
An Efficient Pseudo-Random Generator with Applications

to Public-Key Encryption and Constant-Round Multiparty

Computation

Ivan Damg̊ard⋆ and Jesper Buus Nielsen⋆⋆

BRICS⋆ ⋆ ⋆ Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Arhus C, Denmark

Abstract. We present a pseudo-random bit generator expanding a uniformly random bit-
string r of length k/2, where k is the security parameter, into a pseudo-random bit-string
of length 2k − log2(k) using one modular exponentiation. In contrast to all previous high
expansion-rate pseudo-random bit generators, no hashing is necessary. The security of the
generator is proved relative to Paillier’s composite degree residuosity assumption.
As a first application of our pseudo-random bit generator we exploit its efficiency to optimise
Paillier’s crypto-system by a factor of (at least) 2 in both running time and usage of random
bits.
We then exploit the algebraic properties of the generator to construct an efficient protocol
for secure constant-round multiparty function evaluation in the cryptographic setting. This
construction gives an improvement in communication complexity over previous protocols in
the order of nk2, where n is the number of participants and k is the security parameter,
resulting in a communication complexity of O(nk2|C|) bits, where C is a Boolean circuit
computing the function in question.

keywords: constant-round cryptographic protocols, multi-party computation, pseudo-random generator,

public-key encryption.

1 Introduction

A pseudo-random bit generator is a deterministic polynomial time algorithm that takes
a random k-bit string (a seed) as input and produces a output string of length l > k.
Although the output is of course not a uniformly chosen string of length l, it looks random,
i.e. it is polynomial time indistinguishable from a uniformly chosen string.

Pseudo-random generators play an important role in almost every area in cryptography,
as well as in the analysis of probabilistic algorithms in general. They can be used directly
for symmetric encryption, but are also useful in public-key cryptography[BG85].

The first generator known to be good relative to a complexity assumption is due to
Blum and Micali [BM84] and was based on the discrete logarithm problem. Later Luby et
al. [ILL89] used the Goldreich-Levin hard-core bit theorem[GL89] to show that existence
of pseudo-random generators follow from existence of any one-way functions. Also, more
efficient generators have been proposed, based on specific assumptions, see for instance
[GR00,HSS93,Gen00].

In this paper, we propose a new generator based on Paillier’s composite degree resid-
uosity assumption (DCRA). This generator expands a uniformly chosen bit-string r of

⋆ ivan@brics.dk.
⋆⋆ buus@brics.dk.

⋆ ⋆ ⋆ Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

length k/2 bits, where k is the security parameter, into a pseudo-random bit-string of
length 2k − log2(k) using one modular exponentiation. Compared to earlier high expan-
sion rate generators based on assumptions related to factoring [GR00,HSS93], we note the
following differences: our generator is based on a stronger assumption (DCRA implies that
factoring is hard). In return, we get a simpler generator where no hashing is necessary to
extract the output (in contrast to [GR00,HSS93]), where the computing time spent per
output bit is the same or less than with earlier generators, and where any desired expansion
rate can be realized without having to iterate the underlying function. Finally (and most
importantly) our generator has some convenient algebraic properties making it extremely
useful in connection with public-key encryption and multiparty computation, as detailed
below.

As a first application of the generator, we observe that it can be used to implement
the encryption function in Paillier’s cryptosystem in half the time that was needed by
Paillier’s original suggestion. In [DJ], Damg̊ard and Jurik introduce a generalisation of
Paillier’s cryptosystem using arithmetic modulo N s+1, where N is an RSA-modulus and s
is an integer ≥ 1. Here, s = 1 corresponds to Paillier’s original suggestion. Our optimised
encryption procedure applies to the generalisation as well, and improves the usage of
random bits and number of multiplications by a factor of about 2s.

The second, and probably most important application is to secure multiparty compu-
tation in a constant number of rounds. Here, we are concerned with the classical secure
function evaluation problem: n players want to compute a function value f(x1, ..., xn) for
a given function f , where player i holds the input value xi. It must be ensured that the
result computed is correct, and that the inputs are kept as private as possible, i.e., the
result is the only new information that is leaked about the input values. This must hold
even in presence of adversarial behaviour by some of the players. This is usually modelled
by assuming that some subset of them have been corrupted by an adversary, who learns the
inputs and all message exchanged by corrupted players. Different types of adversaries may
be considered, in this paper we will only be concerned with active and static adversaries,
i.e. the adversary can control completely the behaviour of corrupted players, and the set of
corrupted players is fixed from the beginning. Also, we will be in the cryptographic setting,
where the adversary is a polynomially bounded machine, who gets access to all messages
sent (also between uncorrupted players). We will assume a threshold type of adversary,
i.e., any subset of size less than n/2 may be the corrupted set.

In this model, it is known that any function that can be efficiently computed, can also be
computed securely, if public-key encryption schemes exist [GMW87]. Thus, the important
question becomes: how efficiently can it be done? Two parameters are important in practice
here: the number of bits we need to send, and the number of rounds of communication we
need. Based on specific assumptions, the most communication efficient protocol known is
from [CDN00] (assuming a given set-up of keys) where one needs to broadcast O(nk|C|)
bits, where k is a security parameter and |C| is the size of a Boolean circuit C computing
the function in question. The round complexity of that protocol is O(d), where d is the
depth of C (this also holds for [GMW87]). The only previously known protocol that works
for any function and has a constant number of rounds is by Beaver, Micali and Rogaway
[BMR90]. Building on Yao’s technique for “circuit encryption” [Yao86] they devised a
protocol that can be based on any procedure for verifiable secret sharing and an arbitrary
pseudo-random bit generator. The idea is to start from a Boolean circuit computing the
desired function and compute in constant round an encrypted version of the circuit, plus
encrypted representations of the inputs. From this, all players can compute the result on
their own without further interaction.

2

This protocol can work in our communication and adversary model under the same
assumption as used by [GMW87]. Its communication complexity depends on the precise
generator and VSS used, but is generally speaking very high if we use generic solutions for
the generator and VSS.

A first naive idea to make a more efficient solution would be to plug in the the efficient
generator we present here and in addition use the idea from [CDN00] where one replaces
each VSS by a single ciphertext in a threshold crypto-system. This results in a protocol
that still has rather large complexity: one will need to broadcast Ω(n2k4|C|) bits.

In this paper, we describe how the techniques from [CDN00] and our generator can
be combined in a different and much more efficient way, namely we show a new way
to generalise Yao’s circuit encryption to the multiparty case, which in turn allows us to
exploit the algebraic properties of our generator. We obtain a constant-round protocol
where one needs to broadcast only O(nk2|C|) bits — only a factor k from the best known
non-constant-round protocol. If one is willing to accept a sub-exponential security bound,
the communication complexity can become as low as O(log2(k)max(n, k)k). Our protocol
assumes for simplicity that keys for a threshold version of Paillier’s cryptosystem [DJ] are
given, but in fact these keys can be established from scratch (still in constant-round) using
techniques from [DK00] and can be reused in many function evaluations.

2 Preliminaries

A distribution ensemble is an indexed family X = {X(k, a)}k∈N ,a∈D, where k is the security
parameter, D is some arbitrary domain, typically {0, 1}∗, and X(k, a) is a random variable.

Definition 1 (computationally indistinguishable ensembles [GM84,Yao82]). Let
D be any TM which is PPT in its first input, let k ∈N , a ∈ D, and let w ∈ {0, 1}∗ be some
arbitrary auxiliary input. By the advantage of D on these inputs we mean advD(k, a,w) =
|Pr[D(1k, a, w,X(k, a)) = 1] − Pr[D(1k, a, w, Y (k, a)) = 1]| where the probabilities are
taken over the random variables X(k, a) and Y (k, a) and the random choices of D.

