. We refer to Sections 5 for moredetails.
When working with arbitrary product distributions that areǫ-close in ratio, the above analysis breaks

down in one crucial place: even whenǫ is very small, there is no guarantee thatPr[Zjh = bh] will be near
1
2 , cf. (4). Instead,Pr[Zjh = bh] could be arbtrirarily close to 0. The probability that no collisions occur
among the pebbles could thus be arbitrarily close to 1, and, therefore,fZ is no longer equivalent to a width
w − 1 program with high probability.

In view of circumventing this (apparently complete) breakdown of the argument, note first that we do
not care ifPr[Zjh = bh] is low if boththe 0-transitions and 1-transitions at layerjh contain collisions; in this
case, indeed, we obtain width reduction with probability 1.Assume, therefore, wlog, that the 0-transition
at layer jh contains a collision, whereas the 1-transition is the identity function. Moreover assume that
Pr[Zjh = 0] is low. To be concrete, say

Pr[Xjh = 0] =
1

n
, Pr[Yjh = 0] =

0.9

n
. (5)

6 We index the bits ofZ by their original index inZi, Zi+1.
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Such values would be compatible withǫ = 0.1, and would implyPr[Zjh = 0] ≤ 1
n

.
The intuition is that in the case above,Zjh is quite likely to be equal to 1, which is an identity transition

function, and thereforeit is quite likely the program does nothing at all at layerjh. Namely, the program is,
with high probability, not reacting to input bitjh, and layerjh is therefore “wasted with high probability”
for the program.

To leverage this intuition, letf⊥ be the ROBP identical tof , but whose 0-transition function and 1-
transition function at layerjh are both the identity. Note that with high probability over the input distributions
X andY , f⊥ computes the same asf (assuming (5)). We define a random ROBPf∗ to be

f∗ =

{

f⊥ with probability1− 1
γ
,

f with probability 1
γ

whereγ ≥ 1 is chosen as large as possible such that the distributionsX∗, Y ∗ defined by

X∗
k =











Xk if k 6= jh,

0 with probabilityγ Pr[Xjh = 0] if k = jh, and

1 with probability1− γ Pr[Xjh = 0] if k = jh

(6)

Y ∗
k =











Yk if k 6= jh,

0 with probabilityγ Pr[Yjh = 0] if k = jh, and

1 with probability1− γ Pr[Yjh = 0] if k = jh

(7)

areǫ-close in ratio. Note thatf∗(X∗), f∗(Y ∗) are distributed identically tof(X), f(Y ), respectively, since
Pr[f∗ = f ∧ X∗

jh
= 0] = Pr[Xjh = 0] andPr[f∗ = f ∧ Y ∗

jh
= 0] = Pr[Yjh = 0]. (Note thatXjh = 0

exactly when the non-identity transition is used at layerjh in the computation off onX, and that the event
f∗ = f ∧X∗

jh
= 0 occurs exactly when the non-identity transition is used at layerjh in the computation of

f∗ onX∗.)
In the example above, in whichǫ = 0.1, this means choosingγ as large as possible such that

1− γ 1
n

1− γ 0.9
n

≥ 1− ǫ = 0.9.

A short computation shows the maximum value ofγ is γ = n/1.9. Thus, in this case,

Pr[X∗
jh

= 0] =
1

1.9
, Pr[Y ∗

jh
= 0] =

0.9

1.9
.

Note the difference with (5): both probabilities have movedaway from 0, and are now close to12 .
In the proof, the above operation consisting of randomizingthe program at a transition (to be the original

program w.p. 1
γ
, or to be the identity w.p. 1 − 1

γ
) and of simultaneously boosting by a factorγ in each

distribution the probability of the input value giving a collision at that layer, is carried out for all layers of
the program at once, with the value ofγ individually computed for each layer. The resulting randomized
programf∗ is defined by choosing each layer independently to be either the identity or the original layer,
with respect to the relevant probabilities. Sincef(X), f(Y ) are distributed identically tof∗(X∗), f∗(Y ∗),
with randomness taken also over the choice off∗, we have that

∆(f(X), f(Y )) = ∆(f∗(X∗), f∗(Y ∗)) ≤ Ef∗∆(f∗(X∗), f∗(Y ∗)).
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In the righmost expression, the statistical distance is computed solely over the randomness induced byX∗

andY ∗, for a fixed value off∗. Because of the probability boosting, one can show that if the b-transition at
thek-th layer off∗ has a collision while the(1−b)-transition does not (note this implies the same statement
holds inf ), then

min(Pr[X∗
k = b],Pr[Y ∗

k = b]) ≥ 1− ǫ

2− ǫ
.

Since the latter probability is near12 , the same hybrid method used for biased coins can be used to upper
bound∆(f∗(X∗), f∗(Y ∗)) for any fixed value off∗.

We note that the (central) idea of obtaining width reductionof the program via collisions originates
in [7]. There, random restrictions are used to obtain collisions and width-reduction. Our paper swaps ran-
dom restrictions for a hybrid argument, which has the advantage that one can control the position of the
restricted bits (these being, in the hybrid argument, the bits common to two neighboring hybrids). Having
long intervals of consecutive restricted bits augments thechance of obtaining at least one collision in each
of these intervals, and thus improves the chance of obtaining width-reduction. (On the other hand, longer
intervals means more hybrids, implying a tradeoff.)

