Verifiable Delegated Set Intersection
Operations on Outsourced Encrypted Data

Qingji Zheng and Shouhuai Xu

Abstract—We initiate the study of the following problem: Suppose Alice and Bob would like to outsource their encrypted private
data sets to the cloud, and they also want to conduct the set intersection operation on their plaintext data sets. The straightforward
solution for them is to download their outsourced ciphertexts, decrypt the ciphertexts locally, and then execute a commaodity two-
party set intersection protocol. Unfortunately, this solution is not practical.

We therefore motivate and introduce the novel notion of Verifiable Delegated Set Intersection on outsourced encrypted data
(VDSI). The basic idea is to delegate the set intersection operation to the cloud, while (i) not giving the decryption capability to
the cloud, and (ii) being able to hold the misbehaving cloud accountable. We formalize security properties of VDSI and present
a construction. In our solution, the computational and communication costs on the users are linear to the size of the intersection
set, meaning that the efficiency is optimal up to a constant factor.

Index Terms—Verifiable set intersection, delegated set intersection, outsourced encrypted data, verifiable outsourced computing

<+

1 INTRODUCTION

Cloud computing allows users to outsource their data to
the cloud, but the data privacy issue often makes them
reluctant to do so. It is therefore natural to encrypt the
outsourced data and delegate the heavy-duty computational
tasks on the outsourced encrypted data to the cloud. This
leads to a general question: How can the cloud execute the
delegated functions on outsourced encrypted data, without
being given the decryption capability? Although Fully Ho-
momorphic Encryption (FHE) [1]-[3] is promising to tackle
this problem, it is not practical enough for applications
that involve a large volume of data [4]. Moreover, FHE in
general does not solve another important problem: How can
we force the cloud to execute the delegated computational
functions honestly? This calls for solutions that can hold
the misbehaving cloud accountable.

In this paper, we consider the problem of Verifiable
Delegated Set Intersection on outsourced encrypted data
(VDSI), which can be seen as the cloud version of the well
investigated problem of Private Set Intersection (PSI) [5]-
[7]. In the setting of PSI, two parties jointly compute the
intersection of their private data sets such that they learn the
intersection set but nothing else (the sizes of their private
data sets may or may not be deemed as confidential [8]).

In the setting of VDSI, two cloud users, Alice and Bob,
outsource their encrypted private data sets to the cloud.
They would like to conduct the set intersection operation
on their plaintext data sets. The straightforward solution
would be for them to download their outsourced ciphertexts,
decrypt the ciphertexts locally, and then execute a commod-

o Q. Zheng and S. Xu are with the Department of Computer Science,
University of Texas at San Antonio, San Antonio, TX, USA, 78249.
E-mail: gingjizheng @ gmail.com, shx@cs.utsa.edu

ity two-party set intersection protocol. The straightforward
solution is not practical, especially when the outsourced
data sets are large and when they use wireless systems such
as smartphones. Another drawback of this solution is that
both Alice and Bob must participate simultaneously. For
these reasons, Alice and Bob would prefer delegating the
set intersection operation to the cloud, while being able
to hold the misbehaving cloud accountable. Note that it
is realistic to assume that the cloud is untrusted because it
has the incentive not to honestly execute the protocols (e.g.,
for saving resources or shortening service response time).
Moreover, the cloud may have been compromised and the
attacker may return Alice and Bob with misleading results.

1.1 Our Contribution

We initiate the investigation of a novel notion called VDSI,
a useful primitive for delegating the set intersection oper-
ation on outsourced ciphertexts to the untrusted cloud. In
contrast to the straightforward solution mentioned above,
VDSI solves the problem by enabling the cloud to compute
the set intersection, but without giving the decryption
capability to the cloud. As such, VDSI can be seen as
a special-purpose homomorphic cryptographic system for
use in cloud computing. Since the cloud is untrusted and
possibly malicious, VDSI allows Alice and Bob to verify
whether the cloud has faithfully computed the delegated set
intersection protocol or not.

Specifically, we formally define security properties of
VDSI, and present a concrete VDSI scheme. The scheme is
based on two ideas: (i) using proxy re-encryption to enable
the cloud to compare equality of plaintexts correspond-
ing to two ciphertexts that are encrypted using different
public keys; (ii) using a novel variant of cryptographic
accumulator, which can be used to verify the membership

of multiple elements through a single examination and may
be of independent value, to allow the cloud to show the
correctness of the resulting intersection set.

Our VDSI scheme has two appealing features. First, it
does not require the participation of Alice and Bob, because
the cloud conducts the delegated computing. Second, it
is much more efficient than the straightforward solution
mentioned above. Suppose Alice’s (Bob’s) data set has n
(m) elements, and the intersection set has & elements. Our
solution only incurs O(k) computational and communica-
tion costs on Alice and Bob, for decrypting and verifying
the results received from the cloud. This means that our
solution is optimal (up to a constant factor). In contrast,
the straightforward solution incurs O(m+n) computational
and communication costs on Alice and Bob. Note that it
is possible that m + n >> k. Experimental evaluation
confirms that the VDSI scheme is practical,

We believe that the novel concept of VDSI will in-
spire many fruitful studies. For example, our solution only
achieves a “weak” version of the function output secrecy
property, which allows the untrusted cloud to launch a
plaintext guessing attack against Alice’s and Bob’s private
data (i.e., the success probability depends on the size of the
plaintext space). It is an outstanding open problem to settle
down whether or not this weak guarantee is inherent to the
problem that VDSI aims to solve; if not, we need to design
a better solution that is immune to this attack. Another
outstanding open problem is to enforce fine-grained access
control over the delegated set intersection operation, which
may or may not need to be traded from the verifiability.

1.2 Related Work

To the best of our knowledge, this is the first work that
considers the PSI problem in the cloud computing setting,
where cloud users not only outsource their private data but
also outsource their set intersection operations, while being
able to hold the dishonest cloud vendors accountable for not
faithfully executing the delegated operations. Nevertheless,
there are prior studies on related problems.

Private Set Intersection. The PSI (private set intersection)
problem was initiated in [9] and has become an essential
building-block for many applications. Many variants of
PSI [6], [8], [10]-[17] have been proposed, with various
features (e.g., preventing a malicious party from choosing
arbitrary inputs [6], [11], hiding the sizes of the inputs [8]).
There have been schemes that aim to reduce the compu-
tational and communication complexities (e.g., the RSA-
OPRF-based protocol [18], the garbled circuit protocol [17],
and the garbled bloom filter protocol [16]). Among the
state-of-the-art PSI solutions, the most efficient PSI pro-
tocol incurs O(m + n) computational and communication
complexities, where m and n are sizes of the respective data
sets [16]. We note that [19]-[21] considered the problem
of server-aided private set intersection, where cloud users
share some secrets with each other to preprocess data sets
at the time of outsourcing their data. Such collaborative
preprocessing is not needed in the setting of VDSI. Finally,

a recent work [22] studies verifiable complex set operations
over outsourced plaintext data sets (i.e., the outsourced
data is not encrypted). In contrast, we consider outsourced
computing on outsourced encrypted data.

Public Key Encryption with Equality Test. The problem
of public key encryption with equality test is to decide
whether two ciphertexts that are encrypted using two dif-
ferent public keys correspond to the same plaintext or
not [23]-[26]. In order to enforce access control over the
equality test operation, a variant of the problem is to allow
the data owners to authorize who can perform the equality
test on the outsourced encrypted data [27]. These protocols
do not consider the requirement of verifiability on the
equality test results, which is crucial to VDSI in the present
paper.

Verifiable Computation. How to securely and efficiently
delegate the computation of a function to a remote server
has been under active research [28]-[37]. In these solutions,
the data owner pre-processes the inputs to the delegated
function in question before outsourcing the data to the
cloud, and the cloud needs to prove the correctness of the
outcome of a function execution. However, these solutions
do not solve the problem studied in this paper because (i)
the input to their functions is from a single source and
known to the delegator in advance, and (ii) some solutions
do not consider privacy of the input. In contrast, our model
has the following characteristics: the inputs to the delegated
functions include other data owners’ private data sets,
which are not known to the delegators in advance. Finally,
[38] considered the notion of verifiable private multi-party
computation, but not in the setting of outsourcing data and
functions to the cloud.

1.3 Paper Organization

Section 2 reviews some cryptographic preliminaries. Sec-
tion 3 formulates the problem of VDSI and its security
properties. Section 4 introduces the extended accumulator
scheme, which is used as a building-block and may be
of independent value. Section 5 presents a VDSI scheme
and analyzes its security, while Section 6 evaluates its
performance. Section 7 concludes the paper.

2 CRYPTOGRAPHIC PRELIMINARIES

Let (e,g,G, Gr,p) + MapGen(1%) denote that the boot-
strapping algorithm MapGen generates a bilinear map
e : Gx G — Gp, where G and G are cyclic groups
of order p which is an ¢-bit prime, g is a generator of
G, and the bilinear map e satisfies (i) for a,b € Z,,
e(g®, g = e(g,9)®, (ii) e(g,g) is non-degenerate, and
(iii) e can be efficiently computed. The bilinear map e is
one-way, i.e. the probability of a probabilistic polonomial
algorithm inverting e is negligible, which holds when G
and G are instantiated with Weil or Tate pairing over
MNT curves [39]. Table 2 summaries the notions for the
algorithms and parameters in the VDSI scheme, multi-
accumulator scheme and the signature scheme Sig.

