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Abstract In the domain of the Side Channel Attacks, various statistical
tools have succeeded to retrieve a secret key, as the Pearson coefficient
or the Mutual Information. In this paper we propose to study the Max-
imal Information Coeflicient (MIC) which is a non-parametric method
introduced by Reshef et al. [13] to compare two random variables. The
MIC is based on the mutual information but it is easier to implement
and is robust to the noise. We show how apply this tool in the particular
case of the side channel attacks. As in statistics, benefits only appears
with drawbacks, the computing complexity of the MIC is high. There-
fore, we propose a way to efficiently compute the MIC. The obtained
attack called the Maximal Information Coefficient Analysis is compared
to the CPA [3] and the MIA [8]. The results show the interest of this
approach when the leakage is noisy and bad modeleled.

1 Introduction

In order to describe the Side Channel Attacks (SCA) by means of the information
theory, Gierlichs et al. presented the Mutual Information Analysis (MIA) in
2008. This attack takes advantage of mutual information (MI) combining the
information contained in a signal and the information provided by a model. In
the context of SCA, the signal is obtained by measuring the power consumption
or electromagnetic radiation of an electronic device during the execution of a
cryptographic algorithm. Since Kocher [9] it is well known that the form of
these signals is partly related to the data handled by the component. For this
reason the correlation power analysis (CPA) [3], which is based on the linear
correlation, is a very efficient attack when implementations are not protected.
Although the underlying model is very simple, as it is generally assumed that
the signal amplitude is proportional to a combination of computed bits, the
success of the CPA shows that it is often sufficient. Yet the leakage can be
difficult to model, because the component or the implementation includes some
countermeasures. In this case, a too simplistic model would no longer linearly
related to the acquired signals. The MIA, that uses no assumption about the
linear nature, seems therefore more suitable for processing signals whose leakage
is roughly modeled. But when trying to implement this attack several problems



appear. First the MI computation needs to choose an estimator from a set of
existing methods. Secondly, it is difficult to interpret the computed value for MI
and compare different obtained values. For these reasons, Reshef et al. [13] have
recently developed a new statistical tool, called Maximal Information Coefficient
(MIC), which has the same advantages as the MI, since it considers any kind of
relation, even non-linear, but has an exact definition, a soft interpretation and a
better stability. In this paper, we present the work for adapting this new tool in
the context of SCA and the experiments that confirm the interest of this attack,
that we consequently call Maximal Information Coefficient Analysis (MICA).
This paper is organized as follows. First we shortly remind the CPA and the
MIA. Then, we present the MIC and its application to SCA in section 3. Before
concluding, we expose some experimentations in sections 4 to compare the last
attack to the two first ones.

2 Side Channel Attack

The Side Channel Attack or SCA targets a cryptographic algorithm, imple-
mented on a device, which requires huge keys in order to prevent the brute force
attack. But during the execution of this algorithm, the key is used piecewise.
Since these parts of the key are small, we can enumerate all possible values and
apply a brute force attack to determine the value of the targeted part. In classical
cryptanalysis, we do not have access to the output of a cryptographic function
before all the parts of the key are used. The SCA provides some information
about the output of the function when only a part of the key is involved. Unfor-
tunately for attackers, the acquired information is partial. Generally, attackers
obtain information about the Hamming weight of the output.

We will now present a general model of SCA before introducing two common
SCA: the Correlation Power Analysis and the Mutual Information Analysis.

2.1 General model for the SCA

Let K a random variable which represents a part of the secret key. We note
k* the right key value. X represents the input of the targeted algorithm. Let
Z a random variable which represents the value of an intermediate state of
the targeted algorithm. Finally, we denote the random variable representing the
leakage by L(Z) = f(X, K). The function f highly depends on the device. Notice
that L(Z) is a continuous variable.

To perform a SCA, we have n measurements of the leakage, I; = f(x;, k*)
with ¢« = 1,...,n. We suppose that these leakages give an independent random
variable. In another hand, the leakage for a given key k, is modeled by a function
M (X, k). The variable M (X, k) is discret. So we have n realizations M (x;, k) for
each key in the set of all possible keys K. The SCA uses these data to mesure the
possible relation between the leakage and the model for each key. We consider
that the SCA is successful if

max(| D(M(z, k), 1) [) = k*



where D is a distinguisher. Generally, the main difference between the attack
methods is the choice of the distinguisher.
Now we present two SCA based on two different distinguishers.