As another point of comparison, we note that [7] eschews program randomization in favor of a (lossy)
reduction from the problem of distinguishing “well-behaved” input distributions (with probabilities near12 )
to the problem of distinguishing “troublesome” input distributions (with probabilities near 0). It is partly
this reduction which causes the alphabet size|Σ| to appear in the final bound of [7] (whereas our bounds
are independent of|Σ|).

5 Some further proof details: width two branching programs and the collision lemma

As explained, the proof of Theorem 1 relies on an inductive argument whose base case is an upper bound
on the distinguishing power of width 2 branching programs. Intuitively, a ROBP of width 2 (say, when
distinguishing a±ǫ-biased coin) cannot do better than to determine acceptancebased on the outcome of a
single coin flip, given its limited memory—e.g., by ignoringall coin flips except for the last. Note that such
a ROBP has advantage(12 + ǫ)− (12 − ǫ) = 2ǫ, the statistical distance in a single coin flip.

x1

x2

x2

x3

x3

x4

x4 x5

x5 xn

xn 0

1

0

1

0,1

0

1

0

1

0,1

0,1

0

1

0

1

0,1

b b b

Fig. 2: Width 2 branching program obtaining better than2ǫ advantage at distinguishing a( 1
2
+ ǫ, 1

2
− ǫ)-biased coin from an

( 1
2
− ǫ, 1

2
+ ǫ)-biased coin (n odd,n ≥ 3).

However this intuition is incorrect. Indeed, a width 2 ROBP can distinguish a(±ǫ)-biased coin with
advantage approaching

2ǫ
(3

4
+ ǫ2

)−1
(8)

as the lengthn of the program goes to infinity, which is close to43 as large as2ǫ for small ǫ. The program
whose distinguishing advantage approaches this value is shown in Fig. 2. The program of Fig. 2 is, conjec-
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turally, the best width 2 distinguisher of lengthn = 2k+1 for (±ǫ)-biased coins, but we do not have a proof.
(Also conjecturally, width two ROBPs of lengthn = 2k+2 do no better at distinguishing(±ǫ)-biased coins
than length2k + 1 ROBPs.) Our own bound shows that width 2 ROBPs cannot distinguish (±ǫ)-biased
coins with advantage better than

1−
1
2 − ǫ
1
2 + ǫ

= 2ǫ
(1

2
+ ǫ

)−1
(9)

regardless of their length. For smallǫ, this is roughly 1.5 times as large as the conjectured optimal advantage
(8), but this constant-factor discrepancy is unimportant for our final bound.

The general theorem which we prove on width two branching programs is the following:

Theorem 3. Let f be a width 2 ROBP of lengthn and letX = (Xi)
n
i=1 ∈ Σn, Y = (Yi)

n
i=1 ∈ Σn be two

ǫ-close in ratio product distributions. Then∆(f(X), f(Y )) ≤ ǫ.

(We note that (9) is the direct application of Theorem 3.) Theproof of Theorem 3 is in fact nontrivial and
uses many ideas from the inductive proof described in Section 4, including (a strengthened version of) Brody
and Verbin’s collision lemma, program randomization, and acoupling argument. It would be interesting to
know if an “easy” proof exists.

To state the collision lemma, which plays a key role in our results, we start by giving the formal definition
of cROBPs.

Definition 1. A widthw read-once branching programf is called acollision read-once branching program
(cROBP) if every transition functionτα of f is either the identity from[w] to [w] or else is not injective (i.e.
is not a permutation).

Collision Lemma. (After [7].) Let X,Y ∈ Σn be product distributions and letw ≥ 1. Then there exists a
cROBPf of lengthn and widthw whose distinguishing advantage∆(f(X), f(Y )) is at least as great as
the distinguishing advantage∆(g(X), g(Y )) of any lengthn width w ROBPg.

The collision lemma found in [7] states that the optimal distinguishing advantage can be achieved by a pro-
gramf with the following property: at every layer off , either all the transition functions are the identity,
or else at least one of the transition functions contains a collision. This is weaker than our lemma, which
implies thatall non-identity transition functions contain a collision (i.e. are not permutations). While our
version may seem much stronger at first glance, we comment that its proof only requires a minor modifica-
tion of the proof of [7].

The proof of Theorem 3 is in Appendix A and the proof of the collision lemma is in Appendix C.

Acknowledgments.I would like to thank Kevin Matulef, Joshua Brody and Elad Verbin for helpful conver-
sations at all stages of this work.
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A The base case: proof of Theorem 3

In this section we prove Theorem 3 concerning the power of width two branching programs. This theorem
serves as the “base case” for the proof of Theorem 1.

LetU , V be random variables taking values in some setΣ and defined over a common probability space.
We sayU , V aremaximally coupledif for everyα ∈ Σ,

(Pr[U = α] ≤ Pr[V = α]) =⇒ (U = α =⇒ V = α),

(Pr[V = α] ≤ Pr[U = α]) =⇒ (V = α =⇒ U = α).

It is an easy fact that for any two random variablesU , V there exist random variables̃U ∼ U , Ṽ ∼ V such
thatŨ , Ṽ are maximally coupled. Moreover,∆(U, V ) = ∆(Ũ , Ṽ ) = Pr[Ũ 6= Ṽ ] whenŨ , Ṽ are maximally
coupled copies ofU , V .

Proof of Theorem 3.By the Collision Lemma, we can assume without loss of generality that f is a cROBP.
We can also assume thatn ≥ 1 is chosen to be the smallest value for which the Theorem does not hold.

