
A Fast Modular Reduction Method

Zhengjun Cao1,∗, Ruizhong Wei2, Xiaodong Lin3

1Department of Mathematics, Shanghai University, China. ∗caozhj@shu.edu.cn

2Department of Computer Science, Lakehead University, Canada.

3Business and Information Technology, University of Ontario Institute of Technology.

Abstract

We put forth a lookup-table-based modular reduction method which partitions the

binary string of an integer to be reduced into blocks according to its runs. Its complexity

depends on the amount of runs in the binary string. We show that the new reduction is

almost twice as fast as the popular Barrett’s reduction, and provide a thorough complexity

analysis of the method.

Keywords. Barrett’s reduction; Montgomery’s reduction; lookup-table-based reduc-

tion; run-length-based reduction.

1 Introduction

The performance of public key cryptographic schemes depends heavily on the speed of mod-

ular reduction. Among current modular reduction algorithms, Barrett’s reduction and Mon-

togomery’s reduction are two popular algorithms. Montgomery’s reduction [9] is not efficient

for a single modular multiplication, but can be used effectively in computations where many

multiplications are performed for given inputs. Barrett’s reduction [1] is applicable when

many reductions are performed with a single modulus. Both two methods are similar in that

expensive divisions in classical reduction are replaced by less-expensive multiplications.

In 1993, A. Bosselaers et al [2] reported that classical reduction, Barrett’s reduction, and

Montgomery’s reduction have their specific behaviors resulting in a specific field of application.

In 1998, the authors [13] reported that the difference between Montgomery’s reduction and

Barrett’s reduction was negligible in their implementation on an Intel Pentium Pro of field

arithmetic in Fp for a 192-bit prime p. In 2011, V. Dupaquis and A. Venelli [4] modified

Barrett’s reduction and Montgomery’s reduction. Their technique allows the use of redundant

modular arithmetic. The proposed redundant Barrett’s reduction algorithm can be used to

strengthen the differential side-channel resistance of asymmetric cryptosystems. In 2013, Cao

and Wu [3] proved that the base b ≥ 3 in Barrett’s reduction can be replaced by the usual

1

base 2. The improvement solves the data expansion problem in Barrett’s reduction so as to

give a little of cost saving.

In order to further speed up modular reduction, lookup table method has been adopted

by several researchers [6–8, 10–12]. If the size of a pre-computed table is manageable, the

method is very effective. These modular reductions partition the binary string of an integer

to be reduced into fixed-length blocks such as 32 bits or 64 bits. In 1997, C. Lim et al

[8] experimented on Montgomery’s reduction, classical reduction, Barrett’s reduction and

some reduction algorithms using lookup table. It reported [8] that their lookup-table-based

reductions run almost two to three times faster on a workstation than Montgomery’s reduction.

Although the experimental results are interesting, they did not present a complexity analysis

of these reductions.

The principles behind the existing reduction algorithms can be summarized as follows.

• Division. For example, the classical reduction adopts this principle.

• Multiplication. Barrett’s reduction and Montgomery’s reduction adopt this principle.

• Addition [look up table according to fixed-length blocks]. All current reductions using

lookup table take fixed-length blocks such as 32 bits or 64 bits.

The last principle, intuitively, is more applicable because it eliminates multiplications although

it requires a moderate size table and a number of additions.

In this paper, we put forth a new reduction method based on the following principle:

addition [look up table according to runs]. Unlike the current lookup-table-based method,

the new method partitions the binary string of an integer to be reduced into blocks according

to its runs. Its performance depends essentially on the amount of runs or 1’s in the left

segment of the binary string. The new method needs less additions in comparison to the

current lookup-table-based method. We will provide a thorough complexity analysis of the

method.

2 Related reduction methods

2.1 Montgomery’s reduction

Let R > p with gcd(R, p) = 1. The method produces zR−1 mod p for an input z < pR. If

p′ = −p−1 mod R, then c = zR−1 mod p can be obtained via

c← (z + (zp′ mod R)p)/R, if c ≥ p then c← c− p.

Given x ∈ [0, p), let x̃ = xR mod p. Define Mont(x̃, ỹ) = (x̃ỹ)R−1 mod p = (xy)R mod p.