We say that two distribution ensembles X and Y indexed by D are computationally

indistinguishable if there exists a negligible function δ : N → [0, 1] such that for every
adversary D, there exists kD such that for every k > kD, all a ∈ D, w ∈ {0, 1}∗ we have
that advD(k, a,w) < δ(k)

Definition 2 (pseudo-random function family). A pseudo-random function family is
a tuple (K, F), where F = {fK : AK → BK |K ∈ K} is a set of functions indexed by the
keys K. Let Kk the set of keys for security level k. We require that the following can be
done in PPT in k: sample a uniformly random key from Kk; for all K ∈ Kk sample a
uniformly random element from AK ; and for all a ∈ AK compute the value fK(a).

Further more we require that the two random variables [K ←R Kk; a ←R AK ; b ←
fK(a) : (K, b)] and [K ←R Kk; b←R BK : (K, b)] are computationally indistinguishable.

3 An Efficient Pseudo-Random Bit Generator

In this section we will define and prove cryptographically secure a pseudo-random function
and a corresponding pseudo-random bit generator.

Definition 3. For each s ≥ 0 we define a function family prfs+1 = (K, F). For k ∈ N

let Kk consist of the elements (N, g), where N = pq is a k-bit RSA-modulus such that
p = 3 mod 4, q = 3 mod 4, gcd(p − 1, q − 1) = 2, and g ∈ Z

∗
N is an element such

3

that Z
∗
N = 〈−1, g〉. For (N, g) ∈ Kk let prfs+1

N,g : {0, 1}⌊k/2−log(k)⌋ → ZNs+1 be given by

(b, r) 7→ (−1)b(gNs
)r mod N s+1, where ‖b‖ = 1 and ‖r‖ = ⌊k/2⌋ − log(k)− 1. 1

The length ⌊k/2 − log(k)⌋ of the seed can be ⌊k/2 − O(log(k))⌋, but for notational
reasons we will use the length ⌊k/2 − log(k)⌋ throughout the proofs.

Let Hs+1
N = {xNs

mod N s+1|x ∈ Z
∗
N} and let ψs+1 : ZNs ×Z

∗
N 7→ Z

∗
Ns+1 be the map

given by f(x, y) = (N + 1)xyNs
mod N s+1. Then the following lemma follows using basic

number theory. See [DJ,Pai99] for details.

Lemma 1. For N = pq an RSA-modulus and for 0 ≤ s < p, q we have that the map ψs+1

is an isomorphism.

The following conjecture provides the computational assumption underlying our pseudo-
random function. It asserts that a random element from H2

N is computationally indistin-
guishable from a random element chosen from all of Z∗

N2 .

Conjecture 1 ([Pai99]). The random variables [(N, g) ←R Kk; x ←R H2
N : (N,x)] and

[(N, g)←R Kk; x←R Z
∗
N2 : (N,x)] are computationally indistinguishable.

If Conjecture 1 holds, then the following conjecture claiming that factoring is hard
also holds. Little is known about the other direction. For a discussion of Conjecture 1 see
[Pai99].

Conjecture 2. For any PPT algorithm the following probability Pr[(N, g)←R Kk : A(N) =
p] is negligible.

Theorem 1. For s ≥ 0 the function family prfs+1 from Definition 3 is a pseudo-random
function family relative to Conjecture 1.

Proof: For prfs+1 we can trivially do the following in PPT in k: for K ∈ Kk sample
AK = {0, 1}⌊k/2−log(k)⌋ and for (b, r) ∈ {0, 1}⌊k/2−log(k)⌋ compute (−1)b(gNs

)r mod N s+1.
Now let

Y s+1
k = [(N, g)←R Kk; y ←R Z

∗
Ns+1 : (N, g, y)]

Xs+1
k = [(N, g) ←R Kk; x←R Hs+1

N : (N, g, x)]

W s+1
k = [(N, g)←R Kk; b←R {0, 1}; r ←R {0, 1}

k+δ1(k); w ← prfs+1(b, r) : (N, g,w)]

V s+1
k = [(N, g)←R Kk; b← {0, 1}; r ←R {0, 1}

⌊k/2−log(k)⌋; v ← prfs+1(b, r) : (N, g, v)] .

Since random elements from Z
∗
Ns+1 and ZNs+1 are statistically 2−k/2+2-close, to prove

pseudo-randomness it is enough to prove that the random variables Y s+1
k and V s+1

k are
computationally indistinguishable. This follows from Lemmas 2 (proving Y s+1

k and Xs+1
k

computationally indistinguishable), 3 (proving Xs+1
k and W s+1

k statistically indistinguish-
able for d2(k) = k/2), and 4 (proving W s+1

k and V s+1
k computationally indistinguishable

for δ1(k) = k/2). What remains is to prove that we can sample Kk in PPT. This easily
follows from elementary number theory. Details are omitted here for lack of space. 2

Lemma 2. If Conjecture 1 holds, then for s ≥ 0 the random variables Xs+1
k and Y s+1

k
are computationally indistinguishable.

Proof: Assume for the sake of contradiction, that there exists a PPT distinguisher D
and a c ∈ N such that for infinitely many k it is the case that |xKk

− yKk
| ≥ 1

kc , where
xKk

= Pr[D(Xs+1
k) = 1] and yKk

= Pr[D(Y s+1
k) = 1].

1 Of course the value gNs

can be preprocessed to reduce the computation time.

4

proc D̃(N, z) ≡
g ←R Z

∗
N ;

x←R Hs+1
N ; bx ←R D(N, g, x);

y ←R Z
∗
Ns+1; by ←R D(N, g, y);

if bx 6= by then bN,g ← by
else bN,g ←R {0, 1} fi

bz ←R D(N, g, z);

return bN,g ⊕ bz

Fig. 1. Distinguisher for X̃s+1
x and Ỹ s+1

x .

By [DJ] the random variables X̃s+1
k =

[(N, g, x) ←R Xs+1
k : (N,x)] and Ỹ s+1

k =
[(N, g, x) ←R Y s+1

k : (N,x)] are computation-
ally indistinguishable relative to Conjecture 1.
Now assume that that k is a value for which
|xKk

− yKk
| ≥ 1

kc and consider the adversary in
Fig. 1.

Since for any N and a random g ← Z
∗
N

the probability that (N, g) ∈ Kk is larger than
1
k it follows by a straightforward computation
(Appendix A contains details) that

Pr[D̃(X̃s+1
k) = 1]− Pr[D̃(Ỹ s+1

k) = 1] ≥
1

8k3c+1
,

contradicting that X̃s+1
k and Ỹ s+1

k are computationally indistinguishable.2

Lemma 3. For s ≥ 0 the random variables W s+1
k and Xs+1

k are statistically 2−δ1(k)-close.

Proof: We have that prf(b, r) = (−1)b(gNs
)r mod N s+1. By doing a binomial expansion it

is easy to see that (N −1)N
s
≡ −1 mod N s+1. Therefore prf(b, r) = ((N −1)N

s
)b(gNs

)r =
((N − 1)bgr)N

s
mod N s+1. Since 〈−1, g〉 = Z

∗
n it is therefore enough to prove that for

all (N, g) random elements from 〈gNs
〉 and elements from the random variable [r ←R

{0, 1}k+δ1(k); w′ ← (gNs
)r mod N s+1 : w′] are statistically 2−δ1(k)-close. This easily follows

using a subset of the arguments used in the proof of Lemma 5 below (a similar result was
proved already in [GR00]).2

Lemma 4. If Conjecture 2 holds, then for all s ≥ 0 the random variables V s+1
k and W s+1

k
are computationally indistinguishable.

Proof: Using the isomorphism from Lemma 1 it is easy to see that V s+1
k = [(N, g, v) ←R

V 1
k ; v′ ← vNs

mod N s+1 : (N, g, v′)] and W s+1
k = [(N, g,w) ←R W 1

k ; w′ ← wNs
mod

N s+1 : (N, g,w′)]. Therefore if the lemma holds for s = 0, then it holds for all s ≥ 0.

