
A Forgery Attack against PANDA-s

Yu Sasaki and Lei Wang

NTT Secure Platform Laboratories, Japan
sasaki.yu@lab.ntt.co.jp

Nanyang Technological University, Singapore
Wang.Lei@ntu.edu.sg

Abstract. PANDA is an authenticated encryption scheme designed by Ye
et al., and submitted to the CAESAR competition. The designers claim
that PANDA-s, which is one of the designs of the PANDA-family, provides
128-bit security in the nonce misuse model. In this note, we describe our
forgery attack against PANDA-s. Our attack works in the nonce misuse
model. It exploits the fact that the message processing function and
the finalization function are identical, and thus a variant of the length-
extension attack can be applied. We can find a tag for a pre-specified
formatted message with 2 encryption oracle calls, 264 computational cost,
and negligible memory.

Key words: PANDA, Forgery Attack, Nonce Misuse

1 Specification of PANDA-s

PANDA-s is one of the designs of the PANDA-family designed by Ye et al. [1].
PANDA-s encryption function takes a 128-bit key K, a 128-bit nonce N , variable
length associated data A, and variable length plaintext P as input, and outputs
the corresponding ciphertext C and a 128-bit tag T .

The encryption function consists of 4 parts: initialization, processing asso-
ciated data, processing plaintext, and finalization, which are computed in this
order. The computation structure is illustrated in Fig. 1 and Fig. 2, where the
bit size of each arrow line in those figures is 64 bits. 64-bit values are called
“blocks” in PANDA.

Initialization. In the initialization part, a 128-bit key K and a 128-bit nonce
N are mixed and expanded to 448-bit internal state. We omit the details due to
the irrelevance to our attack.

Processing Associated Data. The associated data A is first padded to a
multiple of 64 bits (A0, A1, . . . , As−1), and then processed block by block with
the round function RF . The round function RF of PANDA-s generally takes an
8-block (or 512-bit) value as input, of which 448 bits are for the previous internal
state value and 64 bits are for processing other data. The output of RF is either

K

N

initialization

A
0

A
s-1

RF
7

RF
7

State after A

processing
associated data

Fig. 1. Initialization and Asso-
ciated Data Processing

0

RF
8

P
0

C
0

RF
8

P
1

C
1

RF
8

P
m-1

C
m-1

RF
8

State after A

Len
0

RF
7

Len
13

RF
7

T

finalizationprocessing plaintext

Fig. 2. Plaintext Processing and Finalization

a 7-block value (updated internal state) or a 8-block value (updated internal
state and 1-block key stream). We denote the round function by RF7 when the
output size is 7 blocks, and by RF8 when the output size is 8 blocks.

In RF7, a 7-block internal state value is split into seven 1-block variable
w, x, y, z, s(0), s(1), s(2). Let m be another 1-block input value. Then, the updated
state value w′, x′, y′, z′, s′(0), s′(1), s′(2) are computed as follows, which is also
illustrated in Fig. 3.

w′ ← SubNibbles(w ⊕ x⊕m)
x′ ← SubNibbles(x⊕ y)
y′ ← SubNibbles(y ⊕ z)

z′ ← SubNibbles(s(0))

(s′(0), s′(1), s′(2)) ← LinearTrans(s(0) ⊕ w, s(1), s(2)),

where SubNibbles applies a 4-bit S-box and LinearTrans applies a linear trans-
formation. We omit the details due to the irrelevance to our attack.

Finally, by taking the 7-block state value after the initialization, state, as
input, the associated data is processed by computing RF7(state,Ai) for i =
0, 1, . . . , s− 1.

Processing Plaintext. The plaintext P is first padded to a multiple of 64 bits
(P0, P1, . . . , Pm−1), and then processed block by block with the round function
RF8. RF8 is almost the same as RF7. The only difference is that it produces
another 1-block output value r by r ← x ⊕ x′. The computation of RF8 is
illustrated in Fig. 4. The additional 1-block output value r is used as a key
stream. Namely, the ciphertext block Ci for the plaintext block Pi is computed
by Ci ← Pi⊕r. Finally, by taking the 7-block state value after the associated data

w x y z S(0) S(1) S(2)

m

SN SN SN SN LT

w' x' y' z' S’(0) S’(1) S’(2)

Fig. 3. Round function with 7-block output
SN and LT stand for SubNibbles and Linear Transform, respectively.

w x y z S(0) S(1) S(2)

m

SN SN SN SN LT

w' x' y' z' S’(0) S’(1) S’(2)

r

Fig. 4. Round function with 8-block output

processing, state, as input, the plaintext is processed by computing as follows:

(state, r0) ← RF8(state, 0),
for i = 0 to m− 1

Ci ← Pi ⊕ ri,

(state, ri+1) ← RF8(state, Pi).