For eachi, 1 ≤ i ≤ n, let Ci ⊆ Σ be the set of valuesα such that the transition functionτα at layeri of
f has a collision, and letIi = Σ\Ci be the set of valuesα such that the transition functionτα at layeri is
the identity function. Let

σi = max(Pr[Xi ∈ Ci],Pr[Yi ∈ Ci]).
By the minimality ofn we can assumeσi 6= 0 for all i (otherwise we could remove leveli and thei-th input
of the program without affecting the program’s output, and obtain a smaller counterexample). Noteσi 6= 0
impliesPr[Xi ∈ Ci] 6= 0, Pr[Yi ∈ Ci] 6= 0 by the definition ofǫ-close in ratio. We define new random
variablesXi, Y i such that

Pr[X i = α] = Pr[Xi = α]/σi

Pr[Y i = α] = Pr[Yi = α]/σi

12



for all α ∈ Ci, and such that ifIi 6= ∅, then there exists aβ ∈ Ii such that

Pr[X i = β] = 1− Pr[Xi ∈ Ci]/σi
Pr[Y i = β] = 1− Pr[Yi ∈ Ci]/σi.

We assume moreover thatXi, Y i are maximally coupled. We note thatX i, Y i arenot constructed analo-
gously toX∗

jh
, Y ∗

jh
, as defined in (6), (7). For example,Xi, Y i are in general notǫ-close in ratio.

Since eitherPr[X i ∈ Ci] = 1 orPr[Y i ∈ Ci] = 1, the coupling implies thatPr[X i = Y i ∈ Ci] ≥ 1− ǫ.
Indeed, say wlog thatPr[X i ∈ Ci] = 1; then

Pr[X i = Y i ∈ Ci] = Pr[X i = Y i]

=
∑

α∈Σ

Pr[X i = α] Pr[Y i = α|X i = α]

≥
∑

α∈Σ

Pr[X i = α](1 − ǫ) = 1− ǫ.

Say that a layer of a branching program of widthw is the identityif each of its transition functions
τα : [w] → [w] is the identity. Letf∗ be a randomized branching program of width two and lengthn, whose
i-th layer is the identity with probability1 − σi, and equals thei-th layer off with probabilityσi, with all
layers determined independently. It is clear that

Pr[f(X) = 1] = Pr[f∗(X) = 1]

Pr[f(Y ) = 1] = Pr[f∗(Y ) = 1]

where the probabilities are taken overf∗ as well as overX andY . (To see this it can be helpful to view
the randomizedf∗ as a “filter” which modifiesXi, Y i and then passes on the modified values tof . In this
viewX i andY i are left unchanged with probabilityσi and are reassigned some value inIi with probability
1− σi.) In particular,∆(f(X), f(Y )) = ∆(f∗(X), f∗(Y )). We have

∆(f∗(X), f∗(Y )) ≤ Ef∗∆(f∗(X), f∗(Y )) (10)

where the statistical distances on the right-hand side are computed for a fixed value off∗, over the random-
ness ofX,Y . (More generally,∆(X,Y ) ≤ EZ∆((X|Z), (Y |Z)) =

∑

z Pr[Z = z]·∆((X|Z = z), (Y |Z = z))
for any random variablesX, Y , Z.)

Let g be some fixed value off∗. We upper bound∆(g(X), g(Y )). More precisely, by (10), it is sufficient
to show∆(g(X), g(Y )) ≤ ǫ to conclude the proof.

Say that a layer of a branching program “is the identity” if all the transition functions of that layer are the
identity. If all layers ofg are the identity theng is oblivious to its input and∆(g(X), g(Y )) = 0. Otherwise
let m, 1 ≤ m ≤ n, be the last non-identity layer ofg. Note that layerm of g equals layerm of f and that
g(X) = g(Y ) if Xm = Y m ∈ Cm. (This uses the fact thatg has width two.) Thus

Pr[g(X) = g(Y )] ≥ Pr[Xm = Y m ∈ Cm] ≥ 1− ǫ

and so∆(g(X), g(Y )) ≤ Pr[g(X) 6= g(Y )] ≤ ǫ (where the fact that∆(g(X), g(Y )) ≤ Pr[g(X) 6= g(Y )]
is a generic property of statistical distance). This concludes the proof. �
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B The main result: proof of Theorem 1

Theorem 1 is derived as a corollary of the following more general result (stated this way because it con-
veniently allows for induction), which is really the paper’s main result. Herer corresponds to the number
hybridsc log n, in the notation of Section 4:

Theorem 4. Letf be a widthw ≥ 2 ROBP of lengthn and letX = (Xi)
n
i=1 ∈ Σn, Y = (Yi)

n
i=1 ∈ Σn be

two ǫ-close in ratio product distributions. Then for any integerr ≥ 1,

∆(f(X), f(Y )) ≤ ǫrw−2 +
(

n(w − 2) +
w−1
∑

j=3

(w − j)rj−2
)( 1

2− ǫ

)r−1
. (11)

Proof. We use lexicographic induction on the pair(w,n). That is, assuming the theorem is true for all
ROBPs of widthw′ and lengthn′ such that eitherw′ < w or such thatw′ = w andn′ < n, we prove the
theorem holds for all ROBPsf of lengthn and widthw. Note we can assumew ≥ 3 since the casew = 2
follows from Theorem 3. We can also assumef is a cROBP by the Collision Lemma.