Notation | Description
Dq,Cq | Alice’s data set and its encryption form
Dy, Cp | Bob’s data set and its encryption form

Setup, KeyGen, Enc,
Dec, AuGen, SetOp, Verify

algorithms of the VDSI

pm’ Sk7 pk7 Si?
au, rslt, proof

parameters of the VDSI

acKeyGen, acGen,
acProve, acVerify

algorithms of the multi-accumulator

acSk, acPk, acDig, | parameters of the multi-accumulator

acRslt, acWit
sigKeyGen, | algorithms of signature scheme Sig
sigSign, sigVerify
sigSk, sigPk, o | parameters of the signature scheme
TABLE 1

Notations for algorithms and parameters in the VDSI,
multi-accumulator and the signature scheme Sig.

Bilinear g¢-strong Diffie-Hellman assumption (¢-SDH)
[39]. For given (e,g,G,Gr,p) ¢ MapGen(1?), and
g“,ga2, .., g™ where o pia Zy and q is bounded by a
polynomial in /¢, there exists no probabilistic polynomial-
time algorithm A that can compute (s,e(g,g)'/(@+9))
where s € Z, with a non-negligible probability in /.
The probability is defined over the random choices of the
parameters and random coins used by A.

Decisional Linear assumption (DL) [39]. For given
(e,9,G,Gr,p) + MapGen(1%), and (f, h,g"™, f",Q)
where f,h,Q & G and r1,T2 pia Z,, there exists no
probabilistic polynomial-time algorithm A that can deter-
mine L pritre with a non-negligible advantage, where
“advantage” is defined as

PI‘[.A(g, fa thTl’sz’Q) = 1]

- PI‘[.A(g, f7 h‘vgrl7fr27hrl+r2) = 1]a

and the probability is defined over the random choices of
the parameters and random coins used by .A.

Unforgeable Digital Signature. Let Sig =
(sigKeyGen, sigSign, sigVerify) be a secure signature
scheme, where sigKeyGen generates a pair of public and
private keys, sigSign generates a signature for a message,
and sigVerify determines if a message matches a signature.
Any signature scheme satisfying the standard definition of
unforgeability under adaptive chosen-message attacks [40]
is sufficient for the purpose of this paper.

3 VDSI MODEL AND DEFINITION
3.1 System Model

Figure 1 illustrates the system model of VDSI (verifiable
delegated set intersection operations on outsourced en-
crypted data). The system has four entities: a trusted third
party, a cloud, and two cloud users (i.e., data owners)
referred to as Alice and Bob. The trusted third party is
responsible for initializing system public parameters used
by the cloud and cloud users. Alice and Bob can be either
individuals or organizations that outsource their private data
sets, denoted by D, and Dy, to the cloud in encrypted form,

denoted by C, and C, respectively. Alice and Bob want to
compute the intersection set D, N Dy, by delegating the set
intersection operation to the cloud but without giving the
cloud the capability to decrypt C, and C,.

parameter

Trusted third-party

Fig. 1. VDSI system model: data owners Alice and Bob
encrypt their data sets (denoted by D, and D), using
their respective public keys, outsource to the cloud
the resulting ciphertexts (denoted by C, and C;), and
delegate the computation of D, N D, to the cloud but
without giving it the capability to decrypt C, and C,.

Remark. The above system model can be easily ex-
tended to accommodate the following more general sce-
narios. First, rather than letting Alice and Bob outsource
their encrypted data to the same cloud, they can outsource
their encrypted data to two different clouds (dubbed storage
clouds). Second, rather than letting (one of) the storage
cloud(s) conduct the delegated computation on C, and Cy,
another cloud (dubbed computing cloud) or any other third
party can be used for this purpose. The extension is trivial
and omitted.

3.2 Threat Model and Basic Idea of Defense

We assume that the cloud users (i.e., data owners) are
honest-but-curious, meaning that they act according to the
protocols and use their real data sets as inputs to the
protocols, but are curious about each other’s private data.
However, the cloud is possibly malicious. This means that
the cloud can attempt to breach the secrecy of the data
outsourced to the cloud, manipulate the integrity of the
outsourced data, and deviate from the protocols arbitrarily.
The cloud may be controlled by an attacker, who also has
control over all the communication channels. This means
that denial-of-service attack is inevitable and should be
addressed othogonally by another layer of defense. We will
use “the attacker” and “the cloud” interchangeably.

The basic idea for defending against the possibly ma-
licious cloud is to ask the cloud to generate a proof,
which shows that it has faithfully executed the delegated set
intersection operation. By “examining” the result and proof
returned by the cloud, Alice and/or Bob can verify whether
or not the cloud has faithfully executed the delegated set
intersection operations on C, and C; or not.

3.3 VDSI Function Definition

In order to simplify the description of both the definition
and the concrete scheme that will be presented later, we
assume that there is an authenticated user-to-cloud private
communication channel, which is used by a cloud user
to send some secret information to the cloud (e.g., the
secret information that allows the cloud to conduct the
delegated set intersection operation). This assumption does
not impose any significant restriction because in the case the
cloud is controlled by the attacker, the secret information
is given to the attacker any way. In practice, the channel
can be reaidly realized by encrypting the secret information
under the cloud’s public key.

With loss of generality, denote by Alice’s plaintext data
set Dg = {da0,..-,da,n} and Bob’s plaintext data set
Dy = {dbo,---,dpm} Alice (Bob) outsources her (his)
encrypted version of D, (Dj), denoted by C, (Cp), to
the cloud. Alice and Bob want to compute D, N D; by
delegating the computation to the cloud, but without giving
the cloud capability to decrypt C, and C,.

Definition 1: A VDSI scheme has seven algorithms:

o pm < Setup(1%): Given security parameter ¢, the
trusted third party runs this algorithm to bootstrap the
public parameters pm.

o (pk,sk) « KeyGen(pm): Alice runs this randomized
algorithm to generate a pair of public and private keys
(pky,skq), where pk, is made public and sk, is kept
secret by Alice. Similarly, we denote Bob’s pair of
public and private keys by (pk,, sky).

e (Cq,siq) < Enc(pk,,D,): Alice runs this encryption
algorithm to encrypt her data set D, to ciphertext C,,
which is outsourced to the cloud, and some secret
information si,, which is kept secret by Alice. Bob
can generate (C,,si,) similarly.

o {D/, 1} <+ Dec(skg,rslt,): Alice runs this decry-
tion algorithm to decrypt ciphertext rslt,, which is
the output of the delegated set intersection operation
conducted by the cloud on ciphertexts C, and Cy, to
obtain the intersection set D’ = D, N Dy. In the case
the decryption fails, the algorithm outputs L instead.
Note this decryption algorithm also can be used to
decrypt C,.

e au, < AuGen(skg,siq, pk,): In order to allow the
cloud to conduct the set intersection operation on
the outsourced ciphertexts C, and C;, Alice runs
this algorithm to generate some auxiliary information
au,, which is sent to the cloud through the authen-
ticated user-to-cloud private communication channel
(see justification above), where si, is the Alice’s se-
cret information generated by Enc(pk,, D). Similarly,
Bob can generate and send aup to the cloud, where
aup < AuGen(skp, sip, pk,)-

o {(rslty, proof,,), (rslty, proof,)} <« SetOp(C,, aug,
Cy, aup): This is the delegated set intersection opera-
tion run by the cloud. Depending on the application,
the cloud may return (rslt,, proof,,) and (rslt,, proof,)
respectively to Alice and Bob, or return (rslt,,, proof)

to Alice or (rslty, proof,) to Bob who requested the
delegated set intersection operation, where proof , and
proof, are proofs that can show that the cloud has
faithfully executed the SetOp protocol.

e {0,1} + Verify(skq, Siq, rsltq, proof,,): Alice runs this
algorithm to verify whether rslt,, is faithfully generated
by the cloud according to the SetOp protocol. If
so (with output 1), Alice calls the Dec(skg,rslty)
algorithm to decrypt rslt,; otherwise (with output 0),
the cloud is cheating.

