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Abstract. We improve the main result of Brody and Verbin [7] from FOC3@®n the power of constant-width
branching programs to distinguish product distributidBgecifically, we show that a coin must have bias at least
2(1/log(n)“~?) to be distinguishable from a fair coin by a widih lengthn read-once branching program (for
each constan), which is a tight bound. Our result introduces new techegjun particular a novel “interwoven
hybrid” technique and a “program randomization” technidueth of which play crucial roles in our proof. Using
the same techniques, we also succeed in giving tight upperdsoon the maximum influence of monotone functions
computable by widthw read-once branching programs.
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1 Introduction

In [7] Brody and Verbin studied the question of distingumhiflips of a coin with a slight bias towards
heads from those of a coin with a slight bias towards tailsrévfarecisely, say that a coin isbiasedif
Pr[Heads] = } + €. Givenn flips of a coin which is eithee-biased or(—¢)-biased, the question is to
determine which type of bias is present. Since taking a ritgjoote of the tosses constitutes an optimal
distinguishing strategy this question is uninterestingewthe distinguisher is powerful enough to count (in
which case a bias ef= 2(1/,/n) is both necessahand sufficient to distinguish with constant advanfge
However, the problem seems both natural and interestingpface-bounded distinguishers, and in particular
for distinguishers having only a constant amount of space.

As their main result, Brody and Verbin [7] give bounds on thity of constant widthread-once
branching programgROBPS) to distinguish biased coins. A read-once brancpiogram is a model of
(non-uniform) space bounded computation in which eachfainmut is accessed only once, in order. (We
give a formal definition of read-once branching programsaati®n 2. A glance at Figure 1, however, should
suffice to understand the model.) They show, among othexs ROBPs of widthw > 3 can distinguish
coins of suprisingly small bias: by computing a recursivieets function, a length, ROBP of widthw can
distinguish ar-biased coin from &—e)-biased coin already far= 1/ log(n)®*~2. (By “can distinguish” we
mean, here and later, “can distinguish with constant (2.)) advantage”.) In particular, a width 3 ROBP
of lengthn can distinguish &1/ log n)-biased coin from d&—1/log n)-biased coin. (This last observation
was also made, essentially, by Braverman eficdl)

On the lower bound side, Brody and Verbin show that, for camtst, a lengthn width w ROBP cannot
distinguish+e-biased coins unless = (2(1/log(n)"). The lower bound is therefore off from the upper
bound by a factotog(n)?, which seems substantial for programs of small width (evigth 3, for which
the upper bound is = O(1/log(n)) and the lower bound is = 2(1/log(n)3)). In this paper we give
an improved lower bound that matches the upper bound of [@n&ly, we show that, for constdnu, the
smallest biag that can be distinguished by a widihlengthn ROBP is(2(1/log(n)*~2). Our analysis
is also shorter than Brody and Verbin’s. More interestingign simply achieving a tight lower bound,
however, is the fact that our result introduces new prodireues that could be of independent interest for
the study of ROBPs and, more generally, for the problem cdimdsmizing space-bounded computations.
These techniques are described further below.

Note that a sequence afindependent tosses of a biased coin is a special case of agpidtribution.

(A sequence of random variabléS = (X;)?_; is aproduct distributionif and only theX;’s are (totally)
independent.) One can consider, more generally, the poWarlengthn read-once branching program
whose edges are labeled by elements of some finite alptiabédistinguishing two product distributions
X =X)L, Y = (Y;), whereX;, Y; € X for all 4.

Generalizing results on the distinguishability of biaseths to the distinguishability of arbitrary product
distributions presupposes some kind of metric for meaguie closeness of two product distributions (i.e.,
requires generalizing the parametrAs explained in [7], it makes more sense, in this conteximeasure
closeness by probability ratios (bounding these to be neatter than by probability differences (bounding
these to be near 0). We say two product distributiéhs= (X;)7, € X", Y = (Y;)7, € X" aree-close

1 A possible approach for proving necessity (since the relestatistical distance is not so obvious to upper bound ffiest
principles) is to use Hellinger distance. See for examgle [4

2 Theadvantageof a distinguisherD at distinguishing distribution& andY is |Pr[D(X) = 1] — Pr[D(Y) = 1]|. See Section
2 for more precise definitions.

® The fact thatw is constant in particular implies th&(-)- andO(-)- notation refers exclusively to function growth with respe
ton, and may hide constants that depencdorin [7] the hidden constant if000~*. Our hidden constant &~ .
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Fig. 1: A width 3 read-once branching program (computinglkzes function).

in ratio if for every 1 < i < n and for everya € X, eitherPr[X; = o] = Pr[Y; = o] = 0, or else
Pr[X; =a] #0, Pr[Y; = o] #0and

Pr[X; = o] Pr[Y; = o]
R T S, T Sy
Pr[Y; = af Pr[X; = q]

It is easy to see, for example, that@biased coin isle-close in ratio to & —e¢)-biased coin.

Our results are most easily phrased and proved in the cootextlose in ratio product distributions.
Our main result is that a lengihROBP of constant widtlv cannot distinguish twe-close in ratio product
distributions unless = 2(1/log(n)*~?2). This directly implies our lower bound on the distinguistigp
of e-biased coins, and also matches the upper bounds of Brodyenih (given bye-biased coins). In
fact, e-close in ratio product distributions were already consdeby Brody and Verbin themselves, who,
by reducing to the case efbiased coins, proved that= 2(1/log(|¥|n)3") is necessary to distinguish
two e-close in ratio product distributions ovét”, and that = £2(1/1og(n)?¥) is necessary whefX| = 2.
Our own lower bound shows there is essentially no differdreteveen the caséd’| = 2 and|X| > 2: a
larger alphabet size does not help the distinguisher.

The techniques used in our proof are roughly threefold. Ve fiistly, thecollision lemmaof Brody
and Verbin, which is a structural observation about ROBRS &ne optimal distinguishers, and which we
strengthen slightly for our purposes. A second componenh@fproof is a hybrid argument whose two
endpoints are the product distributiofs;)”_; and(Y;)?_,. Here the bits that change distribution from one
hybrid to the next form each time an arithmetic progressieni¢h is important for the argument). As these
various arithmetic progressions are parallel and intedeawe call our set of hybrids a set ioterwoven
hybrids(we are not aware of a similar set of such hybrids being uséatdje Our hybrid argument replaces
a more standard random restriction argument by Brody anbliveFinally, the third main proof technique
we use igorogram randomizationvhich, in a nutshell, randomizes the distinguisher in otdezompensate
for certain helpful initial modifications made to the inpustdbutions (X;)?_; and(Y;)?_, (see Section 4
for more details). Program randomization is also an orighoatribution of the paper. While it is crucial
to the final bounds, we consider it of secondary importanacapawed to the collision lemma and to the
interwoven hybrid technique.