Let Ci ⊆ Σ be the set ofα’s for which theα-transition functionτα of f at layeri is not the identity, and
let Ii = Σ\Ci, 1 ≤ i ≤ n. By induction onn we can assume that thatPr[Xi ∈ Ci],Pr[Yi ∈ Ci] > 0 for all
i, since otherwisePr[Xi ∈ Ci] = Pr[Yi ∈ Ci] = 0 for somei and thei-th layer off can simply be removed.
(Note that (11) is monotonic inn, for fixedw.)

We define new product distributionsX∗ = (X∗
i )

n
i=1, Y

∗ = (Y ∗
i )

n
i=1. If Ii = ∅, thenX∗

i , Y
∗
i are

distributed identically toXi, Yi. Otherwise letβi be any element ofIi 6= ∅, and define the distributionsX∗,
Y ∗ by

X∗
i =

{

α with probabilityγi Pr[Xi = α] if α ∈ Ci, and

βi with probability1− γi Pr[Xi ∈ Ci]

Y ∗
i =

{

α with probabilityγi Pr[Yi = α] if α ∈ Ci, and

βi with probability1− γi Pr[Yi ∈ Ci]

whereγi ≥ 1 is the largest number such thatX∗
i , Y ∗

i areǫ-close in ratio. One can easily check that, for all
1 ≤ i ≤ n,

min(Pr[X∗
i ∈ Ci],Pr[Y ∗

i ∈ Ci]) ≥
1− ǫ

2− ǫ
. (12)

(Indeed if (say)Pr[X∗
i ∈ Ci] ≥ Pr[Y ∗

i ∈ Ci] andPr[Y ∗
i ∈ Ci] < 1−ǫ

2−ǫ
then

Pr[X∗
i ∈ Ii]

Pr[Y ∗
i ∈ Ii]

=
1− Pr[X∗

i ∈ Ci]
1− Pr[Y ∗

i ∈ Ci]
≥

1− 1
1−ǫ

Pr[Y ∗
i ∈ Ci]

1− Pr[Y ∗
i ∈ Ci]

>
1− 1

2−ǫ

1− 1−ǫ
2−ǫ

= 1− ǫ

where the strict inequality uses the monotonicity of the function 1−ct
1−t

, c < 1, on0 < t < 1. This contradicts
the maximality ofγi.)

We let f∗ be a randomized widthw lengthn ROBP whosei-th layer equals thei-th layer off with
probability 1/γi (putting γi = 1 if Ii = ∅) and equals the identity layer with probability1 − 1/γi, with
every layer determined independently. One can easily checkthatf(X) ∼ f∗(X∗), f(Y ) ∼ f∗(Y ∗) (with
randomness taken overf∗, X, Y ), so that

∆(f(X), f(Y )) = ∆(f∗(X∗), f∗(Y ∗)) ≤ Ef∗∆(f∗(X∗), f∗(Y ∗)) (13)
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where the statistical distance in the rightmost expresion is measured over the randomness induced byX∗,
Y ∗, for fixed valuef∗.

Let g be some fixed value off∗. By (13), it suffices to show

∆(g(X∗), g(Y ∗)) ≤ ǫrw−2 +
(

n(w − 2) +
w−1
∑

j=3

(w − j)rj−2
)( 1

2− ǫ

)r−1
(14)

to conclude the proof.
Say g has an identity layer. Ifg’s length is 1 (i.e.n = 1) then all layers ofg are the identity and

∆(g(X∗), g(Y ∗)) = 0, so (14) holds. Otherwise, we can cut out this identity layerfrom g (removing at the
same time the relevant coordinate inX∗, Y ∗), and (14) follows by induction on the lengthn, sinceX∗, Y ∗

areǫ-close in ratio product distributions. Thus, we can assume none of the layers ofg are the identity. This
impliesg = f∗ = f , so all that remains is to upper bound∆(f(X∗), f(Y ∗)).

LetZ0, . . . , Zr ∈ Σn be hybrid distributions defined by

Zi,j =

{

Y ∗
j if (j modr) < i,

X∗
j otherwise,

whereZi,j is thej-th bit ofZi. We haveZ0 = X∗ andZr = Y ∗, so∆(f(X∗), f(Y ∗)) ≤ ∑r−1
i=0 ∆(f(Zi), f(Zi+1)).

Fixing i, 0 ≤ i ≤ r − 1, we now focus on upper bounding∆(f(Zi), f(Zi+1)).
Let Zi = {j ∈ [n] : j mod r ≡ i} be the set of bit positions at which (the definitions of)Zi and

Zi+1 differ. Let Z andfZ be defined as in Section 4. LetX ′ ∈ ΣZi be the restriction ofX∗ to the bits
in Zi, and likewise letY ′ ∈ ΣZi be the restriction ofY ∗ to the bits inZi. Thenf(Zi) = fZ(X

′) and
f(Zi+1) = fZ(Y

′). We therefore have

∆(f(Zi), f(Zi+1)) = ∆(fZ(X
′), fZ(Y

′)) ≤ EZ∆(fZ(X
′), fZ(Y

′)). (15)

Let ℓ = |Zi| be the length offZ . Note thatℓ ≤ ⌈n
r
⌉. Fix h ∈ [ℓ− 1] and consider the probability, taken over

Z, that the union{τα(j) : j ∈ [w], α ∈ Σ} ⊆ [w] of the ranges of the transition functions{τα : α ∈ Σ} of
fZ at layerh has sizew. By (12), one can argue via a pebble argument as in Section 4 that this probability

is at most
(

1 − 1−ǫ
2−ǫ

)r−1
=

(

1
2−ǫ

)r−1. Union bounding overh ∈ [ℓ − 1] (the transition functions at layerℓ
having range{1, 2}), the probability thatfZ is not equivalent to a widthw− 1 branching program of length