We say a VDSI scheme is correct if the following holds:

[pm < Setup(1¢),
(pk,,skq) < KeyGen(pm),
(Pky, sky) < KeyGen(pm),
Y Da, Db, (Ca, Sia) + Enc(pk,, D),
(Cb7sib) — Enc(pkb, Db)7
au, < AuGen(skg, siq, pky),
aup < AuGen(skp, sip, pk,),
{(rslt,, proof), (rslty, proof,) }
SetOp(Cq, aug, Cp, aup) :
1 « Verify(skq, Siq, rsltq, proof,,),
1 « Verify(skp, sip, rslty, proof,),
Do N Dy = Dec(skq, rslt,) = Dec(sks, rsltp) |

3.4 VDSI Security Definition

Informally, VDSI aims to achieve the following security
properties against the afore-discussed threat model. We
consider three security properties: outsourced data secrecy,
Sfunction output secrey and verifiability, which are formally
defined below. Let € be a negligible function in security
parameter ¢. We consider a probabilistic polynomial-time
(in £) adversary A controlling the cloud.
Outsourced Data Secrecy: Similar to security against
chosen-plaintext attack, this property means that the at-
tacker A cannot breach secrecy of the outsourced data,
unless that A is given the respect auxiliary information.
Definition 2: (outsourced data secrecy) A VDSI scheme
achieves outsourced data secrecy if the following holds:

pm < Setup(1¢),

(pk, sk) < KeyGen(pm),

(Do, D) + AE(pk), s.t.|Dg| = |Dy],
A &{0,1},(Cy,sin) + Enc(pk, Dy),
N ¢ AE"(pk, Cy, Do, D1) :

A=N

Pr

This property is necessary but not sufficient because it
only assures the secrecy of outsourced data when A is not
given the delegated set intersection operation capability.
The following property, function output secrecy, is used
to capture the secrecy of oursouced data after A4 is granted
the capability (i.e, A is given the auxiliary information au).
Function Output Secrecy: This property means that A
cannot breach secrecy of the resulting intersetction set
D, NDy. Ideally, given a target ciphertext and the auxiliary
information, .4 cannot learn the plaintext with a non-
negligible probability.

Definition 3: (function output secrecy) A VDSI scheme
achieves function output secrecy if

pm < Setup(1¢),

(Pkgy,ska) <= KeyGen(pm),
(Pky, sky) < KeyGen(pm),
VDag, Dy, (Cq, siq) < Enc(pk,, Dq),
(Cp,sip) <= Enc(pky, Dy),

Veph € (C, U Gy),

au, < AuGen(skg, siq, pky),

aup < AuGen(skp, sip, pk,),
{dla . dq} — AEnc,SetOp,Verify
(pk,sauq, Cq, pky, aup, Cp, cph) :
Jie(l,q],di=d

Pr

where ¢ is the maximum number of guessing against cph, d
is the plaintext with respect to cph, and M is the plaintext
domain.

Remark. Ideally, we want f(¢, g, |M]|) to be a negaligi-
ble function in ¢ as well. Unfortunately, we are only able
to construct a scheme that achieves f (¢, ¢, [IM|) = iy +e,
which is a non-negligible function in ¢ because | M| would
not be exponentially in ¢. The intuition behind ﬁ is
that A can launch a plaintext-guessing attack (in a way
similar to the online dictionary attack against passwords),
which is specific to our scheme that will be presented
later. Designing a VDSI scheme that achieves negligible
f(l,q,|M]) in ¢ is left as an open problem for future
research. Nevertheless, our definition is general enough to
accommodate that scenario.

Verifiability: This property means that any .4 not faithfully
executing the SetOp protocol is bound to be caught.

Definition 4: (verifiability) A VDSI scheme is verifiable
if
pm < Setup(1¢),

(pky,, skq) + KeyGen(pm),

(pky, skp) KeyGen(pm),

(Da, Db) — .AEnc,AuGen,SetOp,Verify(pka7 pkb)7

(Cassia) < Enc(pk,, Da),

(Cy,sip) <= Enc(pky, Dy),

au, + AuGen(skg, siq, pky),

aup + AuGen(skp, sip, pk,),

{(rsltg, proof,,), (rslty, proof,)} « AEncSetOp,Verify
(pkav alg, Da; Ca; Sia7 pkba aup, Dba va Sib) :

1 < Verify(skg, Siq, rsltq, proof ,)A

1 « Verify(sky, sip, rslty, proof) A

(Dec(skg, rslt,) # Dec(sky, rslty) Vv

Dec(skg, rslt,) # (Dy N Dy))

4 BUILDING-BLOCK: multi=accumulator

A cryptography accumulator is a primitive for a verifier
to examine the membership of an element with respect to
a (static or dynamic) data set. The examination is based
on some public data and membership proof provided by a
prover. In a single-accumulator scheme, each membership
proof allows a verifier to examine the membership of a
single element with respect to a data set. The idea of
single-accumulator has been studied extensively (see, e.g.,

< f(t,q,IM|)

b

[41]-[43]). In this paper, we introduce the idea of multi-
accumulator by which, each membership proof allows a
verifier to examine the membership of multiple elements
with respect to a data set. in the context of set intersection
operations, multi-accumulator allows Alice (Bob) to verify,
via a single examination, that D, N D, C D, (C Dy).

4.1

Suppose Alice has a data set acD, and outsources it to the
cloud (as the prover). Bob (as the verifier) has a dataset
acDy and queries the cloud for acD, N acDy,.

Definition 5: A multi-accumulator scheme has the fol-
lowing algorithms:

o (acSk,acPk) < acKeyGen(1¢): The trusted third
party runs this algorithm to generate a pair of public
and private key (acPk,acSk).

» acDig, < acGen(acPk,acD,): Alice runs this algo-
rithm to generate a digest acDig for acD,, which is
outsourced to the cloud. Similarly, Bob can generate
acDig,, with respect to acDs.

o (acRslt,acWit) < acProve(acPk, acDy, acD,):
Given the data set acD; from Bob, the cloud runs this
algorithm to generate acRslt = (acD, NacD,) with an
accompanying witness acWit for this fact.

o {0,1} <« acVerify(acPk,acDig,, acRslt, acWit,
acDig,): Bob runs this algorithm to examine if
acRslt = acDyNacD,, where acDig;, is the digest with
respect to acD, and acDig is the digest with respect
to acD,. If so, output 1; otherwise, output 0.

Function and Security Definitions

A multi-accumulator scheme is correct if

Vv acDg, acDy

(acSk, acPk) « acKeyGen(1¢),

acDig, < acGen(acPk, acDy),

acDig, < acGen(acPk,acD,),

(acRslt, acWit) «+ acProve(acPk, acDy, acD,) :

1 < acVerify(acPk, acDig,, acRslt, acWit, acDig,,)

Pr

A multi-accumulator scheme is secure if a malicious
probabilistic polynomial-time prover .4 can cheat the honest
<verifier without being caught. Let £ be a security parameter
and € be a negligible function in ¢. Formally, we have:
Definition 6: A multi-accumulator scheme is secure if

(acPk,acSk) < acKeyGen(1¢),
acDa %AacProve,acVerify(aCPk)’
acDig, < acGen(acSk,acD,),
(acDy, acRslt, acWit)
s AacProve,acVerify(acPk’aCDa) .
acDig;, < acGen(acPk, acDy;),
1« acVerify(acPk, acDig,, acRslt, acWit, acDig),
acRslt # acDy NacD,

4.2 Construction based on Bilinear Map

A multi-accumulator scheme can be based on a single-
accumulator scheme that supports both membership and
non-membership proofs, as follows: the cloud generates a
witness for each element of acD; showing the element is

a member or non-member of acD, and simply puts them
together as the witness for acRslt = acD,NacD,. However,
this straightforward approach is costly because both the
computational and communication complexities are linear
to |acDy|.

We present a multi-accumulator scheme, where the size
of the witness is constant (i.e., independent of |acDy)).
The proposed multi-accumulator scheme is extended from
the single-accumulator scheme due to [41], [43], while
adapting the basic idea underlying [44] as follows: Suppose
Alice’s data set is acD, = {dq.1,...,dqn}, Bob’s data set
isacDp = {dp1,...,dp.m}, and acRslt = acD,NacD,. We
can encode acD, via polynomial R(x) = [[;c,cp, (+1),
encode acD; via polynomial W (z) = [[,c.p,(* + 1),
encode the intersection set acRslt via polynomial T'(z) =
[I:cacrsi(® +), and encode the subset acD; — acRslt
via polynomial Q(z) = [;c(acp,—acrsit)(@ + t). These
polynomials satisfy the following: (i) T'(z)Q(x) = W (x),
(i) T(x) is a divisor of R(z), and (iil) Q(z) is co-prime to
R(z). For the special case acRslt = (), the three conditions
also hold since T'(z) = 1, Q(z) = W(2) = [[;cacp, (T +1)
and R(z) = [[,c,cp, (x +1). Therefore, based on this idea,
the multi-accumulator scheme allows the cloud to show
the correctness of the intersection set, which can be either
empty or non-empty. It can be constructed as follows:

. acKeyGen(l‘) Let (e,9,G,Gr,) + MapGen(1Y),

set a & Z, and acPk = (g%, g“ ,...,go‘q),acSk =
(), where ¢ is bounded by a polynomial in security
parameter £.

o acGen(acPk,acD,): Given Alice’s data set acD, =
{dap, - dan} € Z, where n < g, compute its
digest as

acDiga — gl_[:?=1(da,i+04).

o acProve(acPk, acDy,acD,): Given Bob’s data set
acDy = (dp,1,-- -, dpm) € Z,* where m < g, compute
acRslt = acDy N acD,, and generate a witness as
follows:

- LetT'(z) = Hte(acDa_acRslt) (x+t) and compute
gT'(@) by substituting = with a.