In Appendix D we give a second application of the same basiaf$echniques (program randomization
excluded) to the upper bounding of the maximum total infleeaE monotone functions computable by
width w ROBPs. Our main result is that a ROBP of width> 2 and of lengthn > 2 that computes a
monotone function has total influence at mot.5 log(n)]*~2. This bound is also tight, as can be verified
by considering a recursive tribes function.



2 Definitions

A branching program of widtlw and lengthn is a directed acyclic graph with layers ofw nodes each and
a final layer with two nodes (accept and reject). Each nortedumde is labeled by a coordinatg, j) €
[n] x [w]; output nodes are labeled by coordinafest 1} x {1,2}, with (n + 1, 1) being the accept node
and(n + 1,2) being the reject node.

A node isin layerk, 1 < k < n + 1, ifits label is of the form(k, -). The edges of the graph are labeled
by elements of thenput alphabet)’ (a finite set). Each node in every layer< n has one outgoing edge
labeleda for each elementr € X whose endpoint is a node in layer+ 1. The branching program has a
designatedstart nodein the first layer, typically the nodgl, 1). The computation of a branching program
of lengthn on a stringr = z; --- x,, € X" is defined the natural way, by following the edge labelgat
stepi, starting from the start node. We note the type of branchingnam just described igad-oncesince
each character af is examined at exactly one layer of the program.

Let f be a (read-once) branching program of lengtland widthw. If « is an element of the input
alphabet™ andk € [n], the a-transition function off at layer k is the functionr, : [w] — [w] such that
7o (i) = z iff the edge labeled: leaving nodgk, i) has endpointk + 1, z). We sayr,, contains a collision
if 7, is not a permutation, i.ef 7,(i) = 7,(j) for somei # ;.

The k-th layer of a ROBPf equalsthe j-th layer of a ROBRy if f andg have the same widthy, are
defined over the same input alphabigtand if thea-transition function off at layerk is identical to the
a-transition function ofy at layer; for everya € Y.

The statistical distance of two random variablésY of same range is writted (X, Y'). Namely, if X
andY take values in a s&f, then

1
AX,Y) =5 > IPr[X =b] — Pr[y =1]].
bes
If fis a ROBP of lengtm over the alphabet’ and if X, Y € X" are two random variables, thefis
advantageat distinguishingX andY is defined as the statistical distance

A(f(X), F(Y)).

(We note this is a statistical distance between two prolaldistributions on the output nodes ¢f) This
differs from the traditional definition of’s advantage afr[f(X) = 1] — Pr[f(Y) = 1]|, but it is easy to
see the two definitions are equivalent.

We write X ~ X’ whenX, X’ induce identical probability distributions over their €ittical) ranges.

3 Results

Our main result is an upper bound on the advantAgé(X), f(Y')) of a widthw ROBP f at distinguishing
e-close product distributionX', Y € X for an arbitrary finite alphabe¥. While our original interest lies
with constant values ofy, our main result, given by the next theorem, is slightly mgeeeral, as it also
allows “small” non-constantv.

Theorem 1. There is a functioh A\(n) = o(1) such that for any positive integers w with 2 < w <
log n/ loglog n, for any product distributionsY, Y € X" that aree-close in ratio, and for any read-once
branching programf over the alphabet’ of widthw and lengthn,

A(F(X), F(Y) < e(2log(n))* (1 + An)). (1)

41.e.,limy 00 A(n) = 0.



In particular, ifw is constante needs to be at leas?(1/log(n)“~2) in order for X andY to be distin-
guishable with constant advantage, where the hidden auhg§tiepending onw but not onn) is 2. This
lower bound orx is tight up to a constant factor: as shown in [7], widthlengthn ROBPs can distinguish
coins of biaste already fore = O(1/log(n)*~2). (For full disclosure, the hidden constant in the latter
O(+) is 3¥; hence, there is still a gap between the upper and lower soasifar as the constant factors are
concerned.) Theorem 1 will be proved as a corollary of a giighore fine-grained statement (Theorem 4)
in Appendix B.

In Appendix D we also prove an upper bound on the maximum tofigience of monotone ROBPs (see
relevant definitions in Appendix D), which constitutes oecend main result and is as follows:

Theorem 2. Let f : {0,1}" — {0, 1} be a monotone boolean function computable by a ROBP of width
and lengthn. Then
Inf(f) < 4[1.5log(n)]¥ 2.

For constantv this bound is also tight up to a multiplicative factor, as t&nseen using a recursive tribes
function of depthw — 1 with the same tribe sizes as in [7]. (See also [2].)

The proof of Theorem 2 is given in Appendix D and the proof oédtem 1 is divided between Appen-
dices A, B and C. We proceed with an outline of the proof of Theol.

4  Proof Overview

This section gives a self-contained overview of the proofteéorem 1. For simplicity, we sketch the proof
for the caseX = {0,1} (which anyway captures the full complexity of the problempreover, we first
sketch the proof for the case of distinguishitig-biased coins and, later, discuss how to hardiose in
ratio distributions (which, indeed, require an additioiukga).

Let X € {0,1}" be the product distribution of astbiased coin, and leY” € {0,1}" be the product
distribution of a(—e¢)-biased coin. LeX; be thej-th bit of X.

Let 7, be the set of all (binary) ROBPs of lengthand widthw (the parameter is elided for simplic-
ity). Let

be the maximum distinguishing advantage. The proof bodpdsy establishing the recurrence
0w = O(logn)dy—1 + o(1) 2

and by showing thaf, < e. In fact theo(1) termis1/poly(n), so that recursively “unfolding” the inequality
gives
5w < O(logn)¥2e + o(1).

Tweaking the constants then yields Theorem 1. We now sketah(B) is established.
Let

Fu =A{f € Fu : A(f(X), f(Y)) = bu}

be the set of “best distinguishers”. Not&'** is nonempty sincer,, is finite. A crucial observation, due to
Brody and Verbin [7], is thafF,'®* contains an elemery, in which every transition function is either the

® In fact, for constaniu, (1) can be replaced withh (£(X), f(Y)) < e(6log(n))*~2 4 As(n) wheres > 1 is any constant and
where)s(n) — 0 now depends oA. Thus a sharper statement would say that the hidden cornistaatly “6* for anyd > 1.
We refer to Appendix B for more details.



identity from [w] to [w], or else is not a permutation pf| at all, but contains a collision. We call an ROBP
with this property acollision ROBR or cROBP for short. To upper bourg it thus suffices to upper bound
A(f(X), f(Y)) for an arbitrary cROBF of lengthn and widthw. (A nearly identical observation is called
the collision lemmain [7]. We maintain this terminology, even while our own ggitbn lemma is slightly
different. The difference is explained in Section 5.)

Let f, therefore, be a cROBP of lengthand widthw. By dropping layers of at which both transition
functions are the identity (these have no effect), one canras that every layer of has at least one
transition function with a collision.