To prove the lemma for s = 0 assume that we have a distinguisher for V 1
k and W 1

k .
This immediately gives a distinguisher D for the random variables Ṽ 1

k = [(N, g) ←R

Kk; r ←R {0, 1}
⌊k/2−log(k)⌋; v ← gr mod N : (N, g, v)] and W̃ 1

k = [(N, g) ←R Kk; r ←R

{0, 1}k+δ1(k); w ← gr mod N : (N, g,w)] with advantages 1
kc on infinitely many k. This

implies that for δ = 2kc the subset Kδ
k ⊂ Kk of keys (N, g) for which |Pr[D̃(N, g, v) =

1] − Pr[D̃(N, g,w) = 1]| ≥ 1
δ has size at least 1

δ . Therefore, if given a random N as in
Conjecture 2 we draw a random g in Z

∗
N , then Pr[(N, g) ∈ Kδ

k] >
1

2kc+1 . Since by [GR00] a

pair (N, g) for which |Pr[D̃(N, g, v) = 1]−Pr[D̃(N, g,w) = 1]| ≥ 1
2kc+1 allows us to factor

N in probabilistic polynomial time we have that for infinitely many k we can factor N
with probability larger than 1

2kc+1 contradicting Conjecture 2.2
Theorem 1 provides us with an efficient pseudo-random function having any desirable

expansion factor without using iteration of the function. Note however, that the cost of
computing the function increases super-linear in s as the modular multiplications and
exponentiations are done in Z

∗
Ns+1. The time-optimal value of s depends on the running

time of the multiplication algorithm used.
If iteration of the function is used to increase the expansion factor another problem

has to be addressed. Namely, the output of the function is pseudo-random in Z
∗
Ns+1 and is

5

thus not a pseudo-random bit-string. Therefore one cannot use the output of the function
as input for the next iteration. As done in [GR00,HSS93], hashing can be used to extract
a pseudo-random bit-string from a pseudo-random number. However, it turns out, that a
much simpler technique applies, which allows us to maintain the simplicity of the function.

Lemma 5. For δ2(k) ∈ [0..(k− 1)] and l(k) = (s+ 1)(k− 1)− δ2(k) the random variables
[y ←R ZNs+1 ; x← y mod 2l(k) : x] and [x←R {0, 1}

l(k) : x] are statistically 2−δ2(k)-close.

Proof: Let M = N s+1, and let X denote the random variable [y ←R ZM ; x← x mod 2l :
x]. Define m and r by M = m2l + r, where 0 ≤ r < 2l. Then for 0 ≤ x < r we have
that Pr[X = x] = m+1

M ≥ 2−l and for r ≤ x < 2l we have that Pr[X = x] = m
M ≤ 2−l.

It then follows that the statistical distance between X and the uniform distribution over
[0..2l−1] is given by 1

2(r(m+1
M −2−l)+(2l−r)(2−l− m

M)) = 1
2(r(m+1)−(2l−r)m

M + −r+(2l−r)
2l) =

1
2(2r(m+1)−M

M + 2l−2r
2l) = 1

2(2l2r(m+1)−2lM+M2l−M2r
M2l) = r(2lm+2l−M)

M2l = r(2l−r)
M2l ≤

2l−1

M , where

the last inequality follows from the fact that r2l − r2 is maximal in 2l−1. Now since
l = (s + 1)(k − 1) − δ2(k) and M ≥ 2(s+1)(k−1) it follows that the statistical distance is
bounded by 2−δ2(k). result.2

Theorem 2. For δ2(k) ∈ [log2(k)..(k − 1)] and l(k) = (s + 1)(k − 1) − δ2(k) and for
random (N, g) as above, the function prgs+1 : {0, 1}⌈k/2−log(k)⌉ → {0, 1}l(k), (b, x) 7→
prfs+1(b, x) mod 2l(k) is a pseudo-random bit generator relative to Conjecture 1.

Proof: Since 2− log2(k) is negligible, this follows directly from Theorem 1 and Lemma 5. 2

Depending on the choice of δ2 the security level will be bounded by a function between
2− log2(k) and 2−k.

3.1 Comparison to Other Generators

In this section we compare our new pseudo-random bit generator for s = 1 to the two
previously most efficient exponentiation modular a composite based pseudo-random bit
generators.

In [GR00] it is used and proved that relative to the hardness of factoring the output
of gx mod N for x ∈R {0, 1}

k/2 is pseudo-random in 〈g〉. To obtain a pseudo-random bit
generator they use families of hash-functions from [GW94]. The hash-function h is specified
by O(log2 k) bits and the generator is given by GR(h, x) = (h, h(gx mod N)).

In [HSS93] it is proved and used that relative to the hardness of factoring the k/2 least
significant bits of the function gx mod N are simultaneously hard. To obtain a pseudo-
random bit generator they use universal hashing. The hash-function h is specified using

2k bits and the generator is given by HSS(h, x) = (h, h(gx mod N), x mod 2
k
2). The hash-

function can however be specified using just O(log2 n) bits using the families from [GW94]
yielding a larger expansion factor. However the price for this, which is also paid by GR, is
a sub-exponential security. To obtain a fair comparison we will use δ2(k) = log2(k) in our
scheme to have the same security level.

Our generator uses the stronger Conjecture 1 to obtain a larger expansion factor. We
do not use any hash-function. On the contrary we obtain a simple function specified by
prgs+1(b, x) = ((−1)bgx mod N s+1) mod 2l, where we let g denote the preprocessed value
gNs

mod N s+1.

In the following table we summarise the quantitative properties of the three generators.

6

seed length output length expansion rate mult.s bits per mult.

HSS k + log2(k) 1.5k 1.5k
k+log2(k)

≈ 1.5 0.5k 1.5k−k−log2(k)
0.5k ≈ 1

GR 0.5k + log2(k) k k
0.5k+log2(k)

≈ 2 0.25k k−0.5k−log2(k)
0.25k ≈ 2

prg2 0.5k − log(k) 2k − log2(k) 2k−log2(k)
0.5k−log(k) ≈ 4 0.25k 2k−log2(k)−(0.5k−log(k)

0.25k ≈ 6

Our generator has twice the expansion factor of the best of the two previous generators.
Further more it extracts three times as many pseudo-random bits per modular multiplica-
tion. However, it should be noted that our function uses multiplications of 2k-bit numbers.
Using a standard divide-and-conquer technique, these multiplications can be done using
3 multiplications modulo k-bit numbers in which case our generator is similar to the best
of the two previous generators in bits per elementary bit operation. For more efficient
multiplication algorithms our generator will be the most efficient w.r.t. to this measure.

4 Optimising Paillier’s Crypto-System

In [Pai99] Paillier proposed a probabilistic public-key crypto-system semantically secure
relative to Conjecture 1. The clear-text space is ZN and the cipher-text space is Z

∗
N2 .

The public key is (N, t), where N is a RSA-modulus and t is a random element of order
N in Z

∗
N2 , i.e. a generator of Z

∗
N2/H2

N . An encryption of x ∈ ZN is given by PAI(x, r) =
txrN mod N2, where r is a uniformly random element in Z

∗
N .

In [DJ] a version of Paillier’s crypto-system with smaller expansion factor was in-
troduced. Now the clear-text space is ZNs for some integer s ≥ 1 and the cipher-text
space is Z

∗
Ns+1. The public key is N and an encryption is given by DJs+1(x, r) =

(N + 1)xrNs
mod N s+1, where r is uniformly random in Z

∗
Ns+1 . Thus DJ2 is PAI with

t = N+1. Now let (N, g) be chosen uniformly in Kk. Consider the function D̃J
s+1

(x, b, r) =
(N + 1)x(−1)b(gNs

)r mod N s+1, where r is random of length k/2− log(k), as in our gen-
erator. We have the following result.

Theorem 3. The function D̃J
s+1

(x, b, r) as defined above is a semantically secure public-
key crypto-system relative to Conjecture 1.