Note that after processing the last message block Pm−1, the extra key stream
rm is discarded.

Finalization. In the finalization, the state is updated by using the bit length
of the associated data |A| and the bit length of the plaintext |P |. Let tempti
be |A| when i is even and |P | when i is odd. In short, it consists of 14-round
state update by using tempti and the tag generation. In details, the finalization
computes the following operation.

for i = 0 to 13
state ← RF7(state, tempti),

T ← w ⊕ y‖x⊕ z.

Claimed Security of PANDA-s. The claimed security of PANDA-s is given in
Table 1. In particular, 128-bit security is claimed for the integrity in the nonce-
misuse model.

Table 1. Bits of security goals in PANDA-s[1]

Goal Nonce-respecting Model Nonce-repeating Model

confidentiality for the plaintext 128 /

integrity for the plaintext 128 128

integrity for the associated data 128 128

integrity for the public message number 128 128

2 Forgery Attack against PANDA-s

In this section, we show the forgery attacks against PANDA-s.

2.1 Length Extension Property of PANDA-s

The core of our observation is as follows.

1. The internal state is update by RF7 and RF8 in the same way, i.e. RF7(state,m)
and RF8(state,m) produce the same state value.

2. The 1-block input values in the finalization, |A| or |P |, are public, and thus
known to the adversary.

3. Let α be a concatenation of any associated data and any plaintext. Also
let `(α) be the 14-block value that will be processed in the finalization part
for the input α, i.e. `(α) = |A|, |P |, . . . , |A|, |P |. By querying α to the en-
cryption oracle to obtain the corresponding tag T1, the adversary can obtain
significant information of the internal state value for the extended message
α‖`(α).

2.2 Message Structure

Our attack requires only 2 encryption oracle calls under the same nonce N
and the same associated data A. The queried messages A‖P including both
associated data A and plaintext P must satisfy the following form.

M1 ← α,

M2 ← α‖`(α)‖β‖`(α‖`(α)‖β)‖γ,

where α, and β can be any string including Null, and γ can be any string as long
as its length is longer than or equal to 2 blocks. Then the tag for the message
α‖`(α)‖β is forged.

As you can see, except for 14 blocks of `(α) and 14 blocks of
(
α‖`(α)‖β)

in
total 224 bytes, any message can be the target of our attack.

2.3 Attack Details

Recovering 256-bit Internal State After Processing α‖`(α). The adver-
sary first queries the message M1 = α and obtains the corresponding tag T1.
This reveals some information about the internal state x, y, z, w after processing
α‖`(α). The adversary later appends the message block β = β0‖β1‖ · · · . Let the
internal state value after processing α‖`(α) be (wβ0 , xβ0 , yβ0 , zβ0 , S

(0)
β0

, S
(1)
β0

, S
(2)
β0

).
The obtained tag T1 indicates that the internal state value satisfy the following
equation.

wβ0 ⊕ yβ0 = TL
1 , (1)

xβ0 ⊕ zβ0 = TR
1 , (2)

where TL
1 and TR

1 are 64-bit values satisfying TL
1 ‖TR

1 = T1.
Then, the adversary queries the message M2 = α‖`(α)‖β‖`(α‖`(α)‖β)‖γ,

and obtains the corresponding ciphertext blocks and tag T2. The computation to
process β0 is shown in Fig. 5. As a result of RF8(wβ0 , xβ0 , yβ0 , zβ0 , S