The transformations

x 7→ x̃ = xR mod p, and x̃ 7→ x̃R−1 mod p = x

2

are performed only once when they are used as a part of a larger calculation such as modular

exponentiation.

2.2 Barrett’s reduction

The following description of Barrett’s reduction comes from [5]. The algorithm first selects a

suitable base b (e.g., b = 2L where L is near the word size of the processor). It then calculates

µ = ⌊ b2kp ⌋, where k = ⌊logb p⌋+ 1. Suppose 0 ≤ z < b2k. Let q = ⌊ zp⌋, r = zmod p = z − q p.
Since

z

p
=

z

bk−1
· b

2k

p
· 1

bk+1

we have

0 ≤ q̂ =
⌊⌊ z

bk−1 ⌋ · µ
bk+1

⌋
≤

⌊
z

p

⌋
= q.

If µ is computed in advance, then the main cost of calculating q̂ consists of one multiplication

and two types of bit operations for ⌊ z
bk−1 ⌋ and ⌊ y

bk+1 ⌋, where y = ⌊ z
bk−1 ⌋ · µ. Set α = z

bk−1 −⌊
z

bk−1

⌋
, β = b2k

p −
⌊
b2k

p

⌋
. Then 0 ≤ α, β < 1 and

q =

(⌊
z

bk−1

⌋
+ α

) (⌊
b2k

p

⌋
+ β

)
bk+1

 ≤
⌊

z
bk−1

⌋
· µ

bk+1
+

⌊
z

bk−1

⌋
+

⌊
b2k

p

⌋
+ 1

bk+1


Since 0 ≤ z < b2k and bk−1 ≤ p < bk, we have⌊ z

bk−1

⌋
+

⌊
b2k

p

⌋
+ 1 ≤ (bk+1 − 1) + bk+1 + 1 = 2bk+1

q ≤

⌊⌊
z

bk−1

⌋
· µ

bk+1
+ 2

⌋
= q̂ + 2.

Therefore, we obtain q̂ ≤ q ≤ q̂+2. Set r̂ = z− q̂ p. We get r = r̂+ (q̂− q)p. That is, at most

two subtractions are required to obtain r using r̂.

2.3 Current lookup-table-based modular reductions

Suppose that z and n are two integers, bk−1 ≤ n < bk, 0 ≤ z < b2k where b = 2L is a suitable

base. To compute z mod n, the usual lookup-table based reduction method computes

z =

k−1∑
j=0

zjb
j +

k−1∑
i=0

zk+iA[i] mod n, (1)

where 0 ≤ zj < b, j = 0, · · · , 2k − 1, A[i] = bk+i mod n (0 ≤ i ≤ k − 1) are computed and

stored in advance. For example, let L = 32 which equals to the bit-length of a word. In 1997,

3

C. Lim et al [8] suggested taking b = 232 and storing the following values:

na[j] = jbk mod n for 0 ≤ j < 128, nb[j] = j27bk mod n for 0 ≤ j < 128,

nc[j] = j214bk mod n for 0 ≤ j < 128, nd[j] = j221bk mod n for 0 ≤ j < 128,

ne[j] = j228bk mod n for 0 ≤ j < 102.

They experimented on Montgomery’s reduction, classical reduction, Barrett reduction and

some lookup-table based reductions. It reported [8] that: (1) modular reduction takes consid-

erably more time than multiplication; (2) Montgomery’s algorithm and the combined lookup-

table-based reduction give almost the same performance; (3) the lookup-table-based reduc-

tions L224, L624 and L1696 [see Ref. 8] run almost two to three times faster on a workstation

than Montgomery’s reduction. However, this method does not give much improvement on a

PC.

The experimental results in Ref.[8] are interesting. But they have not provided a com-

plexity analysis of these reductions. Even worse, they have not specified these methods. For

example, in L624 method [see Ref. 8], if Bitlength(n) = 1024 then the formula becomes

1023∑
t=0

ntb
t +

31∑
i=0

(na[ji1] + nb[ji2] + nc[ji3] + nd[ji4] + ne[ji5]) 2
32i mod n.