Proof: It is easy to see that an adversary breaking the semantic security of this system,
can also break our pseudo-random generator. More formally, by the definition of semantic
security we have to prove that for all PPT algorithms A, which on a key (N, g) returns
a message m ∈ ZNs and some state information s ∈ {0, 1}∗, the two random variables
U s+1

k = [(N, g) ←R Kk; (s,m) ←R A(N, g); c ←R Z
∗
Ns+1 : (N, g, s,m, c)] and T s+1

k =

[(N, g) ←R Kk; (s,m) ←R A(N, g); c ←R D̃J(m) : (N, g, s,m, c)] are computationally
indistinguishable. Let however λ(N, g, z) denote the following PPT algorithm (N, g, z) 7→
[(s,m)←R A(N, g); c← (N +1)mz : (N, g, s,m, c)]. Then it is easy to see that λ(Y s+1

k) =
U s+1

k and λ(V s+1
k) = T s+1

k and thus the theorem is a corollary to the proof of Theorem
1.2

In the function DJs+1, the part (N+1)x mod N s+1 can be simplified, and can be com-
puted using 2s multiplications (see [DJ]). Hence we need on average 2s+1.5sk multiplica-
tions using square and multiply techniques for rNs

and (s+1)k random bits. The modified

encryption function D̃J
s+1

uses k/2 random bits and on average 2s+3k/4 multiplications
using preprocessing2. Thus, measured in usage of random bits and multiplications, the
modified scheme is better by a factor of about 2s.
2 Since both (N + 1) and g are known in advance.

7

5 Secure Constant-Round Multiparty Function Evaluation

In this section we describe how our pseudo-random function can be used to construct a
secure constant-round protocol for evaluating any boolean circuit.

First we are going to construct from our pseudo-random generator a special kind of sym-
metric encryption C = EN,g(K,M) called a Crypto-Table, whereM = (M0,0,M0,1,M1,0,M1,1)
are four messages to be encrypted, K = (K1,0,K1,1,K2,0,K2,1) are four keys used for en-
crypting, and whereC is such that one can learnMb1,b2 iff one knows the keys (K1,b1 ,K2,b2).
We think of this as a kind of encrypted Boolean gate where the keys represent input bits
b1 on line 1 and input b2 on line 2 and Mb1,b2 represents the output.

Let l(k) = k/2 − 2, Kc,b ∈ {0, 1}l(k) and Mb1,b2 ∈ {0, 1}
l(k)+1. Sets U, V will be the

index sets for messages and keys, respectively: U = {0, 1}2, V = {1, 2}×{0, 1}. The symbol
needs(b1, b2) = {(1, b1), (2, b2)} will denote the indexes of the keys one needs in order to
learn Mb1,b2 from the encryption. For V ′ ⊂ V let visi(V ′) = {u ∈ U |needs(u) ⊂ V ′}, i.e.
visi(V ′) are the indexes of messages that are “visible” if one knows keys with indexes in
V ′. Finally, for v ∈ V let hides(v) = {u|v ∈ needs(u)}.

To encrypt we start by doing a 2-out-of-2 secret-sharing for each Mb1,b2: Let M1,b1
b1,b2
←R

{0, 1}2/3k and let M2,b2
b1,b2

← Mb1,b2 + M1,b1
b1,b2

. Then for v ∈ V , we construct Mv, a string

that we will encrypt with key Kv: Mv = 2kMv
u0

+Mv
u1

where hides(v) = {u0, u1}. In the

following for V ′ ⊂ V we let MV ′

= {Mv |v ∈ V ′} and let KV ′

= {Kv|v ∈ V ′}. Observe

that if one knows Mneeds(b1,b2), then one especially knows M1,b1
b1,b2

,M2,b2
b1,b2

and can compute

Mb1,b2 = M2,b2
b1,b2
−M1,b1

b1,b2
. The following lemma implies that this is all you can learn from

Mneeds(b1,b2).

Lemma 6. Let V ′ be any subset of key indices and let M and M by any two messages for

which Mu = Mu for u ∈ visi(V ′). Then MV ′

and M
V ′

are statistically indistinguishable.

Proof: If u ∈ visi(V ′), then Mu = Mu and thus Mv
u and M

v
u for v ∈ needs(u) are

identically distributed. If u 6∈ visi(V ′), then Mv
u , for some v ∈ needs(u), is not given

by MV ′

and thus the remaining Mv′
u (for v′ ∈ needs(u) \ {v}) is distributed statistically

indistinguishable from a random element from {0, 1}2/3k . The same holds for M
j′

i and the
lemma follows.2

Now to finish the encryption, for v ∈ V let Cv ← prg2(Kv) + Mv mod N2 and let
C = EN,g(K,M) = {Cv}v∈V .

Lemma 7. Let V ′ be any subset of key indices and let M and M by any two messages
for which Mu = Mu for u ∈ visi(V ′). Then the random variables [(N, g) ←R Kk; K ←R

{0, 1}4l(k); C ← EN,g(K,M) : (C,KV ′

)] and [(N, g) ←R Kk; K ←R {0, 1}
4l(k); C ←

EN,g(K,M) : (C,KV ′

)] are computationally indistinguishable.

Proof: If the values prg2(Kv) for v ∈ V had been uniformly random in ZN2 and not just
pseudo-random, the lemma would follow directly from the above lemma. Therefore the
lemma follows by a hybrid argument using Lemma 2 four times.2

We now describe how to put Crypto-Tables together to obtain a so-called Crypto-Circuit.
We only use binary Crypto-Tables, however the above construction generalises to unary
tables and tables with higher fane-in by similar definitions of U , V , and needs.

Let G = (G1, . . . , Gα, Gα+1, . . . Gβ) be a circuit given by α input gates and β − α
binary boolean gates. The input gates are only syntax. The binary gates Gi are tuples
(i1, i2, Gi,0,0, Gi,0,1, Gi,1,0, Gi,1,1), where i1 and i2 specifies that Gi1 and Gi2 is the input

8

gates for gate Gi and Gi,b1,b2 ∈ {0, 1} specifies the boolean gate. Let Gβ−γ+1, . . . , Gβ be
the output gates, i.e. those that are not used as input to other gates.

Given an input x ∈ {0, 1}α let for input gates out(Gi, x) = xi and for binary gates in-
ductively out(Gi, x) = Gi,out(Gi1

,x),out(Gi2
,x). Let out(G,x) = (out(G1, x), . . . , out(Gβ , x))

and let eval(G,x) = (out(Gβ−γ+1), . . . , Gβ).
Given a circuit G and a key K = (Kib|i ∈ [1..β], b ∈ {0, 1}) ∈ {0, 1}2βl(k), we de-

fine the Crypto-Circuit EN,g(K,G) as follows. For each binary gate Gi and (b1, b2) ∈
{0, 1}2 let Mi,b1,b2 = (Gi,b1,b2,Ki,Gi,b1,b2

), let Mi = (Mi,0,0,Mi,0,1,Mi,1,0,Mi,1,1), let Ki =
(Ki1,0,Ki1,1,Ki2,0,Ki2,1), and let Ci = EN,g(Ki,Mi). Let EN,g(K,G) = C = (Cα+1, . . . , Cβ).
For x ∈ {0, 1}α let Kx = ((x1,K

1,x1), . . . , (xα,K
α,xα)) and for C = EN,g(K,G) let

Cx = (C,Kx).

proc EN,g(K,M) ≡
for (b1, b2) ∈ {0, 1}

2 do

M1,b1
b1,b2
←R {0, 1}

2/3k ;

M2,b2
b1,b2
←Mb1,b2 +M1,b1

b1,b2
od;

C1,0 ← prf2N,g(K
1,0) + (2kM1,0

0,0 +M1,0
0,1) mod N2;

C1,1 ← prf2N,g(K
1,1) + (2kM1,1

1,0 +M1,1
1,1) mod N2;

C2,0 ← prf2N,g(K
2,0) + (2kM2,0

0,0 +M2,0
1,0) mod N2;

C2,1 ← prf2N,g(K
2,1) + (2kM2,1

0,1 +M2,1
1,1) mod N2

Fig. 2. The Crypto-Table Generator.