To upper boundA(f(X), f(Y)) we use a hybrid argument over distributioiis . . . , Z.jog(,) ON{0, 1}7,
such thatZy = X andZ,o4(,) = Y. Herec > 0 is a constant we will set later (in faet,= 2 will do). More
precisely, assuminglog(n) is an integer (otherwise substitutelog(n)| for clog(n) throughout),Z; is the
product distribution whosg-th coordinateZ; ; is given by

7 Y; if (j modclog(n)) < i,
"7 | X; otherwise.

For example 7, is the distribution such that

7 Y; if j =0modclog(n),
"7 Xx; otherwise.

Clearly, thenZy = X andZ,,,g(n) = Y.

We note thatZ;, andZ;_, differ on a set of bits whose indices form an arithmetic pesgion of step size
clog(n). This is the key feature of these hybrids; in fact any seqa@felog(n) hybrids with this property,
starting with X and ending withy”, would do as well (there arg:logn)! possible such sequences). Let
Z; C [n] be the set of bits at which (the definitions df) and Z;,, differ. We call Zy, ..., Z;i0g(n) @
sequence of “interwoven hybrids” becauss, . . ., Z.1o5(n)—1 are interwoven arithmetic progressions of
equal step size.

By a standard argument, it suffices to bound the distatc&Z;), f(Z;+1)) between two neighboring
hybrids. LetZ € {0, 1}"\Z be the value o;, Z;,, on the bits outsideZ;. Fixing a value ofZ induces
(in the natural way) a widthw, length|Z;| ROBP f : {0, 1}% — {0,1} taking as input the bits in
Z;. Let X’ € {0,1}%i be ane-biased coin, and leY’ € {0,1}% be a(—¢)-biased coin. Therf(Z;) is
equidistributed tg,;(X"), andf(Z;1) is equidistributed tgf;(Y"), with randomness taken ovet X', Y.

By elementary properties of statistical distance, one has

A(f(Zi), [(Zi1)) < Bz A(f7(X"), fz(Y")). 3)

The crucial observation is that, in fagt; is (equivalent to) a widthw — 1 ROBP with high probability
over Z. This uses the fact thatis a cROBP. Consider the transition functions 7, at layerk of f,. By
definition of f, these transition functions dependdng(n)—1 consecutive bits of . Let these:log(n)—1
bits have indicegi, . . . , jc10g(n)—1 IN f- TO picture howry, 7, are induced by, considerw (distinguishable)
pebbles placed on the nodes off at layerj;. Then for a fixed value of, we can assign in the natural
way a path to each pebble, starting at layeand ending at layef. ,5(n)—1 + 1 = j1 + clog(n) — 1. Then
79 Is the composition of the O-transitiord at layerj; — 1 of f with the function from[w] to [w] given by
the pebble paths, and likewise is the composition of the 1-transitiar at layerj; — 1 of f with the same
pebble paths. Moreover, note that if two pebbles collidey tbannot separate again; thus, if two pebbles
collide, 7o andr; have at mosty — 1 nodes in the union of their ranges.
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Sincef is a cCROBP, there are values .. ., b.1og(n)—1 € {0, 1} such that thé;-transition at layey; of
f has a collision. By the above remarks, if theth bit® of Z is equal tob;, for any1 < h < clog(n) — 1,
theny, 7, have joint range of size at most— 1. But any coordinate of is equal to a given binary value
with probability at Ieas% — ¢, since each coordinate &f is distributed either according t§ or according
to Y'; namely,

1
Pr(Z;, =bi] > 5 — ¢ 4)

foranyl < h < clog(n) — 1. Thus the probability that no collisions occur among thebpebas they travel
from layerj; to layerj.iogn)—1 + 1 is, in the worst case, at most

1 clog(n)—1 1
(Where we use = o(1); we are being, here, a bit informal for the sake of the proetak) By a union
bound, the probability thainy of then/clog(n) pairs of transition functions of; do not have joint range
of size at mostv — 1 is at most~ 1/n°"!log(n). Thus, f can be written as a widthy — 1 ROBP with

probability at leasts 1 — ﬁog(n), with the probability taken oveZ. This allows us to upper bound (3)
by

E7A(f7(X/)7f7(y/)) < O(W) + Op—1-

(In fact, one could even repladg,_, with the advantage of the best distinguisher of lengthlog(n) and
of width w — 1, but such an optimization has little effect for constantiivi ROBPs.) Finally, summing
together the distances between theg(n) pairs of neighborhing hybrids, one thus obtains that

b = A(f(X), £(V)) < clogm)O( + clog(n)d, 1

- O(n01‘1> + clog(n)dy—1,

establishing (2).

Finishing the proof also requires showing that< e. This is not trivial and requires the collision lemma
as well as a coupling argument. We refer to Sections 5 for etails.

When working with arbitrary product distributions that arelose in ratio, the above analysis breaks
down in one crucial place: even wheiis very small, there is no guarantee ti?afZ;, = b;,] will be near
%, cf. (4). Instead,Pr[Z;, = by] could be arbtrirarily close to 0. The probability that nolisibns occur
among the pebbles could thus be arbitrarily close to 1, dmaetore,f- is no longer equivalent to a width
w — 1 program with high probability.

In view of circumventing this (apparently complete) breakd of the argument, note first that we do
not care ifPr[Z, = by] is low if boththe O-transitions and 1-transitions at laygicontain collisions; in this
case, indeed, we obtain width reduction with probabilityAgsume, therefore, wlog, that the O-transition
at layer j;, contains a collision, whereas the 1-transition is the itierfitinction. Moreover assume that

Pr[Z;, = 0] is low. To be concrete, say

PrX;, = 0] = Pr(Y;, = 0] = . (5)

& We index the bits of by their original index inZ;, Zi;1.



Such values would be compatible with= 0.1, and would implyPr[Z;, = 0] < %

The intuition is that in the case abov&;, is quite likely to be equal to 1, which is an identity trarsiti
function, and therefori is quite likely the program does nothing at all at laygr. Namely, the program is,
with high probability, not reacting to input bj,, and layeryj,, is therefore “wasted with high probability”

for the program.
To leverage this intuition, lef- be the ROBP identical t¢, but whose O-transition function and 1-

transition function at layef; are both the identity. Note that with high probability oviee input distributions
X andY, f computes the same ggassuming (5)). We define a random ROBPto be

o f+  with probability 1 — %
~ |/ with probability 1

wherey > 1 is chosen as large as possible such that the distribufiond ™ defined by

Xy itk # jn,
X, =140  with probabilityy Pr[X;, = 0]if £ = j;, and (6)
with probability 1 — v Pr[X;, = 0] if k = jp,
Yi ifk# g,
Y =40 with probabilityy Pr[Y;, = 0]if & = j;, and (7)

with probability 1 — v Pr[Y;, = 0] if k = jj

aree-close in ratio. Note thaf*(X™), f*(Y*) are distributed identically tg(X), f(Y), respectively, since
Pr[f* = fANX] = 0] = Pr[X;, = 0] andPr[f* = fAY] = 0] = Pr[Y}, = 0]. (Note thatX;, =0
exactly when the non-identity transition is used at lajygin the computation of on X, and that the event
[*=fAXj; = 0occurs exactly when the non-identity transition is useael;j, in the computation of
ffonX*)