It seems wrong to store ne[j] = j228bk mod n for 0 ≤ j < 102. In our opinion, the amount

of pre-computed values should be 4 × 28 where the base is 32, not 624, if we not count the

parity bit in each byte as usual. By the way, according to their presentation the amount of

stored values is 128+128+128+128+102=614, not 624.

3 Basic lookup-table-based modular reduction

The idea behind the basic lookup-table-based modular reduction is naive, but useful in some

cases. We now describe it as follows.

3.1 Pre-computed table

Given a positive integer n, choose an integer k such that 2k−1 < n < 2k. The pre-computed

table are constructed as follows (see Table 1).

Table 1: Pre-computation table T for a modular n

ℓ 2k − 1 2k − 2 . . . k

r[ℓ] 22k−1 mod n 22k−2 mod n . . . 2k mod n

We specify that |r[ℓ]| ≤ ⌊n/2⌋, ℓ = k, · · · , 2k − 1. The size of the pre-computation table T
can be further reduced because r[i+ 1] = 2 r[i] for some indexes i.

4

3.2 Basic method (Method-1)

Denote the binary string of a positive integer z as Binary(z). Suppose that 0 ≤ z < 22k. We

directly set the base b = 2 in Eq.(1). It follows that

z ≡
k−1∑
i=0

zk+i r[k + i] +

k−1∑
j=0

zj 2
j mod n, (2)

where zj ∈ {0, 1}, j = 0, · · · , 2k − 1, r[k + i] = 2k+i mod n (0 ≤ i ≤ k − 1).

Example 1. n = 97 = (1100001)2, k = 7 (bit-length), z = 3135 = (110000111111)2, l =

12. Look up a pre-computed table for the values r[11] = 211 mod n = 11 and r[10] = 210

mod n = 54. It gives

z = 3135 ≡ r[11] + r[10] + (111111)2 = 11 + 54 + 63 ≡ 31 mod 97.

Algorithm-1

INPUT: n, k = BitLength(n), 0 ≤ z < 22k, and T = {r[2k − 1], r[2k − 2], · · · , r[k]}.

OUTPUT: zmodn.

1. If z < n, then return(z).

2. If BitLength(z) = k, then return (z − n).

3. s← Binary(z), r ← 0. For i from BitLength(z)− 1 downto k do

If s[i] = 1, r ← r + r[i].

4. r ← r +
∑k−1

j=0 s[j]2
j .

5. While r ≥ n do: r ← r − n.

6. While r < 0 do: r ← r + n.

7. Return (r).

The number of additions in this method depends on the amount of 1’s in the left segment

of Binary(z). On average, there are about ⌊k/2⌋ 1’s in the left segment if the bit-length of z

is 2k. That means it requires ⌊k/2⌋ additions of k-bit integers to compute r =
∑k−1

j=0 zj2
j +∑k−1

i=0 zk+ir[k+ i]. It is expected that the absolute value |r| < kn
4 , since |r[ℓ]| ≤ ⌊n/2⌋. Hence,

it requires ⌊k/4⌋ subtractions to compute r mod n. In total, Method-1 requires the cost of

performing ⌊3k4 ⌋ additions of k-bit integers.

In algorithm-1, addition happened for all values r[k + i] corresponding to zk+i = 1 (0 ≤
i ≤ k − 1). In the worst case,

zk = zk+1 = · · · = z2k−1 = 1,

it has to look up the pre-computed table and do addition k times. Clearly, Method-1 is

inappropriate for this case.

5

4 Run-length-based modular reduction

The Method-1 is not good for the worst case when there is only one run of 1’s in the left

segment of Binary(z) (i.e., all the positions are 1’s). We now introduce a new reduction

method based on lookup table which is much better for the above case.

4.1 The idea behind the new modular reduction

Given two positive integers k, n, where 2k−1 < n < 2k, and a positive integer z satisfying

0 ≤ z < 22k, set ℓ0 = ⌊log2 z⌋+ 1. Flipping all bits of z, we obtain the integer z1 such that

z = (2ℓ0 − 1)− z1.