Now for x ∈ {0, 1}α assume
that Cx is known. Then one knows
(out(Gi, x),K

i,out(Gi,x)) for all in-
put gates. Assume then inductively
forGi = (i1, i2, Gi,0,0, Gi,0,1, Gi,1,0, Gi,1,1).
that one knows (b1,K

i1,b1) for b1 =
out(Gi1 , x) and (b2,K

i2,b2) for b2 =
out(Gi2 , x). Then by looking up in
Ci one can learn (c,Ki,c) for c =
Gi,b1,b2 = Gi,out(Gi1

,x),out(Gi2
,x) =

out(Gi, x). Therefore there exists
a PPT algorithm D such that
DN,g(Cx) = out(G,x) (or DN,g(Cx) =

eval(G,x) depending on the context).
The value out(G,x) = (o1, . . . , oβ) contains information about x and one row of each

gate. We want to prove that given Cx one only learns this information. We do this by
simulating the distribution of Cx given just o = out(G,x). Let sim(o) be the PPT algorithm
working as follows. Given o define a circuit Go. For i = α+ 1, . . . , β set Go

i,oi1
,oi2

= oi and

set the remaining three rows (b1, b2) 6= (oi1 , oi2) to 0. Compute x as o1 . . . oα and let
Co

x = (EN,g(K,G
o),Kx).

Lemma 8. Let G be any circuit and let x by any input for the circuit. Then [(N, g) ←R

Kk; K ←R {0, 1}
2βl(k); Cx ← (EN,g(K,G),Kx) : (N, g,Cx)] and [(N, g) ←R Kk; o ←

out(G,x); Co
x ← simN,g(o) : (N, g,Co

x)] are computationally indistinguishable.

Proof: Assume for the sake of contradiction that there exists G, x and D such that the
distributions are distinguishable by D. Let for i = α, . . . , β the circuit Gi be the one
where (Gi

1, . . . , G
i
i) = (G1, . . . , Gi) and (Gi

i+1, . . . , G
i
β) = (Go

i , . . . , G
o
β). Then Gα = Go

and Gβ = G and thus there exists i ∈ [(α + 1)..β] such that D distinguishes [(N, g) ←R

Kk; K ←R {0, 1}
2βl(k); Ci−1

x ← (EN,g(K,G
i−1, x),Kx) : (N, g,Ci−1

x)] and [(N, g) ←R

Kk; K ←R {0, 1}
2βl(k); Ci

x ← (EN,g(K,G
i, x),Kx) : (N, g,Ci

x)].
It is easy to see that DN,g(C

i−1
x) = o = DN,g(C

i
x). Therefore the values oi0 , oi1 ,

and oi is the same in both distributions. Now let ((oi1 ,Ki1,oi1
), (oi2 ,Ki2,oi2

), C̃i) be any
Crypto-Table with lookup-key for which Mi,oi1

,oi2
= (oi,Ki,oi

) and Ki1,oi1
, Ki2,oi2

, and

Ki,oi
are uniformly random values. Define a distribution as follows. Compute Gi and let

Ci ← EN,g(G
i) as above with the sole exception that the values Ki1,oi1

, Ki2,oi2
, and Ki,oi

are used at the appropriate points in the computation instead of new uniformly random
values. This obviously does not change the distribution of Ci. Now let C̃i be Ci where Ci

is replace by C̃i. Then if C̃i is computed as in EN,g(G
i−1), then C̃i is distributed exactly

9

as EN,g(G
i−1) and if C̃i is computed as in EN,g(G

i), then C̃i is distributed exactly as
EN,g(G

i) and we can then use D to distinguish these two distributions of C̃i. But since the
difference between the two distributions is only the values of Gi,b1,b2 for (b1, b2) 6= (oi0 , oi1)
this contradicts Lemma 7.2

The value of out(G,x) reveals the output from every gate, but no more information
about gates than that. In the multiparty function evaluation problem we only want to
learn eval(G,x) and do not care whether the actual gates are known (typically the circuit
is agreed upon by the parties before the computation and it is the inputs that should be
kept secret). It therefore seems, that the function out(G,x) is doing exactly the opposite
of what we want in the multiparty function evaluation problem. However, there exists a
simple reduction (G′, x′) ←R scram(G,x) which allows us to evaluate f(x) = eval(G,x)
secretly using out(G′, x′).

Given (G,x) we define (G′, x′)←R scram(G,x) as follows. For the gates G1, . . . , Gβ−γ

draw a uniformly random bit λi and for each output gate Gi let λi = 0. For each input gate
letG′

i = Gi and let x′i = xi⊕λi and for each binary gateGi = (i1, i2, Gi,0,0, Gi,0,1, Gi,1,0, Gi,1,1)
let G′

i = (i1, i2, G
′
i,0,0, G

′
i,0,1, G

′
i,1,0, G

′
i,1,1), where G′

i,b1,b2
= Gi,b1⊕λi1

,b2⊕λi2
⊕ λi. The fol-

lowing lemma follows directly from the definitions.

Lemma 9. For all circuits G, all input x to the circuit, and (G′, x′) ←R scram(G,x), it
holds that out(G′

i, x
′) = out(Gi, x)⊕ λi, where λi is the value used in scram(G,x).

Now define a PPT algorithm by RN,g(G,x) = [(G′, x′) ←R scram(G,x); K ←R

{0, 1}2βl(k); Rx = (EN,g(K,G
′),Kx′) : Rx]. Then by Lemma 9 and the fact that λi = 0

for output gates it follows that one can compute eval(G,x) from Rx. We want to prove
that from RN,g(G,x) one only learns y = eval(G,x). For this purpose we describe a PPT
function simN,g(G, y). The algorithm proceeds as follows. Let oβ−γ+i = yi for i = 1, . . . , γ,
let oi ←R {0, 1} for i = 1, . . . , β − γ, and let Co ←R simN,g(o).

Lemma 10. Let G be a any circuit and let x be any input. Then [(N, g)←R Kk; Rx ←R

RN,g(G,x) : (N, g,Ry)] and [(N, g) ←R Kk; y = eval(G,x); Ry ←R simN,g(G, y) :
(N, g,Ry)] are computationally indistinguishable.

Proof: By Lemma 8 the random variables [(N, g) ←R Kk; Cx ←R EN,g(scram(G,x)) :
(N, g,Cx)] and [(N, g) ←R Kk; o ←R out(scram(G,x)); Co ←R simN,g(o) : (N, g,C0)
are computationally indistinguishable. By Lemma 9 we have that out(scram(G,x)) =
(out(G1, x0) ⊕ λ1, . . . , out(Gβ , xβ) ⊕ λβ). Since the λi for inputs gates and intermediate
gates are uniformly distributed and is 0 for output gates it is trivial that out(scram(G,x))
is distributed identically to o as defined as part of the simN,g(G, y) algorithm. Therefore the
random variables [(N, g) ←R Kk; o ←R out(scram(G,x)); Co ←R simN,g(o) : (N, g,C0)]
and [(N, g) ←R Kk; y ← eval(G,x); Ry ←R simN,g(y) : (N, g,Ry)] are identically dis-
tributed. Combining these two result the lemma follows directly. 2

Assume now that we are executing in an environment, where n parties, party i having
secret input xi ∈ {0, 1}

∗, have access to a authenticated broadcast channel and that they
want to evaluate some fixed agreed upon circuit G on their inputs in such a way, that
all parties learn y ← eval(G,x1, . . . , xn), but no party learns anything about the other
parties’ inputs, except that which is evident from y. Assume further more, that a key
(N, g)←R Kk is known to and agreed upon by all parties and that the parties have access
to a trusted party TR for computing RN,g. All parties are assumed to share a perfectly
secure point-to-point channel with T . Then they can evaluate G on x as follows.

1. Every party Pi sends his input xi to TR over the secure point-to-point channel.

10

2. TR computes Rx ←R RN,g(G,x1, . . . , xn) and broadcast the value on the public chan-
nel.

3. Each party locally computes y = eval(G,x1, . . . , xn) from Rx and outputs y.

We are going to prove that the protocol securely evaluates the function f(x1, . . . , xn) =
eval(G,x1, . . . , xn) in the sense of [Can00] against any PPT static and active adversary A.
To formalise this we need to define two distribution ensembles.