In the example above, in which= 0.1, this means choosing as large as possible such that

1—~1
— T > 1-e=009.
T =37

A short computation shows the maximum valueyd$ v = n/1.9. Thus, in this case,

09

Pr[X;, = 0] = =5

%, Pi(Y; =0
Note the difference with (5): both probabilities have moagdhy from 0, and are now close %o

In the proof, the above operation consisting of randomitiiregporogram at a transition (to be the original
program w.p 1, or to be the identity w.pl — %) and of simultaneously boosting by a factpiin each
distribution the probability of the input value giving a kision at that layer, is carried out for all layers of
the program at once, with the value gfindividually computed for each layer. The resulting randaed
programf* is defined by choosing each layer independently to be eilieerdientity or the original layer,
with respect to the relevant probabilities. SinteX), f(Y) are distributed identically tg*(X™), f*(Y™),
with randomness taken also over the choicggfwe have that

A(f(X), F(Y)) = A(FH(XT), f7 (V7)) SEp- A(FH(X7), f7(Y7))-
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In the righmost expression, the statistical distance isprded solely over the randomness inducedXty
andY ™, for a fixed value off*. Because of the probability boosting, one can show thatibitransition at

the k-th layer of f* has a collision while thél — b)-transition does not (note this implies the same statement
holds inf), then

min(Pr[X; = 0], Pr[Y; =b]) > 5
Since the latter probability is nea}r, the same hybrid method used for biased coins can be usegp&s up
boundA(f*(X™*), f*(Y™)) for any fixed value off*.

We note that the (central) idea of obtaining width reductidrthe program via collisions originates
in [7]. There, random restrictions are used to obtain dolis and width-reduction. Our paper swaps ran-
dom restrictions for a hybrid argument, which has the adgmthat one can control the position of the
restricted bits (these being, in the hybrid argument, tf® dommon to two neighboring hybrids). Having
long intervals of consecutive restricted bits augmentsctt@nce of obtaining at least one collision in each
of these intervals, and thus improves the chance of obtawidth-reduction. (On the other hand, longer
intervals means more hybrids, implying a tradeoff.)

As another point of comparison, we note that [7] eschewsrarngandomization in favor of a (lossy)
reduction from the problem of distinguishing “well-behd¥énput distributions (with probabilities ne%r)
to the problem of distinguishing “troublesome” input distitions (with probabilities near 0). It is partly
this reduction which causes the alphabet $Zéto appear in the final bound of [7] (whereas our bounds
are independent df|).

5 Some further proof details: width two branching programs and the collision lemma

As explained, the proof of Theorem 1 relies on an inductiggiarent whose base case is an upper bound
on the distinguishing power of width 2 branching progranmuitively, a ROBP of width 2 (say, when
distinguishing ate-biased coin) cannot do better than to determine acceptzaszd on the outcome of a
single coin flip, given its limited memory—e.g., by ignorial coin flips except for the last. Note that such
a ROBP has advantadé + ¢) — (3 — €) = 2¢, the statistical distance in a single coin flip.

00
—G- OO

Fig. 2: Width 2 branching program obtaining better tianadvantage at distinguishing@ + ¢, % — ¢€)-biased coin from an

(3 — ¢, 3 + ¢)-biased coiny odd,n > 3).

N

However this intuition is incorrect. Indeed, a width 2 ROB&hdlistinguish g=+¢)-biased coin with
advantage approaching

26(2 + 62)_1 @)

as the lengtm of the program goes to infinity, which is close %cas large age for smalle. The program
whose distinguishing advantage approaches this valueigrsim Fig 2. The program of Fig2 is, conjec-
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turally, the best width 2 distinguisher of length= 2k + 1 for (+¢)-biased coins, but we do not have a proof.
(Also conjecturally, width two ROBPs of length= 2k + 2 do no better at distinguishingte)-biased coins
than length2k 4+ 1 ROBPs.) Our own bound shows that width 2 ROBPs cannot disshd+¢)-biased
coins with advantage better than

1
R £ S
1 %+6—2e<2—|—e> (9)
regardless of their length. For smalthis is roughly 1.5 times as large as the conjectured optwheantage
(8), but this constant-factor discrepancy is unimportantoiir final bound.

The general theorem which we prove on width two branchingamms is the following:

Theorem 3. Let f be a width 2 ROBP of length and letX = (X;)" , € X", Y = (Y;), € X" be two
e-close in ratio product distributions. Thea(f(X), f(Y)) <e.

(We note that (9) is the direct application of Theorem 3.) pheof of Theorem 3 is in fact nontrivial and
uses many ideas from the inductive proof described in Sedtincluding (a strengthened version of) Brody
and Verbin’s collision lemma, program randomization, armbapling argument. It would be interesting to
know if an “easy” proof exists.

To state the collision lemma, which plays a key role in oualtsswe start by giving the formal definition
of cROBPs.

Definition 1. A widthw read-once branching prograrfiis called acollision read-once branching program
(cROBP) if every transition function, of f is either the identity fronfw] to [w] or else is not injective (i.e
is not a permutation).

Collision Lemma. (After [7].) Let X, Y € X" be product distributions and let > 1. Then there exists a
cROBP f of lengthn and widthw whose distinguishing advantag®(f(X), f(Y)) is at least as great as
the distinguishing advantagé(g(X), g(Y')) of any lengthn width w ROBPg.

The collision lemma found in [7] states that the optimalidstiishing advantage can be achieved by a pro-
gram f with the following property: at every layer gf, either all the transition functions are the identity,
or else at least one of the transition functions containsllsiom. This is weaker than our lemma, which
implies thatall non-identity transition functions contain a collisione(iare not permutations). While our
version may seem much stronger at first glance, we commeritgtgroof only requires a minor modifica-
tion of the proof of [7].

The proof of Theorem 3 is in Appendix A and the proof of theis@ih lemma is in Appendix C.

Acknowledgments.l would like to thank Kevin Matulef, Joshua Brody and Elad biarfor helpful conver-
sations at all stages of this work.
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A The base case: proof of Theorem 3

In this section we prove Theorem 3 concerning the power ofhwtigto branching programs. This theorem
serves as the “base case” for the proof of Theorem 1.

LetU, V be random variables taking values in some’seind defined over a common probability space.
We sayU, V aremaximally coupledf for every o € X,

(Pr[U = a] < Pr[V
(Pr[V =a] < Pr[U

=a]) = U=a = V =a),

=af) = (V=a = U=a).

It is an easy fact that for any two random variahl&sV” there exist random \!ariablé%~~ U, V ~ V such
thatU, V' are maximally coupled. Moreove(U, V') = A(U,V) = Pr[U # V] whenU, V are maximally
coupled copies of/, V.