ℓ is at mostn
r

(

1−ǫ
2−ǫ

)r−1
, usingℓ− 1 ≤ n

r
. Thus, using the inductive hypothesis for programs of widthw− 1

and length7 ℓ ≤ n
r
+ 1, EZ∆(fZ(X

′), fZ(Y
′)) can be upper bounded by

ǫrw−3 +
(

(n

r
+ 1

)

(w − 3) +

w−2
∑

j=3

(w − 1− j)rj−2
)( 1

2− ǫ

)r−1
+

n

r

( 1

2− ǫ

)r−1
(16)

which simplifies to

ǫrw−3 +
(n

r
(w − 2) +

w−1
∑

j=3

(w − j)rj−3
)(1− ǫ

2− ǫ

)r−1
.

7 Technically, note thatℓ ≤ ⌈n
r
⌉ could be≥ n if n = 1. However, we are using lexicographic induction over(w, n), so we can

use the inductive hypothesis on any ROBP of widthw − 1 (even of length greater thann).
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This is, by (15), an upper bound for∆(f(Zi), f(Zi+1)). Since this upper bound holds for any0 ≤ i ≤ r−1,
we have

∆(f(X∗), f(Y ∗)) ≤
r−1
∑

i=0

∆(f(Zi), f(Zi+1))

≤ ǫrw−2 +
(

n(w − 2) +

w−1
∑

j=3

(w − j)rj−2
)( 1

2− ǫ

)r−1

which concludes the proof. ⊓⊔

Corollary 1. Letf be a widthw ≥ 2 ROBP of lengthn and letX, Y ∈ Σn be twoǫ-close in ratio product
distributions. Then for any integerr ≥ 1,

∆(f(X), f(Y )) ≤ ǫrw−2 +
(

n+ rw−2
)

(w − 2)
( 1

2− ǫ

)r−1
.

Proof of Theorem 1.Since the casew = 2 follows already from Theorem 3, assume3 ≤ w ≤ log n/ loglog n.
Setr = ⌈2 log n⌉. We have

rw−2 ≤ (2 log n+ 1)w−2 = (2 log n(1 +
1

2 log n
))w−2 ≤ (2 log n)w−2e

w−2
2 log n .

Sincew ≤ log n/ loglog n, we have

e
w−2
2 log n ≤ 1 + λ1(n)

whereλ1(n) = o(1), and
(2 log n)w−2 ≤ n1+λ2(n)

whereλ2(n) = o(1). Thus, by Corollary 1,

∆(f(X), f(Y )) ≤ ǫ(2 log n)w−2(1 + λ1(n)) + (n+ n1+λ2(n))(log n)
( 1

2− ǫ

)r−1
. (17)

We define

λ(n) = λ1(n) + (n+ n1+λ2(n))(log n)
( 1

2− 0.5

)r−1 1

ǫ(2 log n)w−2
.

Sincer = ⌈2 log n⌉, it is easy to check thatλ(n) = o(1). Next

∆(f(X), f(Y )) ≤ ǫ(2 log n)w−2(1 + λ(n)) (18)

follows from (17), since (18) holds trivially ifǫ(2 log n)w−2 ≥ 1 if ǫ ≥ 0.5. �

C Proof of the Collision Lemma

In this appendix we give a proof of the Collision Lemma statedin Section 5. The proof follows [7] rather
closely.

Let X,Y ∈ Σn be two product distributions. We claim that for every ROBPg of lengthn and widthw
over the alphabetΣ there exists a cROBPf of lengthn and widthw, also overΣ, such that∆(f(X), f(Y )) ≥
∆(g(X), g(Y )) (cf. Definition 1).
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It suffices to consider a ROBPg (of width w) maximizing∆(g(X), g(Y )); such a ROBP exists since
there are only finitely many ROBPs possible for a given width,length, and input alphabet. Say that a node of
a ROBP isunreachableif there is no path of nonzero probability from the start nodeto this node. (“Nonzero
probability” is measured w.r.t. the distributionsX andY ; note that sincePr[Xi = α] = 0 ⇐⇒ Pr[Yi =
α] = 0 for all i ∈ [n], α ∈ Σ, unreachability is well-defined.) We can moreover assume that among
all ROBPs achieving the optimal distinguishing advantage,g has as many unreachable nodes as possible.
We can finally assume that, among such ROBPs (with said distinguishing advantage and said number of
reachable nodes),g maximizesPr[g(X) = 1].

For every vertexv of g, let v(X) be the output node reached wheng is “started” at vertexv with input
X. More precisely, ifv is a vertex at layerk ∈ [n + 1], v(X) denotes the output reached by reading the
n − k + 1 last characters ofX starting from nodev, namely by following the edges labeledXk, . . . ,Xn

starting from nodev. (If v is an output node thenv(X) = v for all X.) Definev(Y ) likewise.
For every nodev of g, letE[v(X)] denote the probability, taken overX, thatv(X) is the accept node of

g. As a piece of special-purpose notation, we also defineE[v(X)] = 1− E[v(X)] to be the probability that
v(X) is the reject node ofg. Also letE[g(X)] andE[g(X)] be the probabilities thatg accepts and rejects
X, respectively (this agrees with our previous notation if weidentify g with its start node). We can assume
without loss of generality thatE[g(X)] ≥ E[g(Y )]. Note, then, that

∆(g(X), g(Y )) = E[g(X)] − E[g(Y )] = E[g(X)] + E[g(Y )]− 1.