Denote the above protocol by π. Let x1, . . . , xn be any input for the protocol, let A be
any PPT algorithm, called the π-adversary, and let C be any subset of the parties, called
the corrupted parties3. Then an attack by A on the execution of π proceeds as follows.
First A receives the inputs {xi}i∈C of the corrupted parties. Then the adversary fully
controls the corrupted parties. In the above one-round protocol this amounts to sending
faulty inputs {x′i}i∈C to TR. Then TR computes Rx′ ←R RN,g(G,x

′
1, . . . , x

′
n), where x′i = xi

for the uncorrupted parties, and broadcasts Rx′ . After seeing this value A outputs some
value a and the output of the protocol is taken to be y′ as computed from Rx′ (observe
that y′ = eval(G,x′1, · · · , x

′
n)). Let Execπ(x1, . . . , xn,A, C) = (y′, a).

Assume instead that the parties had access to a trusted party for computing f(x) =
eval(G,x) directly. The protocol, called the ideal protocol, would then have been.

1. Every party Pi sends his input xi to Tf over the secure point-to-point channel.
2. Tf computes y ← f(x1, . . . , xn) and broadcast the value on the public channel.
3. Each party outputs y.

An adversary S, called an ideal adversary, would in an attack against the ideal evalua-
tion have the power to send faulty inputs to Tf and nothing else. After seeing y′ the ideal
adversary then outputs some value s and we let Execf (x1, . . . , xn,S, C) = (y′, s).

To prove π secure in the sense of [Can00] we need to prove that for every π-adversary A
there exists an ideal adversary S such that for every input x1, . . . , xn and every set of cor-
rupted parties C the random variables Execπ(x1, . . . , xn,A, C) and Execf (x1, . . . , xn,S, C)
are computationally indistinguishable. To prove this, for any π-adversary A let S(A) be
the following ideal-adversary.

1. Get (C, {xi}i∈C) as input and run A as a sub-routine initialised with {xi}i∈C , C as it
would be in an attack on the execution of π.

2. Receive {x′i}i∈C from A and use these values in the oracle call to compute y′ =
f(x′1, . . . , x

′
n), where x′i = xi for i 6∈ C.

3. From y′ compute Ry′ ←R simN,g(G, y
′) and hand Ry′ to A (claiming that it is the

value broadcast by TR in an execution of π).
4. Let a be the output of A after seeing Ry′ and let s = a be the output of S(A).

Then by Lemma 10 the random variables Execπ(x1, . . . , xn,A, C) and Execf (x1, . . . , xn,S(A), C)
are computationally indistinguishable and we have thus proven the following theorem.

Theorem 4. For any circuit G, the protocol π securely (relative to Conjecture 1), in the
sense of of [Can00], computes the function f(x) = eval(G,x) in the presence of static and
active adversaries corrupting any subset of the parties.

We now turn our attention to computing RN,g securely. Here we will appeal to a result
from [CDN00], which constructs a general secure protocol FuncEval for function evaluation.
It is shown there that such a protocol can be constructed based on any secure threshold

3 The trusted party TR cannot be corrupted.

11

public-key cryptosystem with a number of additional algebraic properties. They assume
(as we also do here) that keys for this system have been set up in advance, by a trusted
initialiser or by a once-and-for-all multiparty computation. We will use the Damg̊ard-Jurik
generalisation of Paillier as this threshold crypto-system, with s = 2 so that the public key
is N , computations take place mod N3, and the plaintext space is ZN2 (DJ3 denotes this
system, see Section 4). It is shown in [CDN00] that DJ3 has the required properties. We
will assume that key generation takes place by sampling from Kk and including both N
and g in the public key. This is necessary, although DJ3 actually only needs N as public
key: we will be computing RN,g, so all players need to know the constant g. In the same
way as in Theorem 3, it can be shown that making g public does not harm the security of
DJ3. The following can now be easily abstracted from the results in [CDN00]:

Theorem 5 ([CDN00]). Let F be any arithmetic circuit over ZN2 , where N is a uni-
formly random RSA-modulus and the circuit contains the following types of gates: 1) input
gates of elements from ZN2, 2) input gates of elements from {0, 1}, 3) random gates out-
putting a uniformly random ZN2-element, 4) random gates outputting 0 or 1 with prob-
ability 1

2 , 5) addition gates, 6) multiplication-with-constant gates (x 7→ a · x mod N2), 7)
multiplication gates ((x, y) 7→ x · y mod N2), 8) inversion gates4 (x 7→ x−1 mod N2), and
9) output gates. Let f : (ZN2)α → (ZN2)γ be the function specified by the circuit. Then
the protocol FuncEvalF securely evaluates the function f in the presence of static and
active adversaries corrupting any minority of the parties. The communication complexity
is O(k(α + min(k, n)(ρ3 + nρ4) + nβ)), where α is the number of gates of type 1 and 2,
ρ3 is the number of gates of type 3, ρ4 is the number of gates of type 4, and β is the
number of gates of type 7, 8, and 9. The round complexity is O(δ), where δ is the num-
ber of gates of type 7, 8, and 9 in the circuit, where an unbounded fane-in multiplication
(x1, . . . , xm) 7→

∏m
i=1 xi mod N2 of invertible elements only counts for one gate.

Our goal is to specify RN,g as a constant-depth circuit over ZN2 with gates of the
appropriate types and then appeal to the above theorem. Before doing so we sketch how
the FuncEval protocol works.

Assume for notational reasons, that party i has just one input xi ∈ ZN2. The pro-
tocol works as follows. First each party publishes an encryption xi = DJ3(xi, ri) in
the Damg̊ard-Jurik crypto-system of his input and prove knowledge of xi using a zero-
knowledge proof of knowledge. If an input is required to be from {0, 1} the party supplying
the input proves in zero-knowledge that this is the case. Addition gates are handled using
the additive homomorphism DJ3(x1, r1) · DJ

3(x2, r2) ≡ (N + 1)x1rN2

1 (N + 1)x2rN2

2 ≡
(N + 1)x1+x2 mod N2

(r1r2 mod N)N
2

≡ DJ3(x1 + x2 mod N2, r1r2 mod N) (mod N3) and
can thus be computed locally by the parties (we write x1 + x2 = x1 ⊞x2). In the same way
DJ3(x, r)c ≡ DJ3(cx mod N2, rc mod N) (mod N3) handles multiplications by constants
(c · x = c⊡x). The remaining types of gates require interaction and are handled by secure
protocols described in [CDN00].

To specify a circuit for EN,g(G,x) we generate λi using random 0/1 gates, we gen-

erate Kc,b ∈ {0, 1}l(k) using l(k) random 0/1 gates for Kc,b
0 , . . . ,Kc,b

l(k)1
and then let

Kc,b =
∑l(k)−1

i=0 2iKc,b
i (using l(k) multiplications with constants and l(k) − 1 additions).

We generate M1,b1
b1,b2

∈ {0, 1}⌈2/3k⌉ in the same way. The cost of this is O(kmin(n, k)nk)
per gate and the round complexity is O(1) as all the bits for all the gates can be generated
in parallel.

4 The circuit must be such that the input to an inversion gate is always invertible.

12

Given input-lines b and r0, . . . , rl(k)−2 with b and the bits of r we compute (−1)bgr

as follows. Let (−1)b = 1 − 2 · b mod N2, let gr =
∏l(k)−2

i=0 (g2i
· ri + (1 − ri)) mod N2

using unbounded fane-in multiplication, and multiply to obtain (−1)bgr mod N2. The
communication complexity of this is O(k2n) bits per gate and the round complexity is
O(1) as the elements g2i

ri + (1− ri) ≡ g
ri2i

(mod N2) are guaranteed to be invertible.