- Let Q(Q?) = Hte(acDbfacRslt)(‘rE + t) and
R(z)= [l;eap,(+ t), and find two poly-
nomials Q'(x), R'(z) such that Q(z)Q'(x)

+ R(z)R'(z) = 1 mod p by taking advan-

tage of gcd(()R()) = 1. Compute

(@) gQ' (@) gR (o)) by substituting 2 with a.

/

Set acRslt = acD, N acD, and acWit = (g%,
g@' (@) gR(e) gT'(e))

o acVerify(acPk, acDigy, acRslt, acWit, acDig): Given
acWit and acRslt from the prover, the verifier
proceeds as follows:

1) If acRslt #), compute g”7(® according to
T(x) = [[,cacrer(z +t). Otherwise, let T'(x) =
1 and g7(®) =g,

2) If e(g@@) ¢gT(@)) #£ e(acDig,,g), return 0;
otherwise, proceed to next step.

3) If e(gT(@), gT"(@)) £ e(acDig, g), return 0; oth-
erwise, proceed to next step.

4) 1f e(g?), g?'(@))e(acDig, g (@) #
return O; otherwise, return 1.

e(9,9),

Correctness of the multi-accumulator scheme can be ver-
ified easily. We describe its asymptotic efficiency in Table 2.
It is worth noting that (i) the witness generated by algorithm
acProve only consists of four group elements, meaning that
the complexity is independent of k = |acD, N acD,|, and
(ii) the computational complexity of algrorithm acVerify is
linear to k = |acDy NacD,|.

TABLE 2
Asymptotical efficiency of the multi-accumulator
scheme, where Exp denotes the exponentiation
operation, Pairing denotes the pairing operation,
n = |acD,|, m = |acDy| and k = |acD, N acDy|.

acGen acProve acVerify
Computation | nExp | (n+ m)Exp | kExp + 7Pairing
Output Size |G] 4]G] N/A

Now we prove its security.

Theorem 1: Assume that the g-SDH assumption holds,
the multi-accumulator scheme is secure with respect to
Definition 6.

Proof: We show that if there is an adversary 4 that can
break the multi-accumulator scheme with a non-negligible
probability, there is an algorithm B that can break the g-
SDH assumption with a non-negligible probability.

Suppose B is given a challenge instance (g%, g“z,

..,9°"), where o & Z,, and « is unknown. B simulates
the multi-accumulator scheme for A, according to the game
implied by Definition 6. For acD, = {d,1,...,dan}
with digest acDig, = glleca0a (“**) uppose A returns
acDy, acRslt and acWit = (@), @' (@) gR'(a) T"(e)),
If A breaks the security of the multi-accumulator
with non-negligible probability, then there exists acDy,
acRslt and acWit such that the followings hold: (i)
1 <« acVerify(acPk, acDig;, acRslt, acWit, acDig,) where
acDig, < acGen(acPk,acDy), and (i) acRslt # acD, N
acD,, and then B can break the ¢-SDH assumption by
presenting a tuple (¢, e(g, g)"/ (1)) where t’ € Z,,.

First, we claim that V¢ € acRslt, it holds that ¢ €
acDy. To prove this, suppose there exists ¢ € acRslt
but ¢’ ¢ acDj, meaning that polynomial [[,,p, (z + 1)
cannot be divided by (z + t'). Therefore, polynomial
[Iicacp, (z +t) can be represented (in polynomial-time)
as U(z)(z +t') + X where A # 0, and U(z) is a
polynomial of degree |acDy| — 1. On the other hand,
1 < acVerify(acPk, acDig;, acRslt, acWit, acDig,) implies
the following:

(Q(a) gHtEacRslt(a+t)) —e(aCD|gb’) (HtEacDb(a+t))

By substituting [, cp, (o + t) with U(a)(a +¢') + A in
the right-hand of the above equation, we have

e(g@@), gTlcana(att)y — g(gU(@att)+A

,9)-

This leads to:

e(gQ(a)’gHtEacRslt,t#t’(a+t)) e(gU(O‘H—ﬁ

,9)-

Therefore,
e o 7 (c — a)y L
6(979) att! = (e(gQ()’gHtEacRslt.t#t (X+t))e(g’g) U()))\ .

That is, if (i) A breaks the multi-accumulator scheme with
a non-negligible probability and (i) 3¢’ € acRslt such
that t' ¢ acDy, then B can break the ¢-SDH assumption
by outputting (', e(g,g)"/ @)} with a non-negligible
probability.

Second, we claim that V¢ € acRslt it holds that ¢ € acD,,.
This can be proved similarly.

Third, we claim that V¢ € (acD, — acRslt), it holds
that ¢ ¢ acD,. To prove this, suppose there exists ¢’ €
(acDp —acRslt) but t' € acD,. This means that there exists
polynomials

t£t

[1

t€ (acDp —acRslt)

Q' (x)(z +t) (x+1t)+

tA£t
R@)@+t) [@+ =1,
t€acD,

which means

t£t
@+t)+R () [[@+
t€acD,

t#£t’

[

te(acDy—acRslt)

Q' (x)
1
(x+t)

On the other hand, 1 <+ acVerify(acPk, acD;, acRslt,
acWit, acDig,,) implies:

e(ng(o‘) R gHtE(acDb—acRslt) (()4+t))e(gR/((’) , gntgacDa (O’J’_t))
=e(g,9)-

Therefore, we have

e(g“g)ﬁ — e(ng(a)7gHtE(acDb—acRs\t),t#t’(a+t)) .
e(gR/($)7gHt€acDa,t;£acDa(“+t)).
That is, if (i) A breaks the multi-accumulator scheme
with a non-negligible probability and (ii) there exists t’ €
(acDy — acRslt) such that ¢’ € acD,, then B can break the
¢-SDH assumption by outputting (', e(g, g)*/(@**)) with
a non-negligible probability.
To sum up, since V¢ € acRslt it holds that ¢ € acD,
and t € acD,, and V' € (acD, — acRslt) it holds that

t' ¢ acD,, we conclude that acRslt = acD, N acD,.
Therefore, the multi-accumulator scheme is secure with
respect to Definition 6. O

5 THE VDSI SCHEME

Basic Ideas. In order to attain a VDSI scheme, we need
to resolve two issues: (i) How can we enable the cloud to
compare the equality of two ciphertexts that are encrypted
under two different public keys pk, and pk,, respectively?

(ii)) How can we enable the cloud to generate a proof for
showing that it has faithfully executed the SetOp protocol,
ideally without using zero-knowledge proof for the sake of
better efficiency?

To resolve the above (i), we adopt the idea of proxy
re-encryption as follows: Alice can generate a re-key and
send it to the cloud, which can use the re-key to transform
ciphertext C, (encrypted under Alice’s public key pk,)
into an intermediate form, say 7. Similarly, the cloud can
transform ciphertext C, (encrypted under Bob’s public key
pk;) into the same kind fo intermediate form, denoted by
Ty. Then, the cloud can “compare” T, and 7} to determine
whether they correspond to the same plaintext or not.
More specifically, a data item d,; € D, is encrypted
using pk, = (g%, 97*) as (¢"*, 97", da,19” " T72)), where
71,72 pia Z,. Alice can give the re-key rk, = g’ /e, rather
than her private key sk, = (84,7) to the cloud, which now
can transform the ciphertext into

e(da igﬁa(TlJrTQ) , g)
e(grar, gfalva)e(grz, ghe)

Similarly, for data item dp ; € Dy, the cloud can transform
the corresponding ciphertext into e(dp i, 9). If dg; = db s,
then e(d,;,9) = (dp,i,9). While this method is sufficient
to allow the cloud to determine whether the two ciphertexts
correspond to the same plaintext or not, it does not achieve
the desired semantic security because the cloud can launch
the plaintext guess attack against elements d,; and dp ;.
We have tried without success to eliminate this attack while
preserving the other properties (especially the verifiability).
We therefore leave it as an open problem.

To resolve the above issue (ii), we observe that the
cloud, as illustrated above, can generate e(da,i, g) for each
do; € Dg and e(dp;,g) for each dy; € Dp. As a
result, the cloud can use the multi-accumulator scheme to
generate a proof as follows: For Bob, let e(d, ;,g)’s as
acD, and e(dy;, g)’s as acDy, the cloud applies acProve to
generate witness acWit, for showing acRslt = acD,NacD,
is the correct intersection set with respect to e(dy ., g)’s
and e(dy 4, g)’s. Given witness acWit,, digest acDig, of
e(dp.i,9)’s and digest acDig, of e(d, i, g), Bob can verify
the correctness of acRslt, which can be computed from
the returned intersection set of C, and C,. Similarly, the
cloud can generate witness acWit,, for Alice, who can then
conduct the same kind of verification. That is, by using the
multi-accumulator scheme in section 4, the cloud users can
verify the correctness of the intersection set, which contains
Zero or more common elements.