Thusg maximizesE[g(X)] + E[g(Y )] (among all ROBPs of lengthn and widthw).
Finally, letpX(v) be the probability of passing through nodev wheng is run on inputX (starting from

the start node), and definepY (v) likewise. SinceX, Y areǫ-close in ratio, we have that

(v is unreachable) ⇐⇒ (pX(v) = 0 ∨ pY (v) = 0) ⇐⇒ (pX(v) = pY (v) = 0).

We also note that ifv1, . . . , vw are the nodes at a given layeri of f , then

E[g(X)] =

w
∑

j=1

pX(vj)E[vj(X)], E[g(Y )] =

w
∑

j=1

pY (vj)E[vj(Y )]

so thatg’s advantage is

(−1) +

w
∑

j=1

(

pX(vj)E[vj(X)] + pY (vj)E[vj(Y )]
)

. (19)

Say thek-th layer ofg has at least two reachable nodes,v1 andv2. We show that either

E[v1(X)] > E[v2(X)] and E[v1(Y )] < E[v2(Y )],

or
E[v1(X)] < E[v2(X)] and E[v1(Y )] > E[v2(Y )].

Indeed, assume by contradiction, say, thatE[v1(X)] ≥ E[v2(X)], E[v1(Y )] ≥ E[v2(Y )] (the only other
possible bad case beingE[v1(X)] ≤ E[v2(X)], E[v1(Y )] ≤ E[v2(Y )]). Then by re-routing all ofv2’s
incoming edges tov1, we decreasepX(v2) andpY (v2) to 0 and increasepX(v1), pY (v2) by (the old values
of) pX(v2), pY (v2). This cannot decrease (19), and the new ROBP thus obtained has at least one more
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unreachable node, a contradiction. The caseE[v1(X)] ≤ E[v2(X)], E[v1(Y )] ≤ E[v2(Y )] is similarly
treated by re-routing all ofv1’s incoming edges tov2, which proves the claim.

Note the above observation allows us to re-order the reachable verticesv1, . . . , vj at any layer such that
E[v1(X)] > . . . > E[vj(X)] andE[v1(Y )] < . . . < E[vj(Y )]. While such an ordering is not necessary for
the proof, one can assume it for conceptual simplicity.

Let v be a reachable node ofg at layeri ≤ n of g, and letα, β ∈ Σ be such thatPr[Xi = α],Pr[Xi = β]
are nonzero (hence, ditto forYi), and such that

Pr[Xi = α]

Pr[Yi = α]
≥ Pr[Xi = β]

Pr[Yi = β]
. (20)

We setup the shorthandsPr[Xi = α] = αX , Pr[Xi = β] = βX , and so forαY , βY . Let vα be the node
reached fromv by following theα edge, and letvβ be the node reached by following theβ edge. We claim
that eithervα = vβ, or else thatE[vα(X)] > E[vβ(X)] (and hence, also, thatE[vα(Y )] < E[vβ(Y )]).
Indeed, assume by contradiction thatE[vα(X)] < E[vβ(X)]. ThenE[vα(Y )] > E[vβ(Y )]. If we re-route
theα wire leavingv from vα to vβ, then (19) (applied to a layer containingv) changes by

pX(v)αX (E[vβ(X)] − E[vα(X)]) + pY (v)αY (E[vβ(Y )]− E[vα(Y )]) (21)

whereas if we re-route instead theβ wire leavingv from vβ to vα, (19) changes by

pX(v)βX (E[vα(X)] − E[vβ(X)]) + pY (v)βY (E[vα(Y )]− E[vβ(Y )]). (22)

Sinceg is optimal, both (21), (22) must be≤ 0. Therefore,

pX(v)αX(E[vβ(X)]− E[vα(X)]) ≤ pY (v)αY (E[vα(Y )]− E[vβ(Y )])

pY (v)βY (E[vα(Y )]− E[vβ(Y )]) ≤ pX(v)βX (E[vβ(X)] − E[vα(X)])

which we can rewrite as

αX

αY
≤ pY (v)(E[vα(Y )]− E[vβ(Y )])

pX(v)(E[vβ(X)] − E[vα(X)])

βX
βY

≥ pY (v)(E[vα(Y )]− E[vβ(Y )])

pX(v)(E[vβ(X)] − E[vα(X)])
.

This implies αX

αY
≤ βX

βY
, but we have by assumption (cf. (20)) thatαX

αY
≥ βX

βY
, so αX

αY
= βX

βY
. Thus the

inequalities

pX(v)αX (E[vβ(X)] − E[vα(X)]) + pY (v)αY (E[vβ(Y )]− E[vα(Y )]) ≤ 0

pX(v)βX (E[vα(X)] − E[vβ(X)]) + pY (v)βY (E[vα(Y )]− E[vβ(Y )]) ≤ 0

(cf. (21), (22)) are negative scalar multiplies of one another, and can only be simultaneously satisfied if both
left-hand sides are 0, i.e. if both (21), (22) are zero. This implies we can re-route theα wire leavingv to
vβ without affectingg’s advantage (and only possibly decreasing the number of reachable nodes); but since
E[vβ(X)] > E[vα(X)] by assumption, this change will increaseE[v(X)] andE[g(X)], contradicting that
our initial assumption thatg maximizesPr[g(X) = 1] among all ROBPs having its advantage and number
of reachable nodes. This concludes the proof that eithervα = vβ orE[vα(X)] > E[vβ(X)].