After having all these values set up for each gate we can easily compute the scrambling
and EN,g(K,M) using only a constant number of additions and multiplications modulo
N2 per gate. Therefore the communication complexity is O(kmin(n, k)nk) bits per gate
and the round complexity is O(1).

Theorem 6. Given any circuit G we can efficiently generate a constant-round protocol,
which securely evaluates the function (x1, . . . , xn) 7→ eval(G,x1, . . . , xn) in the presence of
static and active adversaries corrupting any minority of the parties. The communication
complexity is O(min(n, k)nk2β), where β is the number of gates in the circuit.

Proof: By Theorem 4 we can construct such a protocol given an oracle for computingRg,N .
By the above discussion we can implement a protocol for Rg,N securely in the presence
of static and active adversaries corrupting any minority of the parties. Therefore by the
composition theorem of [Can00] by replacing the oracle for Rg,N by the implementation,
the overall protocol is secure. 2

5.1 An optimisation

The above protocol obtained a communication complexity in the order of min(n, k)nk2

bits per gate. We will here sketch a further optimisation allowing us to use only in the
order of nk2 bits per gate.

The expensive part of the above protocol is generating K and M and computing
prf2(K). The reason is the large number of random bits generated. Before sketching the
optimisation it is illustrative to see why generating the random bits is expensive.

In [CDN00] a subset of the parties containing at least one honest party (except with
negligible probability) is picked for generating random values. If n < k the group is just
all the parties. If n > k the group is a O(k) random subset, which contains a honest party
except with negligible probability as at most half the parties are corrupted. Note that the
size of the random group is O(min(n, k)). Assume that the parties in the random group
are indexed 1, . . . , r(k, n).

A secret and random element from ZN2 is then generated as follows. Each party in the
random group generates a random element xi ∈ ZN2 , broadcasts an encryption xi, and

proves in zero-knowledge that he knows xi. Then all parties compute x = ⊞
r(k,n)
i=1 xi mod

N2. Since the random group contains at least one honest party except with negligible
probability the secret value x will be uniformly random in ZN2 and unknown to all the
parties and the adversary. The communication complexity of this is O(r(k, n)k) bits as each
encryption is O(k) bits long and the proofs of knowledge use O(k) bits of communication.

A random bit is generated as follows. Each party in the random group picks a random
bit bi, publishes an encryption bi of the bit, and proves that it is either 0 or 1; this
costs O(r(k, n)k) bits of communication. All n parties then computes b1 ⊕ · · · ⊕ br(k,n) =

((⊡
r(k,n)
i=1 (2⊡bi⊟1))⊞1)⊡2−1 mod N2 using FuncEval. Since at least one party in the group

is honest (except with negligible probability) the resulting secret bit b is uniformly random.
Using an unbounded multiplication the round complexity is O(1) and the communication
complexity is O(r(k, n)nk) for generating just one bit.

13

To avoid generating these communication expensive bits we use the idea at a higher
level. Each party in the random group picks a random key (bi, ri) ∈ {0, 1}

l(k), computes
prf2(bi, ri) = (−1)bigri mod N2, broadcasts bi, ri,0 . . . , ri,l(k)−2 and

prf2N,g(bi, ri) = (1 ⊟ 2 ⊡ bi) ⊡

[
⊡

l(k)−2
j=1

(
g2j

⊡ ri,j ⊞ (1 ⊟ ri,j)
)]

mod N2 (1)

and proves that prf2N,g(bi, ri) was computed correctly. This costs O(k2) bits per party in
the random group as the proof of correct computation can be done using O(k) bits per gate
in the circuit for (1) using the techniques of [CDN00]. Then all the parties compute b =

⊞
r(k,n)
i=1 bi, r = ⊞

r(k,n)
i=1 ri, and y = ⊡

r(k,n)
i=1 prf2(bi, ri) = (−1bgr) mod N2. The cost of this is

O(r(k, n)nk). The total cost is therefore O(r(k, n)k2 +r(k, n)nk) = O(r(k, n)max(n, k)k).
Since r(k, n) = min(n, k) it then follows that the total number of bits broadcast is O(nk2).

Now as at least one of the parties of the random group is honest y will be the encryption
of a product of a pseudo-random element from ZN2 (the value of prf2(bi, ri) contributed
by the honest party) and an invertible element from ZN2 (the product of the invertible
elements prf2(bi, ri) contributed by the possible corrupted parties). Therefore y will be
an encryption of a pseudo-random element from ZN2 and thus has exactly the same
distributed as before. We then code the values b and r as a (⌈k/2⌉ + 2⌈log(r(k, n))⌉)-bit
number by K = (2⌈k/2⌉+⌈log(r(k,n))⌉

⊡ b ⊞ r) mod N2. Now since r(k, n) ∈ O(k), if Mb1,b2

is an (⌈k/2⌉ + 2⌈log(r(k, n))⌉)-bit number and M1,b1
b1,b2

is a uniformly random ⌈2/3k⌉-bit

number, the value M2,b2
b1,b2

= M1,b1
b1,b2

+Mb1,b2 (mod N2) hides the value of Mb1,b2 as M2,b2
b1,b2

=

M1,b1
b1,b2

+ Mb1,b2 and M2,b2
b1,b2

= M1,b1
b1,b2

+ M ′
b1,b2

are statistically indistinguishable for any
(⌈k/2⌉+2⌈log(r(k, n))⌉)-bit numbersMb1,b2 and M ′

b1,b2
. If therefore we let each party in the

random group pick a secret random ⌈2/3k⌉-bit number Mb1,b2,i (by picking and publishing

encryptions of the bits Mb1,b2,i,j individually and letting Mb1,b2,i = ⊞
⌈2/3k⌉−1
j=0 2j ·Mb1,b2,i,j)

and compute M1,b1
b1,b2

= ⊞
r(k,n)
i=1 Mb1,b2,i, then as at least one party in the random group is

honest (except with negligible probability) the value M2,b2
b1,b2

= M1,b1
b1,b2

+ Mb1,b2 also hides

Mb1,b2. Note that since Mb1,b2,i is a ⌈2/3k⌉-bit number M1,b1
b1,b2

and M2,b2
b1,b2

can both be

represented using less than k bits and therefore we can still encode two of them, e.g. M1,0
0,0

and M0,1
0,0 , as an element in ZN2 by 2kM1,0

0,0 +M1,0
0,1 (see Fig. 2).

If we adopt this way of generating EN,g(K,M) the equivalents of Lemma 6 and Lemma
7 still hold and consequently the equivalent of Lemma 10 still holds, i.e. from the output
of the circuit one can compute f(x) and no other information about x. However we cannot
prove the equivalent of Theorem 6 in the way that theorem was proved. The reason for
this is solely a technical problem.

Whereas we could prove the protocol in the previous section secure by a clean-cut
reduction to [CDN00] by specifying a circuit over ZN2 for RN,g and then applying the
composition theorem of [Can00], the above optimised protocol cannot be proven secure
that way, as the distribution of the output of the optimised circuit is not independent of the
adversary (the adversary can bias the size of the keys K). The model in [Can00] requires
that a function has a well-defined distribution independent of the adversary to specify
the ideal model. Therefore the function RN,g as defined by the optimised circuit does not
fit the framework of [Can00]. However, this technical problem only applies to the sub-
protocol for computing RN,g. The composed protocol still has a well-defined functionality
as DN,g(RN,g(x)) = f(x) independently of whether the keys are large or not. Therefore
the composed protocol can still be proven secure. The only problem is that we cannot do
the cut using the composition theorem, we have to prove the composed protocol secure

14

as a whole, which ultimately involves going into all the technical details of [CDN00]. This
has been omitted, both due to lack of space and the fact that the security of the optimised
protocol is intuitively obvious given the security of the protocol in the previous section.

If one is satisfied with a sub-exponential security bound one can decrease the size of
the random group to any size in ω(log(k)) and still have a negligible probability that
all the parties in the random group are corrupted. If e.g. we let the size be log2(k) the
communication complexity drops to O(log2(k)max(n, k)k) bits per gate.