Proof of Theorem 3By the Collision Lemma, we can assume without loss of geiterthlat f is a cROBP.
We can also assume that> 1 is chosen to be the smallest value for which the Theorem dogsatd.
Foreach, 1 <i <n,letC; C X be the set of values such that the transition function, at layer: of
f has a collision, and lef; = X\C; be the set of valuea such that the transition function, at layeri is
the identity function. Let
o; = max(Pr[X; € G|, Pr[Y; € Cj)).

By the minimality ofn we can assume; # 0 for all i (otherwise we could remove leveand thei-th input
of the program without affecting the program’s output, abthin a smaller counterexample). Nete# 0
implies Pr[X; € C;] # 0, Pr[Y; € C;] # 0 by the definition ofe-close in ratio. We define new random
variablesX;, Y; such that

Pr[X; = o] = Pr[X; = a]/0;
Pr[Y; = o] = Pr[Y; = a]/o;
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for all « € C;, and such that if; # (), then there exists & € Z; such that

Pr[X; = 8] =1 — Pr[X; € C]/o;

PI”[YZ = ﬁ] =1- PI‘[Y; € CZ]/UZ

We assume moreover that;, Y; are maximally coupled. We note that;, Y; arenot constructed analo-
gously toX; , Y}, as defined in (6), (7). For exampl&,, Y; are in general nat-close in ratio.
Since eithePr[X; € C;] = 1 or Pr[Y; € C;] = 1, the coupling implies thabr[X; =Y; € G| > 1 —e.

Indeed, say wlog thar[X; € C;] = 1; then

Say that a layer of a branching program of widthis the identityif each of its transition functions
To : [w] — [w] is the identity. Letf* be a randomized branching program of width two and lemgtivhose
i-th layer is the identity with probability — o;, and equals théth layer of f with probability o;, with all
layers determined independently. It is clear that

where the probabilities are taken ovgr as well as overX andY. (To see this it can be helpful to view
the randomized* as a “filter” which modifiesX;, Y; and then passes on the modified valueg.tin this
view X; andY; are left unchanged with prob@ilityi and are reassigned some valu&jmwith probability

1 — 0y.) In particular, A(f(X), f(Y)) = A(f*(X), f*(Y)). We have

A(fH(X), [*(Y)) SEp-A(f*(X), f*(Y)) (10)

where the statistical distances on the right-hand sidearguated for a fixed value gf*, over the random-
ness ofX, Y. (More generallyA(X,Y) < EzA((X|2),(Y]2)) = 3., Pr[Z = 2] A(X|Z = 2),(Y|Z = 2))
for any random variableX, Y, Z.)

Let g be some fixed value gf*. We upper bound\(g(X), g(Y)). More precisely, by (10), itis sufficient
to showA(g(X), g(Y)) < e to conclude the proof.

Say that a layer of a branching program “is the identity” iftlé transition functions of that layer are the
identity. If all layers ofg are the identity thep is oblivious to its input andA(g(X), g(Y)) = 0. Otherwise
letm, 1 < m < n, be the last non-identity layer gf Note that layerm of g equals layern of f and that
g(X)=g(Y)if X,, =Y, € Cpn. (This uses the fact thgthas width two.) Thus

Prg(X)=g(Y)] >Pr[X,, =Y, €Cp] >1—¢

and soA(g(X),g(Y)) < Pr[g(X) # g(Y)] < ¢ (where the fact that\(¢(X), (Y)) < Prg(X) # g(Y)]
is a generic property of statistical distance). This cometuthe proof. O
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B The main result: proof of Theorem 1

Theorem 1 is derived as a corollary of the following more geheesult (stated this way because it con-
veniently allows for induction), which is really the paperhain result. Here corresponds to the number
hybridsclog n, in the notation of Section 4:

Theorem 4. Let f be a widthw > 2 ROBP of lengtln and letX = (X;)?, € X", Y = (V;)i, € 2" be
two e-close in ratio product distributions. Then for any integep 1,

w-l . r—1
A0, S00) < e 2 4 (n(w =2 + S (w0 2) (52) - 1)
j=3
Proof. We use lexicographic induction on the pé&in,n). That is, assuming the theorem is true for all
ROBPs of widthw’ and lengthn’ such that eithetv’ < w or such thaty’ = w andn’ < n, we prove the
theorem holds for all ROBP§ of lengthn and widthw. Note we can assume > 3 since the case = 2
follows from Theorem 3. We can also assuihis a cROBP by the Collision Lemma.

LetC; C X be the set ofv’s for which thea-transition functionr,, of f at layer: is not the identity, and
letZ; = X\C;, 1 < i < n. By induction onn we can assume that thBt[X; € C;], Pr[Y; € C;] > 0 for all
i, since otherwis®r[X; € C;| = Pr[Y; € C;] = 0 for some: and thei-th layer of f can simply be removed.
(Note that (11) is monotonic in, for fixedw.)

We define new product distribution&* = (X)) ,, Y* = (V) ,. If Z; = (), then X}, Y;* are
distributed identically taX;, Y;. Otherwise let3; be any element df; # (), and define the distribution& ™,
Y* by

X =

2

a  with probabilityy; Pr[X; = o] if « € C;, and
B;  with probability 1 — ~; Pr[X; € C;]
Y =

)

a  with probability; Pr[Y; = o] if a € C;, and
B;  with probability 1 — ~; Pr[Y; € C;]

wherey; > 1 is the largest number such thaf', Y;* aree-close in ratio. One can easily check that, for all

1 <1 <n,

1—c¢

min(Pr[ X} € G|, Pr[Y;" € C]) > 5% (12)

M

(Indeed if (sayPr[X; € C;] > Pr[Y;* € C;] andPr[Y;* € C;] < 3=< then

=1—c¢

PriX; € Z] 1-PrX;ec] 1- =Py eC] 1-5-
PrlYreZ] 1-Pr[Y e€C] = 1-Pr[Y*e( 11

1—ct

7> ¢ <1,0n0 <t < 1. This contradicts

where the strict inequality uses the monotonicity of thectiom
the maximality ofv;.)

We let f* be a randomized widtlv lengthn ROBP whose-th layer equals the-th layer of f with
probability 1/~; (putting~; = 1 if Z;, = ) and equals the identity layer with probability— 1/~;, with
every layer determined independently. One can easily ctietlf (X) ~ f*(X*), f(Y) ~ f*(Y™*) (with
randomness taken ovéf, X, Y), so that

A(f(X), F(Y) = A (XT), F1(Y7) SEp ASH(XT), F5(Y7)) (13)
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where the statistical distance in the rightmost expressameéasured over the randomness induced& by
Y™, for fixed valuef™.
Let g be some fixed value of*. By (13), it suffices to show

Alg(X*), 9(V) < e 2 4 (m(w—2) + Y (w - i 2) (52=) (14)

to conclude the proof.