Say that an edge haszero probabilityif there is zero probability of traversing that edge (eitherbecause
its source is unreachable, or because it is labeled by an elementα that has probability 0 at that layer). We
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now show that, after possibly re-routing the sinks of zero probability edges, and after a possible reordering
of the nodes in each layer,g is a cROBP. Note that re-routing the destination of zero probability edges has
no effect on any of the measures considered so far by the proof(these being the advantage ofg, the number
of unreachable nodes,Pr[g(x) = 1] = E[g(X)], and more generally the valuesE[v(X)], E[v(Y )] for all
verticesv of g).

The transformation we carry out on zero probability edges ismore specifically as follows: for every
α ∈ Σ and every layer ofg containing a zero probability edge of labelα, we re-route that edge such that the
transition functionτα at that layer has a collision. This can obviously be done as long asw ≥ 2. Note, now,
that if an unreachable node occurs at a layer, then all transition functions at that layer contain collisions after
this modification. (In particular, the presence of a permutation transition function at a layer indicates that all
nodes of that layer are reachable.)

We now claim thatg is a cROBP up to a reordering of the nodes in each layer. For this, it suffices to
show that at each layer ofg, the transition functions that are permutations are all identical. Namely, we only
need to show that ifτα, τβ are permutation transition functions occuring at the same layeri, thenτα = τβ.

Let αX = Pr[Xi = α], βX = Pr[Xi = β] and so forαY , βY . NoteαX , βX , αY , βY > 0 or else
τα, τβ would not be permutations. Assume wlog thatαX/βX ≥ αY /βY . Let v1, . . . , vw be the nodes at
layer i and letvj,α, vj,β be the vertices reached by following theα andβ edges leavingvj , respectively.
Thenv1, . . . , vw are all reachable. From our observation above, sinceαX/βX ≥ αY /βY , we have that
E[vj,α(X)] ≥ E[vj,β(X)] for all j. Moreover,E[vj,α(X)] > E[vj,β(X)] if vj,α 6= vj,β. Thus ifvj,α 6= vj,β
for somej, then

w
∑

j=1

E[vj,α(X)] >

w
∑

j=1

E[vj,β(X)]

which is impossible sinceτα, τβ are permutations. Therefore, we havevj,α = vj,β for all j, i.e. τα = τβ,
which finishes the claim.

D The maximum total influence of monotone programs

In this appendix we use similar techniques to give tight upper bounds on the maximum influence of a
monotone read-once branching program of widthw. A ROBPf : {0, 1}n → {0, 1} is monotoneif

x ≤ y =⇒ f(x) ≤ f(y)

for everyx, y ∈ {0, 1}n, where we writex ≤ y if xi ≤ yi for i = 1 . . . n, xi being thei-th bit of x.
The influenceInfi(f) of thei-th bit of f ’s input is the proability

Pr
x
[f(x) 6= f(x+ ei)]

wherex+ei denotes the bitwise xor ofx with thei-th unit vector. There probability is taken overx uniformly
chosen in{0, 1}n. Thetotal influenceInf(f) is the sum of the individual influences of the bits:

Inf(f) =

n
∑

i=1

Infi(f).

The parity (or xor) function exhibits the maximum possible total influence, beingn. However, the xor
functions is non-monotone. The total influence of any monotone function is upper bounded by

√
n (or by

(1 + o(1))
√

2n/π more exactly, which is matched by the majority function). Wewill see the maximum
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total influence of a widthw ROBP isO(log(n)w−2). In fact, we will prove that every monotone ROBP is
equivalent to some cROBP of equal width, and that every widthw cROBP has total influenceO(log(n)w−2).

We first establish some notation and terminology. Letf : {0, 1}n → {0, 1} be a boolean ROBP. A node
v of f is unreachableif there is no path from the start node off to v. Each nodev of f induces a function
onn − k + 1 bits in the natural way; we identifyv with this function, and writev : {0, 1}n−k+1 → {0, 1}.
Two nodesu, v in the same layer off areequivalentif they are equal as functions.

The following is the equivalent of the Collision Lemma for monotone ROBPs (and is potentially of
independent interest):

Lemma 1. Let f : {0, 1}n → {0, 1} be a monotone ROBP of lengthn and widthw. Then there exists a
cROBPg of lengthn and widthw such thatg(x) = f(x) for all x ∈ {0, 1}n.

Proof. By re-routing edges we can assume no two reachable nodes off are equivalent. We now order the
nodes in each layer working inductively by layers, startingat the output layer and working backwards. We
order the output layer such that the reject node (output 0) has index 1 and the accept node (output 1) has
index 2.

Assuming layerk + 1 has been ordered we now describe how to order the reachable nodes in layer
k, and later extend this ordering to include the unreachable nodes in layerk. For a nodeu in layer k, let
z(u) be the node reached by following the outgoing 0 edge fromu, and leto(u) be the node reached by
following the 1 edge fromu. We order the reachable nodes in layerk lexicographically according to the
pair (z(·), o(·)), where coordinates are compared by the ordering of layerk + 1; that is,u comes beforev if
eitherz(u) < z(v) or else ifz(u) = z(v) ando(u) < o(v), where the relationsz(u) < z(v), o(u) < o(v)
refer to the ordering in layerk + 1. Since we have eliminated equivalent reachable nodes, it iseasy to see
this establishes a total ordering on the reachable nodes at layerk. Finally, we arbitrarily extend this ordering
to include the unreachable nodes as well (say, by putting theunreachable nodes of each layer last, in some
arbitrary order). This completes the description of how nodes are ordered in each layer.