- e(da,iag)'

5.1 The Scheme

The scheme is a modular construction based on (i)
a secure multi-accumulator scheme Ac = (acKeyGen,
acGen, acProve, acVerify) such as the one described in
Section 4, and (ii) a secure digital signature scheme
Sig = (sigKeyGen, sigSign, sigVerify). The digital signature
scheme is used to authenticate the encryption form of the

accumulator digest, which assures that the cloud cannot ma-
nipulate it without being detected. Specifically, the scheme
is described as follows:

Setup(19): Given security parameter /, the trusted third
party runs (e, g, G,Gr,p) < MapGen(1%). Let H : G —
Z,, be a collision-resistant hash function. The trusted third
party also runs (acPk,acSk) < KeyGen(1¢) and sets the
public parameter as

pm = (acPk, e, p,g,G,Gr).

KeyGen(pm): Alice runs (sigPk,, sigSk,) —

sigKeyGen(19), selects B4, Va4 ¥id Z,, and sets
skq = (6aa7a75ig5ka)7

Similarly, Bob generates sk, = (55, s, sigSk;) and pk, =
(gﬁbv g’Yb’ SIngb)

Enc(pk,,D,): Alice, with D, = (dg1,...
d,i € G for 1 < ¢ < n, executes as follows:

pk, = (g°*, g7, sigPk,).

,dq.n) where

e Select d, o Ea (for a security purpose that will be
elaborated later).
e For 0 <1 < n, select r;1, 72 & Z,, and compute

cPha,z’ — (g"‘i27g’)/7"i1,Sigﬁ(""il‘f""m)).

e For 0 < i <mn,let T, = H(e(ds,,g)) and compute

acDig, <+ acGen(acPk,{Tp,...,T}}).

o Set C, = {cph,,...,cph, ,} and si, = acDig,.

Similarly, Bob, with Dy, = (dp.1, ..., dp,m) Where d; €
G for 1 < i < m, can obtain C;, = {cph,g,...,cph;,,}
and si, = acDig;,.
Dec(skg, rslt,): Given the cloud-generated ciphertext inter-
section set rslt, = {cph,, ;,...,cph, ;} where 1 < j, &k <
n, Alice decrypts ciphertexts cphw for j < i < k as
follows:

o = dusg™ 057 (g2 (o7

The decryption of rslt, is D,NDy = {ds j, ..., dar}. Note
that this algorithm can also be used to decrypt C, without
involving any delegated set operations. In this case, the
integrity of C, can be easily assured by acDig, since the
plaintexts of C, should be accumulated to acDig,,.

Similarly, Bob can decrypt the cloud-generated cipher-

text intersection set rslt, = {cph, ;,...,cph,;} where
1 <4,k <m to obtain D, N Dy,
AuGen(sk,, si,, pk,): Given private key sk,, Alice gen-
erates re-key rk, = (gﬂa/ 7a). Alice encrypts the secret
information si, using Bob’s public key pk, to obtain
ciphertext cphy = (g2, g7, acDig,g”("1*72)), where
ry,ry & Z,,. Then, Alice runs o, < sigSign(sigSk,, cphg)
to obtain a signature o, on message cphy. Finally, Alice
sets au, = (rkq, cphg, 04).

Similarly, Bob can generate au, = (rky, cph 4, o).
SetOp(C,, au,, Cp,au,): Given C, = {cpha,o, e
cph, .}, G = {cph,q,...,cphy .}, aua = (rka =
gPe/7a cphg,a,), and au, = (rky, = g%/ cph 4, 03), the
cloud executes as follows:

o Transform ciphertexts cphw- for 0 < i <n into

T R e(d(l,igﬁa(ril+ri2)7g)
@t ™ e(g'YaT'i,l’gBa/"/a)e(gT'iQ,g/Ba)
and compute T, = {H (T,,0), ..., H(Tun)}
o Transform ciphertexts cph,, ; for 1 <4 < m into

- e(da,iag)a

B e(db,igﬁb(r'i1+ri2)7g) B
Ty = e(grin, gh/m)e(gri, ghr) =e(dyi,9)

and compute Ty, = {H(Tp0), ..., H(Lpm)}

o Generate the intersection set rslt, and a proof with
respect to C, as follows: Run (acRslt,acWit,) <«
acProve(acPk, T,,Tp) and set

rslty = {cph, ;|H(Aq,:) € acRslt},
proof,, = (acWit,, cph 4, o).

o Generate the intersection set rslt, and a proof with
respect to C, as follows: Run (acRslt,acWit,) <
acProve(acPk, Ty, T,) and set

rslt, = {cphy, ;| H (Ap,;) € acRslt},
proof, = (acWity, cph, 0,).

Verify(sk,, siq, rslt,, proof ,): Given rslt, and proof ,, Alice
verifies that the cloud faithfully executed the SetOp proto-
col as follows:

e Verify the integrity of cphy by running
sigVerify(sigPk;,, cphy, op). If it outputs O, then
return 0; otherwise, proceed to next step.

e Decrypt cph 4 using private key sk, according to

acDig, = acDigbgﬁa(r1+r2))/(gr2)Ba <gfyar1)ﬂa/%.

o If rslt, is not empty, decrypt rslt, to obtain the plain-
texts and compute Y, = {e(dq,g)|cph, ; € rslt,}.
Otherwise, let Y, = (.

o Run acVerify(acPk, acDig,, Y,, acWit,, acDig,). If it
outputs 0, then return O; otherwise, return 1.

If the algorithm returns 1, Dec(sk,, rslt,) is called to obtain
D, N Dy.

Similarly, Bob can run the same algorithm to verify that
the cloud does not cheat.

Remark: why using d, o and d; (? Since Alice needs
to know the accumulator digest acDig, for the sake of ver-
ifying the correctness of rslt,, we need to assure that Alice
cannot use acDig, to infer useful information about Dy,.
This is achieved by “blending” the accumulator digest with
the randomness, namely the hash value of the randomly
selected dy o. This eliminates the usage of zero-knowledge
proofs [45], [46], while assuring no useful information is
leaked.

Remark. Our VDSI scheme only offers coarse-grained
access control in the following sense. Suppose Alice and
Bob allow the cloud to conduct the delegated set inter-
section operation on C, and C,, and Alice and Carlos
allow the cloud to conduct the delegated set intersection
operation on C, and C.. Then, the cloud is able to conduct
the set intersection operation on C, and C. without the

authorization from Bob and Carlos. It is a future work to
enforce fine-grained access control in VDSI.

5.2 Security Analysis

Correctness of the VDSI scheme can be examined easily.
In what follows, we focus on its security properties.

Theorem 2: Under the DL assumption, the scheme
achieves outsourced data secrecy (Definition 2).

Proof: The proof strategy is: we first show that the
VDSI scheme achieves outsourced data secrecy when the
challenge data set |Dg| = |D1| = 1, which is then used as
a “building-block” to show that the VDSI scheme achieves
outsourced data secrecy when |Dg| = |D1| = n.

First, we show that given |Dg| = |D1| = 1, the VDSI
scheme achieves outsourced data secrecy under the DL
assumption. To prove that, we show that if there is a
probabilistic polynomial-time adversary A that can break
outsourced data secrecy with a non-negligible probability,
then there is an algorithm 5 that can break the DL assump-
tion with a non-negligible probability.

Suppose B is given a DL instance (f,g,h, g™, f™,Q),
where f,g,Q pia G, ri,7r9 pia Z, and 71,72 are unknown
to 5. Now 5 can simulate the game as follows:

Setup: B treats f = ¢” and h = ¢” for some un-
known ~ and S, runs (acPk,acSk) < acKeyGen(1%)
and (sigPk,sigSk) < sigKeyGen(1%), sets pm =
(acPk,e,p, g,G,Gr) and pk = (sigPk, f,g,h) and sk =
(sigSk), and finally sends public key pk and public param-
eter pm to adversary A.

Phase 1: A can query the following oracle polynomially-
many (in ¢) times:
o Ognc(pk,D): Given D = {dy,...,d,}, B encrypts d;
as cph; = (g™2, f1, d;h(Tat72)) where 14,15 &
Zy, sets C = {cphy,...,cph,}, runs acDig <
acGen(acPk,{H (e(d;, g)),...,H(e(dn,g))}), and
returns C to A.

Challenge: A outputs two data sets (Dg = {do},D; =
{d1}) where |Dg| = |Di| = 1 and Dy # D;. B selects
AE {0,1}, and computes cph, = (g™, "2, d\Q). Let cph
be the ciphertext of a selected random value unkown to A,
C = {cph, cph,}, acDig < acGen(acPk, {H (e(dx,g))}).
B returns C to A.

Phase 2: A can query the oracle the same as Phase 1.

Guess: Lastly, A outputs). If A’ =)\, then the challenge
outputs h("1172) = Q; otherwise, it outputs h("1172) £ Q.

We can see that if Q = h("1172) then cph,, is the valid
ciphertext. In this case the probability of A outputting \ =
N s % + p. If @ is a random element from G, then the
probability of A outputting A =)\ is % Therefore, the
probability of B correctly guessing @ L plri+ra) g 13+
1+ 3) = &+ 4. That is, given the challenge data sets
IDo| = |D1] = 1, if A can break outsourced data secrecy
of the proposed scheme with non-negligible advantage p,
then there exists a challenger breaking the DL assumption

with non-negligible advantage 4.