2.2 Correlation Power Analysis or CPA

When we want to examine the relation between two variables, the first idea is
to use the linear correlation coefficient(p). In our case, p is given by :

pp = %Zi:l(li —D)(M (i, k) — My)
\/% Zi:l(li - l_)2% 21:1(M($i7 k) — Mk)2

where [ and M, are arithmetic means. The more py, is close to £1, the strongest
is the linear relation between the leakage and the model. p? is a measure of the
distance between the n points to the linear regression.

The Correlation Power Analysis has been introduced by Brier et al. in [3].
In this paper, the authors propose to use the Pearson correlation coefficient as a
distinguisher. Nowadays the CPA is the most widely used approch to perform a
SCA. Generally, the CPA works well because the relation between [ and M (z, k*)
is close to the linear. On some particular devices, this relationship is not linear.
We will now present a distinguisher allowing to detect both linear and nonlinear
relations.

2.3 Mutual Information Analysis or MIA

The MIA is based on the mutual information or MI. The MI provides a way to
estimate a relationship between two random variables even if the relation is not
linear. Before describing the MIA, we need some tools of the information theory.

Preliminaries The Shannon entropy is a way to mesure the uncertainty asso-
ciated to a random variable. Let A be a random variable in the space A and B
a random variable in the space B . For lighten notations, we consider that A
and B are discrete variables and define by Pr[E] the probability of the event E.
For continuous variables, formulas are the same but the sum is replaced by an
integral.

The entropy associated to A is defined by :

H(A) =— Z Pr[A = a] -logs(Pr[A = al])
acA
We can express the join entropy of a pair of random variables (A4, B) in a similar
way by :

H(A,B)=~- Y Prl[A=a,B=1] log(Pr[A=a,B =1b)
acA,eB



After all the conditional entropy of A given B by :

H(AB)=— > Pr[A=a,B=0]log(Pr[A=alB =1])
acA,€EB

The mutual information mesures the mutual dependence of two random vari-
ables. It is defined by :

I(A,B) = H(A) — H(A|B)
— H(A)+ H(B) — H(A, B)

The maximal value of the MI is H(A) + H(B). This measure does not depend
on the form of the relation between the two variables. So we can detect if there
exists a relation linking the variables even if this relation is not linear. If the MI
is zero, A and B are independent. On the other hand, if the value of the MI is
maximal, it exists a strong link between A and B. But the MI is not valuable
alone. If we have a value I(A, B) = 8 nothing can be deduced on A and B, while
if p = 0.8 we can deduce directly that A and B are linked.

MIA In [8], Gierlichs et al. suggest to use the Mutual information as a new
distinguisher. With our previous notation, we defined the MI by :

I(l, M (2, k) = H(l) + H(I[M (2, k))

The values of the MI obtained for different & € X are comparable because L is
constant. Since L is fixed, the difference between the values of the MI is only due
to the entropy H(I|M(x,k)). Smaller is this entropy, greater is the link between
L and M(z, k). This distinguisher allows the detection of connection between
the leakage and the model even if the relation is non-linear. The different studies
and experimentations regarding the MIA[17] show most of the time that if the
mutual information is used as distinguisher, the success of the attack requires
more traces than using the linear correlation. When some particular devices are
attacked or in some noisy environment, the use of the mutual information can
be more effective than the CPA. The most important drawback of the MIA is
that computing the mutual information can be tricky. In practice, we compute
marginal entropies H(l) and H(M(x,k)) and the join entropy H (I, M(z,k)).
Since the variable M (x, k) is discrete, the probability Pr[Mj) = m] is estimated
by using the empirical frequency. The computation of the MI depends on the
base used to determinate the probability density function (or pdf) of the leakage.
The most common way to estimate the pdf of the leakage is by using bins, but
there exists a lot of different estimators [17]. The mutual information provides
an interesting distinguisher. Unfortunately, this distinguisher is not stable if the
number of samples increases (or decreases). Moreover, the estimation of the pdf
of the leakage has a great influence on the result of the MIA.

We will now introduce a new distinguisher based on the mutual information.
This distinguisher overcomes the deficiencies of the MI while maintaining its
generality.



3 Maximal Information Coefficient Analysis or MICA

3.1 Maximal Information Coefficient or MIC

In 2011, Reshef et al. [13] introduced a new measure of the independance of two
variables: the Maximal Information Coefficient (MIC). The MIC is based on the
mutual information (cf. 2.3). Computing the mutual information is tricky, when
a continuous variable is involved. The authors propose to estimate the pdf of
variables by using bins. Since there are many ways to choose the bins, Reshef
et al. compute the maximal MI over all possible choices of bins. The main idea
of the MIC is that if a relation exists between our two variables, there exists a
partition of the data that will allow to include this relationship.