Set ℓ1 = ⌊log2 z1⌋+ 1. Flipping all bits of z1, we obtain the integer z2 such that

z = (2ℓ0 − 1)− (2ℓ1 − 1) + z2.

By the same procedure, we shall get

z = (2ℓ0 − 1)− (2ℓ1 − 1) + (2ℓ2 − 1) + · · ·+ (−1)j−1(2ℓj−1 − 1) + (−1)jz′, (3)

where ℓj−1 > k ≥ ℓj , ℓj is the bit-length of z′. Clearly,

ℓ0 > ℓ1 > · · · > ℓj . (4)

We then look up the pre-computed table for values r[ℓ0], · · · , r[ℓj−1] using the indexes ℓ0, · · · , ℓj−1

and compute

r = (r[ℓ0]− 1)− (r[ℓ1]− 1) + (r[ℓ2]− 1) + · · ·+ (−1)j−1(r[ℓj−1]− 1) + (−1)jz′ (5)

Thus, z ≡ r mod n.

The following example explains vividly the idea behind this method.

Example 2. n = 97 = (1100001)2, k = 7 (bit-length), z = 3135 = (110000111111)2, ℓ0 =

12.

Table 2: An example for Method-2

n = 97→ 1100001 k=7

z = 3135→ 110000111111 ℓ0 = 12 r[ℓ0] = 2ℓ0 ≡ 22 mod 97

flip
−−−− 99K 1111000000 ℓ1 = 10 r[ℓ1] = 2ℓ1 ≡ 54 mod 97

flip
−−−− 99K 111111 ℓ2 = 6 (< k) z′ = (111111)2

(r[ℓ0]− 1)− (r[ℓ1]− 1) + (111111)2 = 31

6

4.2 Description of the new modular reduction (Method-2)

To obtain indexes ℓ0, · · · , ℓj−1 and z′ in Eq.(5), the above procedure requires to flip all bits

of strings. In fact, these indexes and z′ depend essentially on the runs in the left segment of

Binary(z). Here a run means a maximal substring whose bit positions all contain the same

digit 0 or 1. We can obtain them by counting the length of each run in the left segment.

Suppose that

Binary(z) = α0||α1|| · · · ||αj−1||α′
j , (6)

where the notation a||bmeans that string a is concatenated with string b, and αi (0 ≤ i ≤ j−1)
are runs with lengths di respectively, α

′
j is the remaining string. We have

ℓ1 = ℓ0 − d0, · · · , ℓj−1 = ℓj−2 − dj−2, ℓj = ℓj−1 − dj−1 (7)

where ℓj ≤ k < ℓj−1. Note that the length of string α′
j is ℓj . Hence, we get

z′ =

 (α′
j)2, j is even,

2ℓj − 1− (α′
j)2, j is odd,

Thus,

z ≡

 r[ℓ0]− r[ℓ1] + r[ℓ2] + · · ·+ (−1)j−1r[ℓj−1] + (α′
j)2, j is even, (8)

r[ℓ0]− r[ℓ1] + r[ℓ2] + · · ·+ (−1)j−1r[ℓj−1] + (α′
j)2 − 2ℓj , j is odd, (9)

Example 3. n = 97 = (1100001)2, k = 7; z = 3135 = (110000111111)2, ℓ0 = 12. The

runs in the left segment of Binary(z) are α0 = 11, α1 = 0000. Their lengthes are d0 = 2, d1 = 4.

We have

ℓ1 = ℓ0 − d0 = 12− 2 = 10, ℓ2 = ℓ1 − d1 = 10− 4 = 6.

Since ℓ2 = 6 < 7 = k, we get j = 2, α′
2 = 111111. Therefore, z′ = (α′)2 = (111111)2 = 63.

Thus, z = 2ℓ0 − 2ℓ1 + z′ = 212 − 210 + 63 ≡ 22− 54 + 63 = 31 mod 97.

Remark 1. We know run-length encoding is a very simple and useful form of data

compression in which runs of data are stored as a single data value rather than as the original

run. But nobody, to the best of our knowledge, has mentioned such a run-length reduction

method to this day.