(0)
β0

, S
(1)
β0

, S
(2)
β0

, β0),

��� ���
�

��

SN SN SN SN LT

���

��

SN SN SN SN LT

��

��

SN SN SN SN LT

���

��� ��� ��� ���
�
���
�

��
 ��

�

��
 ��
 ��
 ��

�
��

�

��� ���
�

��� ��� ��� ���
�
���
�

��� ���
�

��� ��� ��� ���
�
���
�

Fig. 5. 256-bit internal state recovery

the adversary obtains the ciphertext block Cβ0 , which is computed by rβ0 ⊕Pβ0 .
Because plaintext value is known to the adversary, the key stream rβ0 can be
computed as Pβ0 ⊕Cβ0 . From the computation structure of the key stream, the

adversary obtains the equation

rβ0 = xβ0 ⊕ SubNibbles(xβ0 ⊕ yβ0). (3)

Here, the adversary guesses the 64-bit value of xβ0 . For each guess, the cor-
responding zβ0 is obtained from Eq. (2), the corresponding yβ0 is obtained
from Eq. (3), and the corresponding wβ0 is obtained from Eq. (1). Hence,
for each guess of xβ0 , 256-bit internal state value (wβ0 , xβ0 , yβ0 , zβ0) is deter-
mined. Moreover, the knowledge of (wβ0 , xβ0 , yβ0 , zβ0) leads to the knowledge of
wβ1 , xβ1 , yβ1 , wβ2 , xβ2 , and rβ1 . These give another 64-bit relation

rβ1 = xβ1 ⊕ SubNibbles(xβ1 ⊕ yβ1), (4)

and only 1 guess of xβ0 out of 264 possibilities will satisfy this equation. There-
fore, the 256-bit internal state value (wβ0 , xβ0 , yβ0 , zβ0) is uniquely determined.
In Fig. 5, the focused variables so far are stressed by bold circles.

Recovering w, x, y, z for All Rounds. With the knowledge of (wβ0 , xβ0 , yβ0 , zβ0),
the adversary aims to keep revealing the 256-bit state w, x, y, z for all rounds.
This can be done with negligible cost.

In Fig. 5, to recover the 64-bit value of zβ1 , the adversary uses the key
stream value after 1 round. Namely, the adversary focuses on the following 64-
bit relation.

rβ2 = xβ2 ⊕ SubNibbles(xβ2 ⊕ yβ2),

= xβ2 ⊕ SubNibbles
(
xβ2 ⊕ SubNibbles(yβ1 ⊕ zβ1)

)
.

The above equation is converted to

zβ1 = yβ1 ⊕ SubNibbles−1
(
SubNibbles−1(rβ2 ⊕ xβ2)⊕ xβ2

)
. (5)

Then, zβ1 is recovered only with 1 computational cost. In Fig. 5, the focused
variables to recover zβ1 are stress by bold lines. Moreover, by iterating the same
procedure for the subsequent blocks, the adversary can recover (wβi , xβi , yβi , zβi)
for any i as long as the key stream for the next block, rβi+1 , is obtained.

Forging Tag. Finally, the tag for the message α‖`(α)‖β is forged. Due to
the message structure of M2, the adversary can recover the internal state after
α‖`(α)‖β‖`(α‖`(α)‖β)

is processed. Note that the length of γ must be at least 2
block so that the internal state after the last block of A‖α‖`(α)‖β‖`(α‖`(α)‖β)
can be recovered. Then, the tag for α‖`(α)‖β is easily computed by computing
w⊕y‖x⊕z of this internal state, where we note that the nonce and the associated
data are the same with previous two queries M1 and M2.

Complexity Evaluation. The attack requires 2 encryption oracle calls under
the same key and nonce. To recover the 256-bit internal state (wβ0 , xβ0 , yβ0 , zβ0),
264 computational cost is required. Then, all the remaining cost is 1. The memory
requirement is to store the all ciphertext blocks and the tag, which is very small.

3 Concluding Remarks

In this note, we proposed a forger attack against PANDA-s. Our attack can forge
a tag of a message satisfying the pre-specified format with 2 encryption oracle
calls, 264 computational cost, and negligible memory. The attack works in the
nonce-misuse model. The attack clearly breaks the security claim of PANDA-s,
i.e. 128-bit security for integrity in the nonce-misuse model.

References

1. Dingfeng Ye, Peng Wang, Lei Hu, Liping Wang, Yonghong Xie, Siwei Sun, and Ping
Wang. PANDA v1. Submitted to the CAESAR competition, March 2014.