Compute the MIC The goal of the MIC is to detect if there exists relationship
between two random variables A and B. Let define by D the couple (A, B) after
ordering. Reshef et al. call p-by-q grid the partition of the couple (A, B) in p
bins for the variable A and ¢ bins for the variable B. There are a lot of different
grids of size p-by-g. DC is the frequency distribution engendered by the couple
(A, B) on the cell of the grid G.
We note by A9 and BE the distribution of A and B over the grid G and Sp,q)
the set of all grids of size p-by-q.

As an example, let D = ((0,1),(1,1),(2,1),(3,-1),(4,-1),(5,1)) and G =
([0,2[, [2,4][,[4,6]) x ([-2,0[,[0,2]) a 3-by-2 grid.
So over G, D is given by Tab. 3.1 and AS = (2,2,2) and BS = (2,4).

[-2,0[][0,2]
02] 0 | 2
24[ 1 [ 1
a6 1 | 1

For fixed p and ¢, the maximal mutual information over all grids p-by-q is

defined by:
I*(D,p,q) = max (I(A%, B¢
(D,p,q) GGS(M)( ( )

Since it is not possible to compare two maximal MI, I*(D,p, q) and I*(D,p’,q¢'),
if the sizes of the grid are not the same, Reshef et al. propose a normalization.
I*(D,p,q) is bounded by log,(min, ). And the equality between I*(D,p,q)
and logy(min, ,) is obtained if A and B are linked by a function. A natural
normalization is given by :

M(D),, = I*(D,p,q)
pa logy(min, 4)

Normalize the MI allows a comparaison between I* for different grid sizes and a
computation of the maximum for all possible p and ¢. As p and ¢ is bounded by



n, the number of possible grids is bounded by n™ which is huge. So this maximal
size of the grid has been reduced to (n°®) by Reshef et al., thank to an empirical
test. Finally, the Maximum Information Coefficient is:

MIC(D)= = wmax  (M(D),)
with n the number of elements of A and B.

The MIC allows to identify a large type of relations. Moreover, the MIC is
designed to maintain good results even in presence of noise. The MIC seems to
be a good candidate for a generic distinguisher. Unfortunately, the computation
of the MIC has a high time complexity. In the next section, we propose to use the
specificity of our data to compute the MIC in order to use it as a distinguisher.

3.2 MICA

The MICA, Mutual Information Coefficient Analysis is naturaly defined by:

*
Iknea%(MIC’(M(z, k), D))=k
To simplify the computation complexity of the MIC for each key hypothesis, it
is crucial to take into account of the data particularities.

First, it is important to remind that we study two different types of variables:
L is continuous and M (X, k) is discret. We know, a priori, the number of all
possible values of the model. The idea is to bound ¢ by this number, which
generally is small. For example, the Hamming weight of a state byte of the AES
is modeled by 9 values and the DES by 5 values.

Moreover, in [13] Reshef et al. propose an heuristic algorithm to compute
I*(D,p,q) for fixed p and ¢. They fix one partition of B of size ¢ and they
compute the maximum value of I(A, B) over all the grids by varying the partition
of A. Since the marginal entropy of A is maximal for the equipartition, the
maximum value of I(A, B) is given by the equipartition of A. This heuristic
should be applied for the MICA, we choose to fix the bounded partition of
M(X, k).

In this case, it is easy to compute the maximal value of I(L, M (X, k)) when
the partition of M (X, k) is fixed regardless of the value of ¢ and the partition of
L is an equipartition of size p. The number of grids can be abruptly bounded by
the product of the possible partitions for M (X, k) and the maximal size of the
grid(n®%). So if we have n = 1,000, 000 samples of an AES, we need to explore
less than 2,000,000 grids which is feasible. Using these observations, we made
an implementation in openCL to compute the MIC in our particular case. We
compare our implementation with a C implementation, minepy [2] and the java
implementation delivered by Reshef et al.. The implementation in java works
only with a few number of samples (less than 1,000). In Tab. 1, we present the
needed time to compute the MIC using the three implementations.

Since our implementation uses the characteristics of the data handled in the
SCA, it is more efficient. Moreover, we take part of the natural parallelism in the



Num. samples|java|minepy|openCL
1000 2.6| 0.03 0.3
20,000 X 2 0.5

Table 1: Computation for the different implementations in seconds.

algorithm that calculates the MIC to increase the efficiency of the implementa-
tion.