15

References

[ACM89] Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, Seattle,
Washington, 15–17 May 1989.

[BBS86] L. Blum, M. Blum, and M. Shub. A simple secure unpredictable pseudo-random number gener-
ator. SIAM Journal on Computing, 15(2):364–383, May 1986.

[BG85] M. Blum and S. Goldwasser. An efficient probabilistic public key encryption scheme which
hides all partial information. In G. R. Blakley and David Chaum, editors, Advances in Cryptol-

ogy: Proceedings of Crypto ’84, pages 289–302, Berlin, 1985. Springer-Verlag. Lecture Notes in
Computer Science Volume 196.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing, 13(4):850–864, November 1984.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In Proceedings of the Twenty Second Annual ACM Symposium on Theory

of Computing, pages 503–513, Baltimore, Maryland, 14–16 May 1990.
[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-

tology, 13(1):143–202, winter 2000.
[CDN00] Ronald Cramer, Ivan B. Damg̊ard, and Jesper B. Nielsen. Multiparty computation from thresh-

old homomorphic encryption. Research Series RS-00-14, BRICS, Department of Computer Sci-
ence, University of Aarhus, June 2000. To appear at EuroCrypt 2001. Updated version available
at Cryptology ePrint Archive, record 2000/064, http://eprint.iacr.org/.

[DJ] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. To appear in Proc. of Public Key Cryptography 2001.
Obtainable from http://www.daimi.au.dk/∼ivan/papers.html.

[DK00] Ivan B. Damg̊ard and Maciej Koprowski. Practical threshold RSA signatures without a trusted
dealer. Research Series RS-00-30, BRICS, Department of Computer Science, University of
Aarhus, November 2000. 14 pp.

[Gen00] Rosario Gennaro. An improved pseudo-random generator based on discrete log. In Mihir Bellare,
editor, Advances in Cryptology - Crypto 2000, pages 469–481, Berlin, 2000. Springer-Verlag.
Lecture Notes in Computer Science Volume 1880.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In ACM
[ACM89], pages 25–32.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System

Sciences, 28(2):270–299, April 1984.
[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a com-

pleteness theorem for protocols with honest majority. In Proceedings of the Nineteenth Annual

ACM Symposium on Theory of Computing, pages 218–229, New York City, 25–27 May 1987.
[GR00] Oded Goldreich and Vered Rosen. On the security of modular exponentiation with application

to the construction of pseudorandom generators. Cryptology ePrint Archive, record 2000/064,
http://eprint.iacr.org/, December 2000.

[GW94] Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties: A
quality-size trade-off for hashing. In Proceedings of the Twenty-Sixth Annual ACM Symposium

on the Theory of Computing, pages 574–583, Montréal, Québec, Canada, 23–25 May 1994.
[HSS93] J. H̊astad, A. W. Schrift, and A. Shamir. The discrete logarithm modulo a composite hides O(n)

bits. Journal of Computer and System Science, 47:376–404, 1993.
[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from one-

way functions. In ACM [ACM89], pages 12–24.
[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residue classes. In Jacques

Stern, editor, Advances in Cryptology - EuroCrypt ’99, pages 223–238, Berlin, 1999. Springer-
Verlag. Lecture Notes in Computer Science Volume 1592.

[Yao82] Andrew C. Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd

Annual Symposium on Foundations of Computer Science, pages 80–91, Chicago, Illinois, 3–5
November 1982. IEEE.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th

Annual Symposium on Foundations of Computer Science, pages 162–167, Toronto, Ontario,
Canada, 27–29 October 1986. IEEE.

16

A Proof of Lemma 2

Lemma 2. If Conjecture 1 holds, then for s ≥ 0 the random variables Xs+1
k and Y s+1

k are
computationally indistinguishable.

proc D̃(N, z) ≡
g ←R Z

∗
n;

x←R Hs+1
N ; bx ←R D(N, g, x);

y ←R Z
∗
Ns+1 ; by ←R D(N, g, y);

if bx 6= by then bN,g ← by
else bN,g ←R {0, 1} fi

bz ←R D(N, g, z);

return bN,g ⊕ bz

Fig. 3. Distinguisher for X̃s+1
x and Ỹ s+1

x .

Proof: Assume for the sake of contradiction,
that there exists a PPT distinguisher D and
a c ∈ N such that for infinitely many k it is
the case that |xKk

− yKk
| ≥ 1

kc , where xKk
=

Pr[D(Xs+1
k) = 1] and yKk

= Pr[D(Y s+1
k) = 1].

Assume for the rest of the proof that k is a
value for which this is true.

By [DJ] the random variables X̃s+1
k =

[(N, g, x) ←R Xs+1
k : (N,x)] and Ỹ s+1

k =
[(N, g, x) ←R Y s+1

k : (N,x)] are computation-
ally indistinguishable relative to Conjecture 1.
We reach a contradiction by constructing a
distinguisher D̃ of X̃s+1

k and Ỹ s+1
k fromD with advantage 1

8k3c+1 . The distinguisher is given

in Fig. 3. In the analysis of the distinguisher we let xN,g = Pr[D(N, g, x) = 1|x ∈R Hs+1
N],

let yN,g = Pr[D(N, g, x) = 1|x ∈R Z
∗
Ns+1], let bN,g = 0 if xN,g > yN,g and 1 otherwise, let

EN,g be the event that D̃ gets N as input and D̃ draws g during execution, let pN,g be the
probability of EN,g, and let PrN,g[·] be the probability function conditioned on EN,g. Then

PrN,g[D̃(N,Hs+1
N) = 1] =

1

2
PrN,g[bx = by] + PrN,g[bx = 0, by = 1, bz = 0|x ∈R Hs+1

N]

+ PrN,g[bx = 1, by = 0, bz = 1|x ∈R Hs+1
N]

=
1

2
PrN,g[bx = by] + (1− xN,g)yN,g(1− xN,g) + xN,g(1− yN,g)xN,g

and in the same way

PrN,g[D̃(N,Z∗
Ns+1) = 1] =

1

2
PrN,g[bx = by]+(1−xN,g)yN,g(1−yN,g)+xN,g(1−yN,g)yN,g .

From this it follows by collecting terms that

PrN,g[D̃(N,Hs+1
N) = 1]− PrN,g[D̃(N,Z∗

Ns+1) = 1] = (xN,g − yN,g)
2 .

Now let δ = 2kc and let Kδ
k be the set of keys (N, g) ∈ Kk where |xN,g − yN,g| ≥ 1/δ.

Then it is easy to see that Pr[(N, g) ∈ Kδ
k|(N, g) ∈R Kk] >

1
2kc . Assume namely otherwise,

then

E(N,g)∈Kk
[|xN,g − yN,g] = Pr[(N, g) ∈ Kδ

k|(N, g) ∈R Kk]E(N,g)∈Kδ
k
[|xN,g − yN,g]

+ Pr[(N, g) ∈ Kk \ K
δ
k|(N, g) ∈R Kk]E(N,g)∈Kk\K

δ
k
[|xN,g − yN,g]

<Pr[(N, g) ∈ Kδ
k|(N, g) ∈R Kk] +

1

δ
≤

1

kc

17

which contradicts that |xKk
− yKk

| ≥ 1
kc . Therefore

Pr[D̃(X̃s+1
k) = 1]− Pr[D̃(Ỹ s+1

k) = 1] =
∑

(N,g)

pN,g(PrN,g[D̃(N,Hs+1
N) = 1]− PrN,g[D̃(N,Z∗

Ns+1) = 1])

≥
∑

(N,g)

pN,g(xN,g − yN,g)
2 ≥

∑

(N,g)∈Kδ
k

pN,g
1

δ2

=
1

δ2
Pr[(N, g) ∈ Kδ

k|(N, g) ∈R Kk] Pr[(N, g) ∈ Kk]

= Pr[(N, g) ∈ Kk]
1

8k3c
≥

1

8k3c+1
. 2

18