In what follows we show that given arbitrary size of
data sets, e.g. |Dg|] = |D1|] = n (or m), the pro-
posed scheme achieves outsourced data secrecy. Given
the data sets Dy = (di,...,d,) and Dy = (di,...,d})
from adversary A, let C(*) denote the encryption form of
(di,....disd 4,d,), so that C(") is the encryption
form of Dy and C(? is the encryption form of D;. We
simulate the challenge phase with an additional adversary
A’ as follows:

o A’ selects an index i & [1,n] and presents (d;,d})

to B. The challenger returns cph; by encrypting d; if
A =0 and d otherwise.
o A" encrypts (di,...,d;—1) and (djq,...,d,

,d), and
sends (cphy,...,cph,) to A. A" outputs A that is
output by A.

We can see that .A’ sends to A the ciphertexts C(*) when
A = 0 and C"Y when A = 1. Now let’s consider the

probability of A" winning the security game, and have (we
denote as A(C() the guess of A with ciphertexts C(*))

Pr[A’outputs 0[]\ = 0] =

Pr[A'outputs 1|]A =1] =

Therefore, the probability of A’ winning the selective
security game is

1 1
3 Pr[Aoutputs 0|\ = 0] + 3 Pr[Aoutputs 1|\ = 1]

- 2 > PrlA(CY) = 0] + ; % PrlA(CU—D) =
_ % + % Pr[.A(C(”)) 0] + 1 Pr[A(C(O)) —1
= % + %(lPr[A(C(”)) 0] + = PrlA(C©) = 1])
< % +e

Here € is negligible probability of the advantage of
A’ winning the security game to guess \. Therefore, the
probability of A distinguishing C(*) and C("™) is

5 PHA(C) = 0]+ S PHLAC®) = 1) < 5 +ne

That is, the advantage of A distinguishing C(*) and C(™) is
at most ne, which is negligible with respect to £. Therefore,
we show that the proposed scheme achieves outsourced data
secrecy under the DL assumption. O

Theorem 3: Given that the bilinear map e is one-way, the
VDSI scheme achieves the function output secrecy property
(Definition 3).

Proof: We show that given a ciphertext and corre-
sponding re-key, any probabilistic polynomial-time adver-
sary A infers the plaintext with the probability ﬁl + € at
most if A has ¢ times to guess the plaintexts, where M is
the plaintext space.

—_

Setup: The challenger B runs pm ¢ Setup(1¢) and makes
pm publicly known.

Challenge: The challenger runs KeyGen(pm) to obtain
sk, — (sigSk,. Bar7a) and pk, = (sigPk, g%, g7)
for Alice, and runs KeyGen(pm) to obtain sk, =
(sigSky, By, Vb), pk, = (sigPk,, g%, g7) for Bob. B selects
two data sets Dy, Dy, elements of which are randomly
selected from the plaintext space M, then runs (C,, si,) <
Enc(pk,, D,) and (Cy,sip) < Enc(pk,, D), au, < AuGen
(ska,si, pky) and aup < AuGen(skp, sip, pk,), and returns
Ca, Cp, pky, pky, aug, auy to A.
Phase 1: A can query the following oracles polynomially
many times.
o Ognc(pk,, D%) : Given the data set D/, the challenger
runs (Cl,si,) + Enc(pk,,D,) and returns C/,,si,, to
A.
o Ognc(pky, Dy) : Given the data set Dj, the challenger
runs (C},si,) < Enc(pk,,Dj) and returns C},si; to
A.
o Overify (pkg, rslt,, proof ;) The challenger runs
Verify(skg, Siq, rsltq, proof) and returns the output to
A, where si, is the secret information with respect to
the data set D, .
o Overify (Pky, rslty, proof,,) The challenger runs
Verify(skp, sip, rsltp, proof,) and returns the output to
A, where siy is the secret information with respect to
the data set Dy, .

Guess: The challenger selects a ciphertext cph from C,UC,
uniformly at random. A has ¢ times to guess the keyword
with respect to cph.

We can see that given the ciphertexts C,, C;, and aug, aup,
A can only get the values e(dq;,g) for d,; € D, and
e(dp i, g) for dy; € Dy. Therefore, as the bilinear map e
is an one-way function, A inverts the plaintext from the
pairing value with negligible probability €. The only way
of inferring the plaintext with respect to cph is with brute-
force method by enumerating possible elements within the
plaintext space. Hence, given that A has ¢ times to guess
plaintexts, the probability of A outputting correct plaintext
is ﬁ +e. O

Theorem 4: Assume that Sig is an unforgeable signature
scheme, Ac is a secure multi-accumulator scheme and H
is a collision resistance hash function, the VDSI scheme
achieves the verifiability property (Definition 4).

Proof: We show that if there exists a probabilistic
polynomial-time adversary A breaking the verifiability of
the VDSI scheme (i.e. presenting an incorrect intersection
result and succeeding in the verification with non-negligible
probability), there exists an algorithm 5 breaking the as-
sumptions that Sig is a secure signature scheme, Ac is
a secure multi-accumulator scheme or H is a collision
resistant hash function. B proceeds as follows.

Setup: B runs pm < Setup(1‘) and makes pm pub-
lic known. It then runs KeyGen(pm) to obtain sk, =
(SigSk(uﬁay’Ya) and pka = (Sigpka7gﬁa7g’%)’ runs
KeyGen(pm) to obtain sk, = (sigSky, B, V), Pk, =
(sigPky, g%, g™), and returns pk,, pk;, to A.

Phase 1: A can query the following oracles polynomially
many times.

e Ognc(pky Do) : Given the data set D,, B runs
(Ca,siq) < Enc(pk,, D) and returns C,,si, to A.

o Ognc(pky, Dp) : Given the data set Dy, B runs (Cp,
sip) « Enc(pk;, Dy) and returns Cy, sij to A.

e OauGen(pky, Do, pky): B runs au, < AuGen(sk,, Siq,
pk,) and returns au, to A.

o Opugen(pky, Dy, pk,): B runs au, < AuGen(sky, sip,
pk,) and returns au, to A.

o Overify (pkg, rsltq, proof,) : B runs Verify(sk,, siq,
rslty, proof,) and returns the output to A, where si,
is the secret information with respect to the data set
D, .

o Overify (pky, rslty, proof,) : BB runs Verify(sky, sip, rslty,
proof,) and returns the output to A, where sij is the
secret information with respect to the data set Dy, .

Challenge: A selects Dy, Dy, of its choice, and sends them
to B. B runs (C,,si,) < Enc(pk,,D,) and (Cp, siy) «
Enc(pky, Dp), au, < AuGen (skg,siq, pk,) and au, <«
AuGen(skp, siy, pk,), and returns C,, siq, aug, Cp, Sip, auy, to
A, where si, = (acDig,) and si, = (acDig).

Phase 2: A can query the oracles the same as Phase 1.
Guess: A outputs (rslt,, proof,,), (rslt, proof,) to B.

This completes the simulation. First let us consider the
verification for (rslt,, proof,,). Note that cph, specifed
by proof, cannot be manipulated, otherwise it breaks the
unforgeability of Sig. B decrypts cph, to obtain acDig;,.
In addition, B decrypts Dec(skg, rslt,) , and obtains T, =
{H (e(d, ;,9))lcph, ; € rslt,} where d, ; is the plaintext
with respect to cph,; -

Suppose T = {H(e(ds;,9))|dai € Do} N
{H(e(dp,i,9))| dp,s € Dp}. If A breaks the verifiability
with (rslt,, proof ,), then at least one of the following cases
should hold:

Case 1:

1 < acVerify(acPk, acDig,, T,, acWit,, acDig;)

1 « acVerify(acPk, acDig,, T, acWit,, acDig;)

T,=T

3dy; # dagi, s-t.-H(e(d,, ;,9)) = H(e(da,i, 9))
Case 2:

1 < acVerify(acPk, acDig,, Ty, acWit,, acDig;)
1 « acVerify(acPk, acDig,, T, acWit,, acDig;)
T 4T,

If A breaks the verifiability with (rslt,, proof,) with
respect to case 1, then it breaks the assumption that
H is collision resistant. This is because d|; # da
leads to e(d;, ;,9)) # e(dai,g) while H(e(d,; g)) =
H(e(da ir9)).

If A breaks the verifiability with (rslt,, proof,) with
respect to case 2, then it breaks the security of the multi-
accumulator scheme by presenting acRslt = T, which is
different from 7'

Therefore, we prove that A breaks the verifiability of
VDSI scheme with respect to (rslt,, proof,) in a negligible
probability under the assumptions that Sig is unforge-
able, H is collision resistant and Ac is a secure multi-
accumulator scheme. Similarly, we can prove that A breaks
the verifiable of VDSI scheme with respect to (rslty, proof,)
in a negligible probability. O

TABLE 3
Asymptotic complexity for VDSI scheme, where Exp
denotes the exponentiation operation, Pairing denotes
the pairing operation, n = |acD,|, m = |acD,| and

k= |Da N Db|,
Algorithm Computational Complexity
Enc 3nExp + nPairing + acGen
Dec 2nExp
AuGen 4Exp + sigSign
SetOp 3(n + m)Pairing + 2acProve
Verify 2(k 4+ 1)Exp + kPairing + acVerify + sigVerify

6 PERFORMANCE EVALUATION
6.1 Asymptotic Complexity

Table 3 describes the asymptotic complexity of algorithms
in the VDSI scheme. While algorithm SetOp is more costly
when compared with the other algorithms, it is worth noting
that algorithm SetOp is executed by the cloud rather than
by the users.