In the next section, we present the result of our experimentations on the
DPAContest v1 samples [6].

4 Experimentations

We made experiments on the public traces available in the DPAContest. The
first version of the DPAContest delivers samples obtained by recording the power
consumption of a DES [20]. First we studied the success rate of the MICA before
comparing the results of the CPA and MICA.

4.1 Comparaison of the success rate for MICA, MIA and CPA

In the Fig. 1, we add to the Fig. 3 of [17], the success rate of the MICA for the
DPAContest V1.

success rate

1 [
B =—= MICA
0.8 - o --- correlation
£ //5 / - histogram MTA
0.6 : ’ W / +—e Kernel MIA (DKL)
p ! /fj : e - - Kernel X2
0.4 /{/ . / ------- Kernel Hellinger
/’; /}/ / +—+ Kolmogorov-Smirnov
0.2 : »—x KS normalized
% / 4—a Cramér-von-Mises
1 1 messages
0 50 100 150 200 250 300

Figure 1: Success rate of different distinguishers

These experimentations are made on the first SBOX of the last round of
the DES over 1000 independent experiments using a Hamming weight leakage



model. We can observe that, the CPA is still the most efficient distinguisher
when the leakage model is well designed. The MICA is more efficient than the
MIA when we have only few samples. However, the MICA is more effective than
the histogram MIA. The main drawback of the MIA is the computation of the
marginal and the conditional entropy. There exists a lot of different estimators,
but none are ”ideal”. The result and the complexity of the MIA highly depends
on the used estimator. As for the MIC provides an “out of the box” tool for
the SCA, because the data does not need to be studied before using the MIC.
Moreover, the impact of the noise on the MIA is not easy to study [18], whereas
n [13], Reshef et al. showed a lot of examples of the robustness of the MIC in
noisy environments.

For the rest of our experimentations, we compared only the CPA with the
MICA. The success rate is not the only criterion to evaluate a distinguisher. In
the next sections, we will more investigate the results of the MICA and compare
them.

4.2 DPAContest V1

In Fig. 2 and 3, as previously, we targeted the first SBOX of the last round of
the DES. For the Fig. 2 the number of samples exceeds the minimal number
needed to have a success rate of 1. For the Fig. 3 the number of samples ensures
that the success rate of the CPA and the MICA is greater than 0.9. Each curve
represents the value of the distinguisher during the running time for different
keys. The good key is the one with the higher value. We can note that M (X, k*)
and L are related in several instants of the execution.

On the top of the Fig. 2, we can note that the sign of the Pearson correlation
coefficient changes. When comparing the two graphics, we note that the rela-
tionship between the leakage and the model of the right key appears at the same
time. But the difference between the curve corresponding to the right key and
the second highest is more important for the MICA. Moreover, the curves seems
to be less noisy in the case of the MICA. In the Fig. 3 we show that the MICA
and CPA are similar behavior when the number of samples becomes critical. In
DPAContest V1, the relation between the Hamming weight of the handeled data
and the leakage is close to the linear, if this relation was nonlinear, we can expec
better result for the MICA.
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Figure 2: On the top the results of the CPA and on the bottom the results of the
MICA, for 1,000 samples of DPAContestV1.
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Figure 3: On the top the results of the CPA and on the bottom the results of the
MICA, for 200 samples of DPAContestV1.



4.3 Other leakage models

Since the MIC provides a distinguisher more general than the linear correlation,
it is interesting to study the MICA behaviour when the leakage is not well
modeled. We suppose that the attacker uses a classical Hamming weight model
while the leakage is a little different. We compare the three attacks based on the
Pearson correlation coefficient, the MI and the MIC in simulation. For simulating
the handling data, we pick 50 numbers x in {0, --- , 15} and compute a simulated
leakage, f(x). We considered three different models for the leakage(f).

1. f(x) = P(Hamming weight(x)) where P is a fixed permutation
2. f(z) = Hamming weight of x
3. f(x) = Hamming weight of x + the value of the first bit of x

In the Tab.2, we present the result of the three attacks for the simulated
data.

leakage model| p | MI |MIC
1 0.14|3.88]0.61
2 0.81|2.03|0.77
3 0.70(2.58| 1.0

Table 2: Values of p, MI, MIC for 50 simulated data for different leakage models.

As expected the CPA is the best method when the model is well defined.
When the leakage model is completely different, as in the case 1, the MI distin-
guisher seems the best choice. But the MIC value is still good and it is not easy
to compare the MI to the other coefficients. The MIC has great results when all
the bits of the targeted variable have not the same contribution to the leakage.
In this case, the value of the MIC is maximal because the leakage have more
variations. If the model used in the attack is imperfect compared to the real
leakage, the MIC assimilates the differences.