4.3 Complexity analysis of Method-2

To obtain ℓ0, · · · , ℓj−1, z
′, it requires only a handful of less-expensive bit operations. Since

ℓ0, · · · , ℓj−1 is ordered, i.e., ℓ0 > ℓ1 > · · · > ℓj−1, the cost of looking up r[ℓ0], · · · , r[ℓj−1] in T
is negligible. There are j additions for computing r. Since |r[t]| ≤ ⌊n/2⌋, t ∈ {ℓ0, · · · , ℓj−1},
we have

|r| ≤ (j + 2)⌊n/2⌋ <
(⌊

j + 2

2

⌋
+ 1

)
n.

7

Algorithm-2

INPUT: n, k = BitLength(n), 0 ≤ z < 22k, and T = {r[2k − 1], r[2k − 2], · · · , r[k]}.

OUTPUT: zmodn.

1. If z < n, then return(z).

2. If BitLength(z) = k, then return (z − n).

3. s← Binary[z], ℓ← BitLength[z], y ← 1, r ← r[ℓ], d← 0, t← 0.

4. For i from ℓ− 1 downto 0 do

4.1 b← StringTake[s, {i}].

4.2 If b = y, then d← d+ 1.

4.3 ℓ← ℓ− d, t← t+ 1, r ← r + (−1)tr[ℓ].

4.3.1 If ℓ > k, then y ← Mod(y + 1, 2), d← 0.

4.3.2 α← StringTake [s,−ℓ].

If Mod (t, 2) = 0, then r ← r + (α)2, else r ← r + (α)2 − 2ℓ.

Break.

5. While r ≥ n do: r ← r − n.

6. While r < 0 do: r ← r + n.

7. Return (r).

That means it requires at most
⌊
j+2
2

⌋
subtractions for computing r mod n. In total, the

method requires to perform
⌊
3j
2

⌋
additions of k-bit integers. We shall see that j ≈ ⌊k/2⌋.

That means Method-2 has the similar performance as Method-1.

We now give a comparison between Method-2 and Barrett’s reduction. The computation

of ⌊z/bi⌋ · µ dominates the cost of Barrett’s reduction. It requires a multiplication. For

convenience, we suppose that it is a multiplication of k-bit integers.

Table 3: Cost comparison between Barrett’s reduction and Method-2

arithmetic operation pre-computation byte/bit scans

(k-bit integers)

Barrett’s reduction 1 multiplication, 3 additions value µ k/8 byte

Method-2
⌊
3j
2

⌋
additions table T (k items) k bit

The Method-2 requires more cost for bit scans if the cost for one byte scan is considered

to be approximately equal to that for one bit scan. But we here stress that the whole cost for

8

bit scans is less than the cost for an addition of k-bit integers.

The quantity j is of great importance to the comparison. Clearly, j ≤ k. If the left

segment of Binary(z) is

1010 · · · 10︸ ︷︷ ︸
k−bit

,

then j = k. Given a random 2k-bit integer z, it is expected that there are about k runs and k

1’s (see Appendix 1). Thus, we have j = ⌊k/2⌋. That means the new reduction is faster than

Barrett’s reduction at the expense of a little storage. By the way, the storage space is about

1 M for the pre-computed table with respect to a modular of 1024 bits, which is acceptable

to most devices at the time.

5 A fast modular reduction method

As mentioned earlier, Method-1 is inappropriate for handling the string 11 · · · 1, whereas

Method-2 can deal efficiently with such a string. Method-2 is not as efficient as Method-1 to

deal with the string 1010 · · · 10. When hundreds of modular multiplications are required for

modular exponentiation, it is better to use these two methods properly. Since they require

a same pre-computed table, we can simply combine these two methods. We now present a

description of such a combined reduction method.

5.1 A combined modular reduction algorithm

Suppose that n is the modular, 0 ≤ z < 22k, k = BitLength(n) and T is the pre-computed

table. To compute zmodn, the combined reduction method proceeds as follows.

1. Set Υ to be the left segment of Binary(z) such that the length of the right segment equals to k.

2. Count the amount of 1’s in Υ and denote it by ϕ.

3. Count the amount of runs in Υ and denote it by ψ.

4. If ϕ ≤ ψ then use Algorithm-1. Otherwise, use Algorithm-2.

5.2 Refined algorithm

It is possible to refine the above algorithm. For example, consider a segment of (101010111101)2.