Say g has an identity layer. Ify’s length is 1 (i.e.n = 1) then all layers ofg are the identity and
A(g(X*),g(Y™*)) =0, so (14) holds. Otherwise, we can cut out this identity ldyem ¢ (removing at the
same time the relevant coordinateXr, Y*), and (14) follows by induction on the length sinceX™*, Y'*
aree-close in ratio product distributions. Thus, we can assuorerof the layers of are the identity. This
impliesg = f* = f, so all that remains is to upper bound f (X™*), f(Y™)).

Let Zy, ..., Z. € X™ be hybrid distributions defined by

Zis = Yroif(y m(?dr) <1
’ X; otherwise,

whereZ; ; is thej-th bit of Z;. We haveZy, = X* andZ, = Y*, SOA(f(X*), f(Y™*)) < Z;:& A(f(Z), f(Zit1))-
Fixing i, 0 < i <r — 1, we now focus on upper boundindy( f(Z;), f(Z;+1)).

Let Z;, = {j € [n] : j modr = i} be the set of bit positions at which (the definitions 4f)and
Z; .1 differ. Let Z and f be defined as in Section 4. L&t’ ¢ XZi pe the restriction ofX* to the bits
in Z;, and likewise lety” € X% be the restriction ol to the bits inZ,. Thenf(Z;) = fz(X’) and
f(Zit1) = fz(Y"). We therefore have

A(f(Zi), f(Zir1)) = A(f7(X"), (V")) S Bz A(f7(X"), f7(Y)). (15)

Let/ = |Z;| be the length off;. Note that’ < [2]. Fix h € [¢ — 1] and consider the probability, taken over
Z, that the union7,(j) : j € [w],a € X'} C [w] of the ranges of the transition functiofis, : « € X'} of
fz at layerh has sizew. By (12), one can argue via a pebble argument as in Sectioat4his probability
=) - = (5+)"~!. Union bounding oveh € [¢ — 1] (the transition functions at layér
having rang€(1, 2}) the probability thatf- is not equivalent to a widthy — 1 branching program of length
lis at most"( )r ! , using? — 1 < =. Thus, using the inductive hypothesis for programs of width 1
and length ¢ < 2 + 1, E;A(f5(X"), fz(Y")) can be upper bounded by

er T3 4 ((; +1)(w—3) +wz_2(w —1 —j)rj‘2> (i)r_l - %(2 i 6>H (16)
j=3
which simplifies to
w—1
P (B -2+ 3w )Y (5=5)
=3

’ Technically, note that < [2] could be> n if n = 1. However, we are using lexicographic induction oger, n), so we can
use the inductive hypothesis on any ROBP of width- 1 (even of length greater thar).
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This is, by (15), an upper bound fa¥(f(Z;), f(Z;+1)). Since this upper bound holds for ahy< i < r—1,
we have

r—1
A(f(X7), f(Y7) < ) A(f(Z), [(Zig1))
=0
w—l . 1 r—1
<erv™?4 (n(w —-2)+ Z(w — j)rf_z) (ﬁ)
j=3
which concludes the proof. O

Corollary 1. Let f be a widthw > 2 ROBP of lengtlm and let X, Y € 2™ be twoe-close in ratio product
distributions. Then for any integer> 1,

1 r—1
< w—2 w—2 o )
A(F(X). f(1) € e 24 (n 4172 (w = 2) (5—)
Proof of Theorem 1Since the case = 2 follows already from Theorem 3, assuel w < log n/ loglog n.
Setr = [2logn]. We have

2

rvT2 < (2logn + 1)“’_2 = (2logn(1 + ))“’_2 < (2log n)w—%ﬁ.

2logn
Sincew < log n/ loglog n, we have
w—2
e?loen < 1+ \i(n)

where\;(n) = o(1), and
(2 log n)w—2 < nl—i—)\z(n)

whereXz(n) = o(1). Thus, by Corollary 1,

AU, TV) < e@log )™ 1+ () + -+ 0t =)o) (=) an)

We define

A(n) = Ay (n) + (n +n'T22)(log n) <2 —10.5)71_1 €(2 logln)w—2'

Sincer = [2logn], itis easy to check that(n) = o(1). Next
A(F(X), F(Y)) < e(2logn)*"*(1 + A(n)) (18)

follows from (17), since (18) holds trivially #(2logn)*~2 > 1if € > 0.5. 0

C Proof of the Collision Lemma

In this appendix we give a proof of the Collision Lemma stdate&ection 5. The proof follows [7] rather
closely.

Let X,Y € X" be two product distributions. We claim that for every ROBBf lengthn and widthw
over the alphabeY there exists a cROBPof lengthn and widthw, also overr, such thatA(f(X), f(Y)) >
A(g(X),g(Y)) (cf. Definition 1).
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It suffices to consider a ROB® (of width w) maximizing A(g(X), g(Y")); such a ROBP exists since
there are only finitely many ROBPs possible for a given witithgth, and input alphabet. Say that a node of
a ROBP isunreachabléf there is no path of nonzero probability from the start nta#his node. (“Nonzero
probability” is measured w.r.t. the distributiolds andY’; note that sinc&®r[X; = a] =0 <= Pr[Y; =
al] = 0foralli € [n], « € X, unreachability is well-defined.) We can moreover assuna¢ @mong
all ROBPs achieving the optimal distinguishing advantagkas as many unreachable nodes as possible.
We can finally assume that, among such ROBPs (with said gisshing advantage and said number of
reachable nodes), maximizesPr[g(X) = 1].

For every vertex of g, let v(X) be the output node reached wheis “started” at vertex with input
X. More precisely, ifv is a vertex at layek € [n + 1], v(X) denotes the output reached by reading the
n — k + 1 last characters oK starting from nodes, namely by following the edges labeled, ..., X,
starting from node. (If v is an output node then(.X') = v for all X.) Definev(Y) likewise.

For every node of g, let E[v(X)] denote the probability, taken ovét, thatv(X) is the accept node of
g. As a piece of special-purpose notation, we also défim¢X )| = 1 — E[v(X)] to be the probability that
v(X) is the reject node of. Also letE[¢(X)] andE[g(X)] be the probabilities thaj accepts and rejects
X, respectively (this agrees with our previous notation ifidentify ¢ with its start node). We can assume
without loss of generality that[g(X)] > E[g(Y)]. Note, then, that

Ag(X),9(Y)) = E[g(X)] = E[g(Y)] = E[g(X)] + E[g(Y)] - 1.

Thusg maximizesE[g(X)] + E[g(Y")] (among all ROBPs of length and widthw).
Finally, letpx (v) be the probability of passing through nodevheng is run on inputX (starting from
the start node), and defipg-(v) likewise. SinceX, Y aree-close in ratio, we have that

(vis unreachable <= (px(v) =0V py(v) =0) <= (px(v) =py(v) =0).