5 Conclusion

In this paper, we constructed a generic side channel distinguisher based on the
Maximal Information Coefficient. This distinguisher, like the MIA, does not
require a linear link between the leakage and the model. Like the CPA, it is
a tool that can be easily used in the context of side channel. Taking into account
of the data specifities we improve the computation complexity. Our OpenCL
implementation is more efficient than the minepy implementation.

Although the MIC can only be applied into the univariate case, it presents
main advantages, over the MI: it is clearly defined and seems get better results
in noisy environments.



In our experiments, we observed that the proposed distinguisher is efficient to
retrieve the key with few samples when the leakage model is well defined. More-
over we obtain great results when one bit leaks more than the others. In these
cases and more generally when the leakage is bad modeled, the MIC could more
easily detect a relationship than the MI or the Pearson correlation coefficient.

References

1. D. Agrawal, B. Archambeault, J.R. Rao and P. Rohatgi The EM side-channel(s).
CHES 2002, LNCS, vol 2523, pp 24-45, 2002.

2. D. Albanese, M. Filosi, R. Visintainer, S. Riccadonna, G. Jurman, and C.
Furlanello. cmine, minerva & minepy: a C engine for the MINE suite and its
R and Python wrappers. arXiv:1208.4271[stat.ML], 2012.

3. E. Brier, C. Clavier and F.Olivier Correlation power analysis with a leakage model.
CHES 2004, LNCS, vol 3156, pp 16 - 29, 2004.

4. S. Chari, J. Rao, P.Rohatgi. Template Attack. CHES 2002, LNCS, vol 2523, pp
13-28, 2002.

5. J. Daemen and V. Rijmen. AES proposal: Rijndael, 1998.

6. DPA Contest 2008/2009, http://www.dpacontest.org/

7. K. Gandolfi, C. Mourtel and F. Olivier. Electromagnetic analysis: Concrete results.
CHES 2001, LNCS, vol 2162, pp 251-261, 2001.

8. B. Gierlichs, L. Batina, P. Tuyls and B. Preneel. Mutual Information Analysis -
A Generic Side-Channel Distinguisher. CHES 2008, LNCS, vol 5154, pp 426-442,
2008.

9. P.C. Kocher, J. Jaffe and B. Jun. Differential power analysis. CRYPTO, pp 388-
397, 1999.

10. T.-H. Le, J. Clédiere, C. Serviere, and J.-L. Lacoume. Noise reduction in side
channel attack using fourth-order cumulant. IEEE Transactions on Information
Forensics and Security, vol 2, no 4, pp 710-720, 2007.

11. http://www.khronos.org/opencl/

12. J-J. Quisquater and D. Samyde. Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. E-smart 2001, LNCS, vol 2140, pp 200-210,
2001.

13. D. Reshef, Y. Reshef, H. Finucane, S. Grossman, G. McVean, P. Turnbaugh, E.
Lander, M. Mitzenmacher and P. Sabeti. Detecting novel associations in large
datasets. Science, 6062(334), pp.1518-1524, 2011.

14. M. Rivain. On the Physical Security of Cryptographic Implementations. PhD thesis,
University of Luxembourg, 2009.

15. F.-X. Standaert Partition vs. Comparison Side-Channel Distinguishers
http://www.dice.ucl.ac.be/fstandae/tsca/

16. F.-X. Standart, P. Bulens, G. de Meulenaer and N. Veyrat-Charvillon. Improv-
ing the Rules of the DPA Contest. Cryptology ePrint Archive, Report 2006/139,
http://eprint.iacr.org/2006/139.

17. N. Veyrat-Charvillon, F.-X. Standart. Mutual Information Analysis : How, When
and Why? CHES 2009, LNCS, vol 5747, pp. 429-443, 2009.

18. C. Whitnall, E. Oswald. A Fair Ewvaluation Framework for Comparing Side-
Channel Distinguishers. Journal of Cryptographic Engineering, 1(2):145-160, Au-
gust 2011.



19. C. Whitnall, E. Oswald and L. Mather. An Exploration of the Kolmogorov-Smirnov
Test as Competitor to Mutual Information Analysis. Cryptology ePrint Archive,
Report 2011/380, http://eprint.iacr.org/2011/380.

20. Federal Information Processing. Data Encryption Standard. Standards Publication
46-1 National Technical Information Service, U.S. Dept. of Commerce, 1977.