Table 4 summarizes the communication and computa-
tional overhead incurred by the VDSI solution, which is
grouped into two phases: (i) data outsourcing phase, during
which the cloud users outsource their encrypted private
data sets to the cloud (i.e. Enc); (ii) set operation phase,
during which the cloud users attain the intersection set (i.e.
AuGen, SetOp and Verify). We compare the overhead with
its counterpart that is incurred by the straightforward solu-
tion, namely that Alice and Bob download their outsourced
encrypted data from the cloud, decrypt their data, and
then run a PSI protocol to jointly compute the intersection
set. From the perspective of cloud users, we observe that
the VDSI scheme outperforms the straightforward solution
in both communication and computational complexities.
Assume that the data sets have been stored in the cloud,
the VDSI scheme only incurs O(k) computational com-
plexity to obtain the intersection set (including the cost
for verification) and O(k) communication complexity for
returning the intersection set to the user, where k is the
size of intersection set. This means that the VDSI scheme
is optimal (up to a constant factor). In contrast, the straight-
forward solution incurs O(m + n) in computational and
communication overhead where m and n are the sizes of
the two data sets. The advantage of VDSI scheme is most
substantial when £ << m or k << n.

6.2 Performance Evaluation

Implementation We implemented the VDSI scheme in
JAVA based on the Java Pairing Based Cryptography library

250 10000

© Enc
B Dec

2000 8000

©- SetOp
& Verify
o AuGen

1500 6000

1000 4000

Time (second,
°

Time (second,
°

500 e o 2000 ®
° a K
8.8 .0 g 2
1024 32768 1024 32768
Set Size Set Size

(b) Performance of AuGen, SetOp
and Verify

(a) Performance of Enc and Dec

Fig. 2. Performance of VDSI, where Alice and Bob
outsource their data sets of the same size (i.e., m = n),
algorithms Enc, Dec, AuGen and Verify run on the
CLIENT MACHINE, and algorithm SetOp runs on the
SERVER MACHINE.

(GPBC) [47]. In our implementation, we instantiated the
bilinear map with Type A pairing (/ = 512), which
offers a level of security that is comparable to 1024-bit
DLOG [47]. We instantiated the signature scheme with the
DSA signature scheme provided by JDK1.6. We varied
the set size (m and n) from 2'° to 21°. The algorithms
run by the cloud users (i.e., Enc, Dec, AuGen and Verify)
were executed on a CLIENT MACHINE with Linux OS,
2.93GHz Intel Core Duo CPU (E7500), and 2GB RAM.
The algorithm run by the cloud (i.e., SetOp) was executed
on a SERVER MACHINE with Linux OS, 4 processors of
2.40GHz Intel Xeon CPU, and 8GB RAM.

Evaluation and result In our experiments we set the same
size for data sets owned by the two cloud users, i.e., m = n,
and set the size of intersection set k& = n/2. For algorithms
Enc, Dec, AuGen and Verify, we evaluated each algorithm’s
execution time for both cloud users and treat their average
execution time as the real execution time. Figure 2(a) plots
the execution time of Enc and Dec that are run by the
cloud users. We observe that the execution times for both
algorithms are almost linear to the size of data sets. We
also can see that the execution of Enc is more expensive
than that of Dec. However, Enc is executed only once
when the cloud user outsources data sets. Figure 2(b) shows
the execution time of SetOp (run by the cloud) and the
execution time of AuGen and Verify (run by the cloud
users). We observe that the execution time of AuGen and
Verify is much more smaller than that of the algorithm
SetOp. This suggests that cloud users should leverage the
cloud’s computation resources by delegating set intersection
operations.

Performance Comparison In order to understand the
benefit and limitation of the VDSI solution, we compare
it with the straightforward solution, where data sets are
encrypted by the algorithm Enc and Dec of the VDSI,
and the private set operations between two data users are
performed by the protocol (Java version) in [16], which is
the most efficient PSI protocol in the literature.

We ran the experiments on the same SERVER MACHINE
with Linux OS, 4 processors of 2.40GHz Intel Xeon CPU,
and 8GB RAM, with the data sets each consisting of 32768

TABLE 4
Asymptotic performance comparison for the VDSI scheme and the straightforward solution. We assume that the
straightforward solution adopting the encryption and decryption algorithms of the VDSI scheme. Here n is the
size of Alice’s data set, m is the size of Bob’s data set, k is the size of set intersection, and Comp(PSI) and
Comm(PSI) denotes the respective computation and communication complexity of the private set intersection
protocol. Note that Comp(PSI) and Comm(PSI) are both linear to the size of data sets (m + n) for the
state-of-the-art solution [16].

VDSI solution Straightforward solution
Phase Alice Bob Cloud Alice Bob Cloud
Data outsourcing Computation O(n) | O(m) N/A O(n) O(m) N/A
Communication | O(n) | O(m) | O(n + m) O(n) O(m) O(n +m)
Set operation Computation O(k) | O(k) | O(m+n) O(n)+Comp(PSl) | O(m)+Comp(PSI) N/A
Communication | O(k) | O(k) O(k) O(n) +Comm(PSI) [O(m) +Comm(PSI) | O(n + m)

elements. We vary the size of the intersection set as 25%,
50% and 75% of the size of the data set respectively,
and compare the communication and computation overhead
in the set operation phase (we did not compare the cost
of the data outsourcing phase because they are the same
for both solutions), which is shown in Figure 3. From
Figure 3(a) we observe that the computation overhead in the
VDSI solution decreases when the size of the intersection
set decreases. However, the computation overhead in the
straightforward solution remains the same regardless the
size of the intersection set. We also can see in Figure
3(b) that the communication overhead for the data users
in the VDSI solution is linear to the size of intersection set,
and is much less than that of the straightforward solution.
This advantage can become more substantial when the
size of the intersection size is far less than the size of
data set owned by the data users. We note that while the
straightforward solution can use other efficient encryption
schemes (e.g., symmetric encryption) to encrypt/decrypt
data sets to achieve higher efficiency, it cannot reduce
the communication cost that is linear to the size of data
set. Therefore, our VDSI solution is extremely suitable for
computing intersection set whose size is far less than that
of the data sets.

100 100

8000

[vDSI-Cloud
[_]vDsI-User
Cuser

6000

[C_JVDSI-User
Cuser

4000

Time (second)

2000

Communication overhead (MB)

o= | [

25% 50% 75%
The size of intersection set / the size of data set

0 25% 50% 75%
The size of intersection set / the size of data set

(a) Computation overhead. (b) Communication overhead.

Fig. 3. Performance comparison between our VDSI
solution and the straightforward solution, where each
data user outsourced the data set of 32768 elements.
We vary the size of the intersection set with 25%, 50%
and 75% of the size of the data set respectively. VDSI-
User and VDSI-Cloud denote the costs spent by the
cloud and each data user in the VDSI solution and
User represents the cost spent by each data user in
the straightforward solution.

6.3 Improvement with Parallelization

In our proposed scheme, the execution of Enc, Dec, SetOp
and Verify can be implemented more efficiently with paral-
lelization, because operations related to elements of data
sets are independent. In practice, we implemented the
algorithms by using multiple threads to compute inde-
pendent operations (e.g. encrypting elements of the data
sets, decrypting ciphertexts, and transforming ciphertexts
into a value of Gr). In the parallelization version, we
created 4 threads and ran the algorithms Enc, Dec, SetOp
and Verify on the SERVER MACHINE with Linux OS, 4
processors of 2.40GHz Intel Xeon CPU, and 8GB RAM. To
understand the efficiency gain of parallelization, we also ran
the algorithms without parallelization on the same SERVER
MACHINE. Figure 4 shows the performance comparison,
which indicates that the algorithms using parallelization are
about 2 times faster than their counterparts that do not use
parallelization. This means that our scheme can leverage
the multi-core architecture, and that our scheme is suitable
for delegating set intersection over outsourced large data
sets.

10000

"Enc

' Dec
 SetOp

+ Verify
'P-Enc
60007 | -o- . P-Dec
-e- P-SetOp

8000

fovenmo

Time (second)

Set Size

Fig. 4. Performance comparison for algorithms Enc,
Dec, AuGen and Verify executed on SERVER MACHINE.
The algorithms with prefix “P-” were implemented with
parallelization, and the algorithms without prefix were
implemented without parallelization.

7 CONCLUSION

We have introduced the novel notion of VDSI, which allows
two users to outsource to the cloud their encrypted data
sets as well as the set intersection operation on ciphertexts.
This is achieved without giving the cloud the capability to
decrypt the encrypted data, while enabling the users to hold
the misbehaving cloud accountable.