For this string, ϕ = 8 and ψ = 9. So Algorithm-1 will be used. However, it is easy to see that

the right part of the string is better to use Algorithm-2. So it is better to use Algorithm-1 for

first 6 bits and use Algorithm-2 for last 6 bits. In general, if we have a long run of 1, then we

should use Algorithm-2 for that run.

9

The following algorithm can be used to calculate z mod n, where n < z < n2, for general

situations.

1. Set ℓ0 = BitLength[z]. Set Υ to be the left segment of Binary(z) such that the length

of the right segment equals to k. Count the amount of 1’s in Υ and denote it by ϕ.

If ϕ ≥ ⌊k/2⌋, then flip all bits of Binary(z). Denote the new number by ẑ. Here

z = (2ℓ0 − 1) − ẑ. In such case, the number of 1’s in the corresponding left segment of

ẑ is less than ⌊k/2⌋. So, we consider ẑ mod n. For convenience, we now assume that

ϕ ≤ ⌊k/2⌋.

2. Count runs in Υ to obtain an integer vector

R = (l0, r0; l1, r1; . . . ; lj , rj),

where l0 is the length of the first run of 1 in Υ and r0 is the length of the first run of 0

in Υ, . . . , lj is the length of the last run of 1 in Υ and rj is the length of the last run of

0 in Υ. Here li ≥ 1 for 0 ≤ i ≤ j and ri ≥ 1 for 0 ≤ i ≤ j − 1 while rj ≥ 0.

3. Let ℓt = k +
∑j

i=t(li + ri), 0 ≤ t ≤ j. For t from 0 to j calculate St:

• if lt ≤ 2, St =
∑ℓt

m=ℓt−lt+1 r[m− 1].

• if lt > 2, St = r[ℓt]− r[ℓt − lt].

4. Compute LS =
∑j

t=0 St which can be used to calculate z mod n.

Good performance. We here stress that the refined algorithm only needs to look up the

pre-computation table 1+ ⌊k/2⌋ times at most, i.e., it requires about ⌊k/2⌋ additions of k-bit
integers at worst. Since Barrett’s reduction requires one multiplication of k-bit integers, the

method is expected to be almost twice as fast as the Barrett’s reduction.

Remark 2. The theoretical result is so attractive that we shall carry out some experiments

on this method on various platforms after we could solicit some skillful engineers.

Example 4. Suppose z = 58809 = (1110010110111001)2 and n = 267 = (100001011)2

such that z < n2. Then k = 9 and Υ = (1110010). R = (3, 2; 1, 1). Therefore

S0 = r[16]− r[13] = 121− 182 = −61

S1 = r[10] = −44

LS = −61− 44 = −105.

So z = −105 + (110111001)2 = −105 + 441 = 69 mod 267.

10

6 Conclusion

In this paper, we introduce a fast modular reduction method based on lookup table which

requires less arithmetic operations at the expense of a little storage. We show that the new

reduction is almost twice as fast as Barrett’s reduction. More significantly, our proposed

method only needs a moderate size storage space, less than 1 M for 1024-bit modulus, which

makes it more portable and more suitable for small devices such as smartphones.

References

[1] Barrett P: Implementing the Rivest Shamir and Adleman public key encryption algorithm on a
standard digital signal processor. In: Advances in Cryptology-CRYPTO’86, LNCS, 263, pp. 311-
323. Springer-Verlag (1987)

[2] Bosselaers A., Govaerts R., Vandewalle J.: Comparison of three modular reduction functions. In:
Advances in Cryptology-CRYPTO’93, LNCS 773, PP. 175-186. Springer-Verlag (1993)

[3] Cao ZJ, Wu XJ: An improvement of the Barrett modular reduction algorithm. International Journal
of Computer Mathematics. DOI:10.1080/00207160.2013.862237. Taylor & Francis (2013)

[4] Dupaquis V., Venelli A.: Redundant Modular Reduction Algorithms. In: Proc. of CARDIS 2011,
LNCS, 7079, pp. 102-114. Springer-Verlag (2011)