For two reachable nodesu, v in the same layer, we writeu < v if u comes beforev in the ordering just
described. We now claim that ifu < v, with u, v in layerk, then there is somex ∈ {0, 1}n−k+1 such that
u(x) < v(x). We prove this by reverse induction onk. The base case isk = n + 1, which is obvious since
thenu, v are the two output nodes. Otherwise, for the induction step,just note that ifz(u) < z(v) then the
claim follows by applying the induction hypothesis to the pair z(u), z(v). So we can assumez(u) = z(v).
But theno(u) < o(v), sinceu < v, so the claim follows by applying the induction hypothesis to the pair
o(u), o(v). This completes the proof of the claim.

It directly follows from this observation that for every non-output reachable nodeu, z(u) ≤ o(u) (or
elsef would not be monotone). We additionally modify the outgoingedges of unreachable nodes inf such
that z(v) ≤ o(v) also for all unreachable nodesv. This does not affectf ’s computation, and since we are
not reordering nodes or changing the outgoing edges of reachable nodes, we still havez(u) ≤ o(u) for all
reachable nodesu after this step.

It now suffices to show that if the transition functionsτ0, τ1 at some layerk of f are both permutations,
thenτ0 = τ1. (The result then follows by a final permutation of each layer, working either from back-to-front
or from front-to-back through the program.) That is, we needto that showz(u) = o(u) for all nodesu in the
k-th layer, assuming the two transition functions at thek-th layer are permutations. However, this is obvious
from the fact thatz(u) ≤ o(u) and thatτ0, τ1 are permutations. (In a little more detail, if we associatez(u)
to theindexof nodez(u) in layerk+1—soz(u) ∈ [w]— and do the same foro(u)—then ifu1, . . . , uw are
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the nodes in layerk and if z(uj) < o(uj) for somej, we have

w
∑

i=1

o(ui)− z(ui) > 0

which contradicts the fact thatτ0, τ1 are bijective.) ⊓⊔

As for the distinguishability of product distributions, our results on influence require a preliminary result
for width 2 branching programs.

Lemma 2. Letf : {0, 1}n → {0, 1} be a width 2 cROBP. ThenInf(f) ≤ 2.

Proof. We can assume without loss of generality thatf has no identity layers. Letn be the length off . For
eachi, 1 ≤ i ≤ n, choose a valuebi ∈ {0, 1} such thatτbi is not a permutation; such abi always exists by
the fact thatf is a cROBP. Then, trivially,Inf i(f) ≤ 2i−n, sincef(x) = f(x + ei) if xj = bj for some
j > i. ThusInf(f) ≤ ∑n

i=1 2
i−n ≤ 2. ⊓⊔

We note that Lemma 2, like Theorem 3, is apparently not tight.The width 2 influence champion is again,
conjecturally, the program of Fig. 2, whose total influence approaches4/3 as the length grows.

Theorem 5. Let f : {0, 1}n → {0, 1} be a cROBP of widthw ≥ 2 and lengthn. Then for every integer
r ≥ 2,

Inf(f) ≤ 2rw−2 +
n1.5

2r−1

rw−2 − 1

r − 1
.

Proof. The case of widthw = 2 follows from Lemma 2.
LetZ0, . . . ,Zr−1 ⊆ [n] be like in the proof of Theorem 4; namely,

Zi = {j ∈ [n] : j ≡ i mod r}.

Given a stringzi ∈ {0, 1}[n]\Zi , let fzi be the widthw lengthn − |Zi| ROBP induced by fixing the bits in
[n]\Zi to zi. Clearly, we have

∑

j∈Zi

Infj(f) = Ezi [Inf(fzi)].

Sincef is a cROBP, the probabilityfzi is not equivalent to a widthw − 1 ROBP of same length is at most
n
r
· 1
2r−1 , following the same reasoning as in Section 4 and as in the proof of Theorem 4. It is also easy to see

thatfzi is monotone. Thus, since a monotone ROBP of lengthn can have total influence at most
√
n (like

any monotone function onn bits), and sincefzi has length at most
⌈

n
r

⌉

6= n, we obtain by induction on the
width that

Ezi [Inf(fzi)] ≤ 2rw−3 +
n1.5

2r−1

rw−3 − 1

r − 1
+

n

r2r−1

√
n.

Therefore,

Inf(f) =

r−1
∑

i=0

∑

j∈Zi

Infj(f) =

r−1
∑

i=0

Ezi [Inf(fzi)]

≤ r

(

2rw−3 +
n1.5

2r−1

rw−3 − 1

r − 1
+

n1.5

r2r−1

)

which is the desired bound. ⊓⊔
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Settingr = ⌈1.5 log(n)⌉ in Theorem 5 (for which we need to assumen ≥ 2) immediately implies:

Corollary 2. Letf : {0, 1}n → {0, 1} be a cROBP of widthw ≥ 2 and lengthn ≥ 2. Then,

Inf(f) ≤ 4⌈1.5 log(n)⌉w−2.

We note that Corollary 2 is not an asymptotic statement about“large n and constantw”; it holds for all
combinations ofn andw with n,w ≥ 2.
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