Our study brings interesting and challenging open prob-
lems for future research. In addition to the ones mentioned
in the paper (e.g., incorporating fine-grained access control,
if possible), we need to design the same kinds of solutions
for other set operations.

REFERENCES

[1] C. Gentry, “Computing arbitrary functions of encrypted data,”
Commun. ACM, vol. 53, no. 3, pp. 97-105, Mar. 2010. [Online].
Available: http://doi.acm.org/10.1145/1666420.1666444

[2] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully
homomorphic encryption without bootstrapping,” in Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference,
ser. ITCS *12. New York, NY, USA: ACM, 2012, pp. 309-325.
[Online]. Available: http://doi.acm.org/10.1145/2090236.2090262

[3] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic
encryption with polylog overhead,” in Proceedings of the 3l1st
Annual International Conference on Theory and Applications
of Cryptographic Techniques, ser. EUROCRYPT’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 465-482. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-29011-4_28

[4] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can homomor-
phic encryption be practical?” Cryptology ePrint Archive, Report
20117405, 2011, http://eprint.iacr.org/.

[5] P. Baldi, R. Baronio, E. D. Cristofaro, P. Gasti, and G. Tsudik,
“Countering gattaca: efficient and secure testing of fully-sequenced
human genomes,” in ACM Conference on Computer and Communi-
cations Security, 2011, pp. 691-702.

[6] E. D. Cristofaro and G. Tsudik, “Practical private set intersection
protocols with linear computational and bandwidth complexity,”
IACR Cryptology ePrint Archive, vol. 2009, p. 491, 2009.

[71 G. Mezzour, A. Perrig, V. Gligor, and P. Papadimitratos, “Privacy-
preserving relationship path discovery in social networks,” in Cryp-
tology and Network Security, ser. Lecture Notes in Computer Sci-
ence, vol. 5888. Springer Berlin Heidelberg, 2009, pp. 189-208.

[8] G. Ateniese, E. D. Cristofaro, and G. Tsudik, “(if) size matters: Size-
hiding private set intersection,” in Public Key Cryptography, 2011,
pp. 156-173.

[91 M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private
matching and set intersection,” in EUROCRYPT, 2004, pp. 1-19.

[10] L. Kissner and D. X. Song, “Privacy-preserving set operations,” in
CRYPTO, 2005, pp. 241-257.

[11] J. Camenisch and G. M. Zaverucha, “Private intersection of certified
sets,” in Financial Cryptography, 2009, pp. 108-127.

[12] C. Hazay and Y. Lindell, “Efficient protocols for set intersection
and pattern matching with security against malicious and covert
adversaries,” J. Cryptology, vol. 23, no. 3, pp. 422-456, 2010.

[13] D. Dachman-Soled, T. Malkin, M. R. 0001, and M. Yung, “Efficient
robust private set intersection.” in ACNS, 2009, pp. 125-142.

[14] C. Hazay and K. Nissim, “Efficient set operations in the presence
of malicious adversaries.” in Public Key Cryptography, 2010, pp.
312-331.

[15] S. Jarecki and X. Liu, “Efficient oblivious pseudorandom function
with applications to adaptive ot and secure computation of set
intersection.” in TCC, 2009, pp. 577-594.

[16] C. Dong, L. Chen, and Z. Wen, “When private set intersection
meets big data: An efficient and scalable protocol,” Cryptology ePrint
Archive, Report 2013/515, 2013, http://eprint.iacr.org/.

[17] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are
garbled circuits better than custom protocols?” 19th Network and
Distributed Security Symposium, 2012.

[18] E. D. Cristofaro and G. Tsudik, “Practical private set intersection
protocols with linear complexity.” in Financial Cryptography, 2010,
pp. 143-159.

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]
(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

F. Kerschbaum, “Collusion-resistant outsourcing of private set inter-
section.” in SAC, 2012, pp. 1451-1456.

——, “Outsourced private set intersection using homomorphic en-
cryption.” in ASIACCS, 2012, pp. 85-86.

S. Kamara, P. Mohassel, M. Raykova, and S. Sadeghian, “Server-
aided private set intersection: Scaling to million element sets,” 2013,
http://research.microsoft.com/pubs/194141/sapsi.pdf.

R. Canetti, O. Paneth, D. Papadopoulos, and N. Triandopoulos,
“Verifiable set operations over outsourced databases,” Cryptology
ePrint Archive, Report 2013/724, 2013, http://eprint.iacr.org/.

G. Yang, C. H. Tan, Q. Huang, and D. S. Wong, “Probabilistic public
key encryption with equality test.” in CT-RSA, 2010, pp. 119-131.
S. Canard, G. Fuchsbauer, A. Gouget, and F. Laguillaumie,
“Plaintext-checkable encryption,” in CT-RSA, 2012, pp. 332-348.
B. Wang, M. Li, S. Chow, and H. Li, “Computing encrypted
cloud data efficiently under multiple keys,” in Communications and
Network Security (CNS), 2013 IEEE Conference on, Oct 2013, pp.
504-513.

M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev,
“Message-locked encryption for lock-dependent messages,” in
CRYPTO (1), 2013, pp. 374-391.

Q. Tang, “Towards public key encryption scheme supporting equality
test with fine-grained authorization.” in ACISP, 2011, pp. 389—406.
B. Parno, M. Raykova, and V. Vaikuntanathan, “How to delegate
and verify in public: Verifiable computation from attribute-based
encryption,” in TCC, 2012, pp. 422-439.

S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating
computation: interactive proofs for muggles,” in STOC, 2008, pp.
113-122.

R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifi-
able computing: Outsourcing computation to untrusted workers,” in
CRYPTO, 2010, pp. 465-482.

K.-M. Chung, Y. T. Kalai, and S. P. Vadhan, “Improved delegation
of computation using fully homomorphic encryption,” in CRYPTO,
2010, pp. 483-501.

C. Papamanthou, E. Shi, and R. Tamassia, “Signatures of correct
computation,” in TCC, 2013, pp. 222-242.

S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of
computation over large datasets,” in CRYPTO, 2011, pp. 111-131.
D. Fiore and R. Gennaro, “Publicly verifiable delegation of
large polynomials and matrix computations, with applications,”
in Proceedings of the 2012 ACM conference on Computer
and communications security, ser. CCS ’12. New York, NY,
USA: ACM, 2012, pp. 501-512. [Online]. Available: http:
//doi.acm.org/10.1145/2382196.2382250

R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct nizks without pcps,” in EUROCRYPT, 2013,
pp. 626-645.

Q. Chai and G. Gong, “Verifiable symmetric searchable encryption
for semi-honest-but-curious cloud servers,” in ICC, 2012, pp. 917-
922.

B. Thompson, S. Haber, W. G. Horne, T. Sander, and D. Yao,
“Privacy-preserving computation and verification of aggregate
queries on outsourced databases,” in Privacy Enhancing Technolo-
gies, 2009, pp. 185-201.

L. Zhang, X.-Y. Li, Y. Liu, and T. Jung, “Verifiable private multi-
party computation: Ranging and ranking,” in INFOCOM, 2013, pp.
605-609.

D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,”
in In proceedings of CRYPTO 04, LNCS series. Springer-Verlag,
2004, pp. 41-55.

S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature
scheme secure against adaptive chosen-message attacks,” SIAM
J. Comput., vol. 17, no. 2, pp. 281-308, Apr. 1988. [Online].
Available: http://dx.doi.org/10.1137/0217017

L. Nguyen, “Accumulators from bilinear pairings and applications,”
in Proceedings of the 2005 international conference on Topics in
Cryptology, ser. CT-RSA’05. Berlin, Heidelberg: Springer-Verlag,
2005, pp. 275-292. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-30574-3_19

J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and
application to efficient revocation of anonymous credentials,”
in Proceedings of the 22nd Annual International Cryptology
Conference on Advances in Cryptology, ser. CRYPTO ’02.
London, UK, UK: Springer-Verlag, 2002, pp. 61-76. [Online].
Available: http://dl.acm.org/citation.cfm?id=646767.704437

[43]

[44]

[45]

[46]

[47]

I. Damgéard and N. Triandopoulos, “Supporting non-membership
proofs with bilinear-map accumulators,” IACR Cryptology ePrint
Archive, vol. 2008, p. 538, 2008.

C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Optimal ver-
ification of operations on dynamic sets,” Cryptology ePrint Archive,
Report 2010/455, 2010, http://eprint.iacr.org/.

U. Feige, A. Fiat, and A. Shamir, ‘“Zero-knowledge proofs of
identity,” J. Cryptol., vol. 1, no. 2, pp. 77-94, Aug. 1988. [Online].
Available: http://dx.doi.org/10.1007/BF02351717

T. Acar, S. S. M. Chow, and L. Nguyen, “Accumulators and u-prove
revocation,” in Financial Cryptography, 2013, pp. 189-196.

“The java pairing based cryptography library.
http://gas.dia.unisa.it/projects/jpbc/.”