[5] Hanerson D., Menezes A, Vanstone S.: Guide to elliptic curve cryptography. Springer-Verlag (2004)

[6] Hong S., Oh S., Yoon H.: New modular multiplication algorithms for fast modular exponentiation.
In: Adcances in Cryptology-EUROCRYPT’96, LNCS 1070, pp. 166-177. Springer-Verlag(1996)

[7] Kawamura S., Hirano K.: A fast modular arithmetic algorithm using a residue table. In: Advances
in Cryptology-EUROCRYPT’88, LNCS 330, pp. 245-250. Springer-Verlag (1988)

[8] Lim C., Hwang H., Lee P.: Fast modular reduction with precomputation. In: Proc. of 1997 Korea-
Japan Joint Workshop on Information Security and Cryptology, pp. 65-79 (1997)

[9] Montgomery P: Modular multiplication without trial division. Mathematics of Computation, 44,
pp. 519-521 (1985)

[10] Parhami B.: Analysis of tabular methods for modular reduction. In: Proc. 28th Asilomar Conf.
Signals, Systems, and Computers. Pacific Grove, CA, 1994, pp. 526-530.

[11] Parhami B.: Modular reduction by multi-level table lookup. In: Proc. Midwest Symposium on
Circuits and Systems, MWSCAS’97. IEEE. pp. 381-384 (1997)

[12] Walter C.: Faster modular multiplication by operand scaling. In: Advnaces in Cryptology-
CRYPTO’91, LNCS 576, pp. 313-323. Springer-Verlag (1991)

[13] Win E., Mister S., Preneel B., Wiener M.: On the performance of signature schemes based on
elliptic curves. Algorithmic Number Theory-ANTS-III. LNCS, 1423, pp. 252-266. Springer-Verlag
(1998)

11

Appendix 1: Amount of runs or 1’s in binary strings

(* The average amount of runs or 1’s in binary strings *)

T1 = {}; T2 = {}; f = 511; t = 10; s = 32;

For[h = 512, h < 1025, h += s, r = 0; d = 0;

Do[k; str = Join[{1}, RandomInteger[1, f]]; (*set the leftmost bit as 1*)

c = Count[str, 1]; (*count the amount of 1’s*)

j = 1; y = 1;

For[i = 2, i < Length[str] + 1, i += 1,

If[Part[str, i] != y, j += 1];

If[Mod[j, 2] == 0, y = 0, y = 1]]; (*count the amount of runs*)

r += j; d += c, {k, t}];

AppendTo[T1, {h, r/t}]; AppendTo[T2, {h, d/t}]; f += s];

Print["Table-1----", T1]; Print["Table-2----", T2];

ListPlot[{T1, T2}, PlotMarkers ->

{{\[FilledCircle], 12}, {\[FilledSmallSquare], 12}},

PlotStyle -> {Red, Blue}, Joined -> {True, True},

ImageSize -> Scaled[0.8], AxesLabel -> {"bits", ""}]

Table-1----::512,
1268

5
>, 8544, 279<, :576,

1444

5
>, :608,

1488

5
>, :640,

3153

10
>,

:672,
3321

10
>, :704,

3421

10
>, :736,

747

2
>, :768,

3813

10
>, :800,

3943

10
>, :832,

4137

10
>,

:864,
2122

5
>, 8896, 447<, 8928, 461<, :960,

4879

10
>, 8992, 500<, 81024, 508<>

Table-2----::512,
1311

5
>, :544,

547

2
>, :576,

2873

10
>, :608,

2977

10
>, :640,

3183

10
>,

:672,
1651

5
>, :704,

1772

5
>, :736,

1807

5
>, :768,

757

2
>, :800,

1974

5
>, :832,

4193

10
>,

:864,
4283

10
>, :896,

4513

10
>, 8928, 466<, 8960, 491<, :992,

2497

5
>, :1024,

2569

5
>>

æ

æ
æ

æ

æ
æ

æ

æ
æ

æ

æ
æ

æ
æ

æ
æ

æ

�
�

�
�

�
�

�
�

�

�

�
�

�

�

�
�

�

600 700 800 900 1000
bits

100

200

300

400

500

12