We also note that iy, . . . , v, are the nodes at a given layeof f, then
Elg(X)] =Y px(u)E[p;(X)],  E[GY)] = py(v)E[D;(Y)]
j=1 j=1

so thatg's advantage is
(=1 + Y (px()ER; (X)) + py () EFG(Y)]). (19)
j=1

Say thek-th layer ofg has at least two reachable nodesandv,. We show that either
E[vi(X)] > Efra(X)]  and  E[5p(Y)] < Efrz(Y))],
or
E[v1(X)] <E[w2(X)]  and  Ef[pr(Y)] > E[D2(Y)].

Indeed, assume by contradiction, say, tat; (X)] > E[v(X)], E@1(Y)] > E[vz(Y)] (the only other
possible bad case beiffv; (X)] < Efv(X)], E[o1(Y)] < E[wz(Y)]). Then by re-routing all ofuy’s

incoming edges to;, we decreasgx (v2) andpy (v2) to 0 and increasgx (v1 ), py (v2) by (the old values
of) px(v2), py(v2). This cannot decrease (19), and the new ROBP thus obtaireedtHaast one more
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unreachable node, a contradiction. The c&8g (X)] < E[ve(X)], E[t1(Y)] < E[wz(Y)] is similarly
treated by re-routing all af;’s incoming edges to-, which proves the claim.

Note the above observation allows us to re-order the reéehealticesy,, ..., v; at any layer such that
Elvi(X)] > ... > E[v;(X)] andE[z1(Y)] < ... < E[v;(Y)]. While such an ordering is not necessary for
the proof, one can assume it for conceptual simplicity.

Letv be areachable node gfat layeri < n of g, and letw, 5 € X' be such thaPr[X; = o], Pr[X; = f]
are nonzero (hence, ditto f&f), and such that

Pr[X; = o] - Pr[X; = (]
PrlY; =a] — Pr[V;=0]"

(20)

We setup the shorthand®[X; = o] = ax, Pr[X; = ] = fx, and so foray, Sy. Let v, be the node
reached fromv by following thea edge, and letg be the node reached by following thesdge. We claim
that eitherv, = wvg, or else thatf[v,(X)] > E[vz(X)] (and hence, also, thd@[t,(Y)] < E[vz(Y))).

Indeed, assume by contradiction tiigjv, (X )] < E[vg(X)]. ThenE[t4(Y)] > E[vz(Y)]. If we re-route
the o wire leavingv from v, to vg, then (19) (applied to a layer containiny changes by

px (v)ax (E[vg(X)] — E[va(X)]) + py (v)ay (E@z(Y)] — E[a(Y))) (21)
whereas if we re-route instead tHewire leavingv from vg to v,, (19) changes by

px (v)Bx (E[va(X)] = E[va(X)]) + py (v)By (E[ta(Y)] — Ea(Y)]). (22)
Sinceg is optimal, both (21), (22) must b€ 0. Therefore,

px (v)ax (Elvg(X)] = E[va(X)]) <
py (v)By (Ba(Y)] = Es(Y)]) < px (v)Bx (E[vs(X)] — Efva(X)])

which we can rewrite as

ax _ py(0)Epa(Y)] - Epp(Y)])
ay ~ px(v)(Elvs(X)] — E[va(X)])
Bx _ py () (E[a(Y)] — E[t(Y)])
By ~ px(v)(E[vg(X)] — Efva(X)])

This implies & < £X, but we have by assumption (cf. (20)) tHa¥ > 2%, so2X — ZX. Thus the
inequalities

px (v)ax (E[us(X)] — Elva(X)]) + py (v)ay (E[up(Y)] — Ea(Y)]) <0
px (v)Bx (E[va(X)] = E[vg(X)]) + py (v) By (E[va(Y)] — E[vg(Y)]) <0

(cf. (21), (22)) are negative scalar multiplies of one aegthnd can only be simultaneously satisfied if both
left-hand sides are 0, i.e. if both (21), (22) are zero. Thiplies we can re-route the wire leavingv to
vg without affectingg’s advantage (and only possibly decreasing the number ohadxe nodes); but since
Elvs(X)] > Elve(X)] by assumption, this change will increaB& (X)] andE[¢g(X)], contradicting that
our initial assumption thag maximizesPr[g(X) = 1] among all ROBPs having its advantage and number
of reachable nodes. This concludes the proof that eithet vz or E{v, (X)] > E[vg(X)].

Say that an edge ha®ro probabilityif there is zero probability of traversing that edge (eitbecause
its source is unreachable, or because it is labeled by arealenthat has probability O at that layer). We
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now show that, after possibly re-routing the sinks of zebpbility edges, and after a possible reordering
of the nodes in each layey,is a cROBP. Note that re-routing the destination of zero gbdly edges has
no effect on any of the measures considered so far by the ftlaedfe being the advantageg@the number

of unreachable node®r[g(x) = 1] = E[g(X)], and more generally the valu&v(X)], E[v(Y")] for all
verticesv of g).

The transformation we carry out on zero probability edgesidase specifically as follows: for every
a € X and every layer of containing a zero probability edge of lakelwe re-route that edge such that the
transition functionr,, at that layer has a collision. This can obviously be done iag &sw > 2. Note, now,
that if an unreachable node occurs at a layer, then all trangunctions at that layer contain collisions after
this modification. (In particular, the presence of a periionetransition function at a layer indicates that all
nodes of that layer are reachable.)

We now claim thaly is a cCROBP up to a reordering of the nodes in each layer. Fsyitmsuffices to
show that at each layer gf the transition functions that are permutations are afitidal. Namely, we only
need to show that if,,, 73 are permutation transition functions occuring at the sayert, thenr, = 5.

Let ax = Pr[X; = o], Bx = Pr[X; = p] and so foray, fy. Note ax, Bx,ay, By > 0 or else
Ta, Tg Would not be permutations. Assume wlog that/Sx > ay/By. Letvy,..., v, be the nodes at
layeri and letv; o, v; g be the vertices reached by following theand 5 edges leaving;, respectively.
Thenwvy,...,v, are all reachable. From our observation above, sing¢/5x > «ay /By, we have that
Evj(X)] > Efv; 3(X)] for all j. Moreover,E[v; o(X)] > E[v; g(X)] if v # vjp. Thusifv,, # v;4
for somej, then

w

D Elja(X)] > > Elv;s(X)]
j=1 j=1

which is impossible since,, 75 are permutations. Therefore, we have, = v; g for all j, i.e. 7, = 73,
which finishes the claim.

D The maximum total influence of monotone programs

In this appendix we use similar techniques to give tight ugmaunds on the maximum influence of a
monotone read-once branching program of widthA ROBP f : {0,1}"™ — {0, 1} is monotonef

r<y = f(x) < fy)

for everyz,y € {0,1}", where we writer < y if x; < y; fori = 1...n, z; being thei-th bit of x.
Theinfluencelnf;(f) of thei-th bit of f’s input is the proability

Pr{f(z) # f(a + i)

wherezr+¢; denotes the bitwise xor afwith thei-th unit vector. There probability is taken oveuniformly
chosen in{0, 1}™. Thetotal influencelnf( f) is the sum of the individual influences of the bits:

Inf(f) =Y Infi(f).
i=1

The parity (or xor) function exhibits the maximum possikat influence, being:.. However, the xor
functions is non-monotone. The total influence of any mometfunction is upper bounded Ryn (or by
(1 + o(1))4/2n/m more exactly, which is matched by the majority function). Wi# see the maximum
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total influence of a widthv ROBP isO(log(n)*~2). In fact, we will prove that every monotone ROBP is
equivalent to some cROBP of equal width, and that every widtiROBP has total influena@(log(n ) ~2).

We first establish some notation and terminology. fet{0,1}" — {0, 1} be a boolean ROBP. A node
v of f is unreachabléf there is no path from the start node pto v. Each node of f induces a function
onn — k + 1 bits in the natural way; we identify with this function, and write : {0,1}"**! — {0,1}.
Two nodesu, v in the same layer of areequivalentf they are equal as functions.

The following is the equivalent of the Collision Lemma for nmbone ROBPs (and is potentially of
independent interest):

Lemmal. Let f : {0,1}" — {0,1} be a monotone ROBP of lengthand widthw. Then there exists a
cROBPy of lengthn and widthw such thaty(z) = f(z) for all z € {0,1}".

Proof. By re-routing edges we can assume no two reachable nodésref equivalent. We now order the
nodes in each layer working inductively by layers, startghe output layer and working backwards. We
order the output layer such that the reject node (output 8)ifdex 1 and the accept node (output 1) has
index 2.

Assuming layerk + 1 has been ordered we now describe how to order the reachatis o layer
k, and later extend this ordering to include the unreachabties in layerk. For a nodeu in layer k, let
z(u) be the node reached by following the outgoing 0 edge frgrand leto(u) be the node reached by
following the 1 edge fromu. We order the reachable nodes in layelexicographically according to the
pair (z(+),o(+)), where coordinates are compared by the ordering of layer; that is,u comes before if
eitherz(u) < z(v) or else ifz(u) = z(v) ando(u) < o(v), where the relations(u) < z(v), o(u) < o(v)
refer to the ordering in layéet + 1. Since we have eliminated equivalent reachable nodeseésg to see
this establishes a total ordering on the reachable nodageat. Finally, we arbitrarily extend this ordering
to include the unreachable nodes as well (say, by puttingitineachable nodes of each layer last, in some
arbitrary order). This completes the description of howasodre ordered in each layer.

For two reachable nodes v in the same layer, we write < v if u comes before in the ordering just
described. We now claim thatif < v, with u, v in layer k, then there is some € {0, 1}"~*+! such that
u(z) < v(z). We prove this by reverse induction énThe base case is= n + 1, which is obvious since
thenw, v are the two output nodes. Otherwise, for the induction gtegp,note that ifz(u) < z(v) then the
claim follows by applying the induction hypothesis to therpdu), z(v). So we can assumgu) = z(v).
But theno(u) < o(v), sinceu < v, so the claim follows by applying the induction hypothesighe pair
o(u), o(v). This completes the proof of the claim.

It directly follows from this observation that for every nontput reachable node z(u) < o(u) (or
else f would not be monotone). We additionally modify the outgogtpes of unreachable nodesfisuch
thatz(v) < o(v) also for all unreachable nodes This does not affect’s computation, and since we are
not reordering nodes or changing the outgoing edges of aséemodes, we still havgu) < o(u) for all
reachable nodes after this step.

It now suffices to show that if the transition functiong =, at some layek of f are both permutations,
thenty = 7. (The result then follows by a final permutation of each lay@rking either from back-to-front
or from front-to-back through the program.) That is, we neetthat showz(u) = o(u) for all nodesu in the
k-th layer, assuming the two transition functions atkhil layer are permutations. However, this is obvious
from the fact thak(u) < o(u) and thatry, 7 are permutations. (In a little more detail, if we associgte)
to theindexof nodez(u) in layerk + 1—soz(u) € [w]— and do the same far(u)—then ifu;, ..., u,, are
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the nodes in layek and ifz(u;) < o(u;) for somej, we have
o(ul) — z(ul) >0
i=1
which contradicts the fact thag, =, are bijective.) O

As for the distinguishability of product distributions, raesults on influence require a preliminary result
for width 2 branching programs.

Lemma 2. Letf : {0,1}" — {0,1} be a width 2 cROBP. Thdmf(f) < 2.

Proof. We can assume without loss of generality tfidias no identity layers. Let be the length off. For
eachi, 1 < i < n, choose a valug; € {0,1} such thatr, is not a permutation; suchia always exists by
the fact thatf is a cROBP. Then, triviallylnf;(f) < 207", sincef(z) = f(x + ¢;) if z; = b; for some
j > . ThusInf(f) < >0 207" < 2. O

We note that Lemma 2, like Theorem 3, is apparently not tihe width 2 influence champion is again,
conjecturally, the program of Fi@, whose total influence approachg$ as the length grows.

Theorem 5. Let f : {0,1}" — {0,1} be a cROBP of widthw > 2 and lengthn. Then for every integer

r>2,
L5 Lw—2 _ q

w—2 n
Inf(f) S 2T + 27“—1 ﬁ
Proof. The case of widthv = 2 follows from Lemma 2.
Let Zy,..., 2,1 C [n] be like in the proof of Theorem 4; namely,

Zi={j€n]:j=i mod r}.

Given a stringz; € {0,1}"\Z: let f.. be the widthw lengthn — | Z;| ROBP induced by fixing the bits in
[n]\ Z; to z;. Clearly, we have

Z Inf](f) =E; [Inf(fzz)]

JEZ;
Since f is a cROBP, the probability., is not equivalent to a widtly — 1 ROBP of same length is at most
o 2},1 , following the same reasoning as in Section 4 and as in thef pfd’heorem 4. It is also easy to see
that f,, is monotone. Thus, since a monotone ROBP of lemgtan have total influence at mogt: (like
any monotone function on bits), and sincef,, has length at mos{t%} = n, we obtain by induction on the
width that

1.5 Jw—3 _ 1 n
_ V<3 T )
B, [Inf(£.)] <207 + op——— + gV
Therefore,
r—1 r—1
Inf(f) = Infj(f) = Y E.[nf(f.,)]
i=0 jeZ; i=0
X nld pw=3 _q nlb
< w—
=" <2T LT R r2r—1>
which is the desired bound. O
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Settingr = [1.5log(n)] in Theorem 5 (for which we need to assume> 2) immediately implies:
Corollary 2. Letf : {0,1}" — {0,1} be a cROBP of widthv > 2 and lengthn > 2. Then,
Inf(f) < 4[1.51log(n)]* 2.

We note that Corollary 2 is not an asymptotic statement allatge n and constantv”; it holds for all
combinations oh andw with n, w > 2.
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