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Abstract. A manufacturer of custom hardware (an ASIC)
can undermine the intended execution of that hardware; high-
assurance execution thus requires controlling the manufacturing
chain. However, a trusted platform might be orders of magni-
tude worse in performance or price than an advanced, untrusted
platform. This paper explores an alternative: using verifiable
computation (VC), an untrusted ASIC computes proofs of cor-
rect execution, which are verified by a trusted processor or
ASIC. Notably, in the present setting, the prover and verifier
together must impose less overhead than the baseline alterna-
tive of running the given computation directly on the trusted
platform. We respond to this challenge by designing and imple-
menting physically realizable, area-efficient, high throughput
ASICs (for a prover and verifier), in fully synthesizable Ver-
ilog. The system, called Zebra, is based on the CMT interactive
proof protocol; instantiating Zebra required a blend of new ob-
servations about CMT, careful hardware design, and attention
to architectural challenges. We measure and evaluate Zebra; for
a class of real computations, it indeed poses less overhead than
executing directly on the trusted platform.

1 Introduction
This paper explores a new response to the threat posed by
untrusted hardware fabrication. The threat exists when the de-
signer of an ASIC (application specific integrated circuit, a term
that refers to custom hardware) and the manufacturer of that
ASIC, known as a fab or foundry, are separate entities. In such
a case, the foundry can mount a hardware Trojan [14] attack
by including malware inside the ASIC. Government agencies
and semiconductor vendors have long regarded this threat as a
core strategic concern [3, 8, 11, 13, 35, 66, 85].

The most natural response—achieving high assurance by
controlling the manufacturing process—may be infeasible or
impose enormous penalties in price and performance.1 Right
now, there are only five nations with top-end foundries [56]
(and only 13 foundries among them); anecdotally, only four
foundries will be able to manufacture at 14 nm or beyond. In
fact, many advanced nations do not have any onshore foundries.
Others have foundries that are generations old; India, for ex-
ample, has 800nm technology [9], which is 25 years older and
108× worse (when considering the product of ASIC area and
energy) than the state of the art.

Other responses to hardware Trojans [79] include post-fab
testing on particular input patterns [37, 94], post-fab power and

1Creating a top-end foundry requires both rare expertise and billions of dollars,
to purchase high-precision equipment for nanometer-scale patterning and
etching [12]. Furthermore, these costs worsen as the technology node—the
length of the smallest transistor that can be fabricated, also referred to as the
critical dimension—improves.

delay profiling [22, 59, 62, 63, 93], destructive delayering and
imaging in combination with profiling [15], and power cycling
in the field [89]. These techniques provide some assurance
under certain misbehaviors or defects, but they are not sensitive
enough to defend against a truly adversarial foundry (§10).

One may also apply the classic N-version technique [38]:
use two foundries, deploy the two ASICs together, and, if their
outputs differ, a trusted processor can take action (notify an op-
erator, impose fail-safe behavior, etc.). This technique provides
no assurance if the foundries collude—a distinct possibility, in
light of the aforementioned characteristics of the semiconduc-
tor industry. A high assurance variant is to execute the desired
functionality in software or hardware on a trusted platform
(say, produced by a foundry in the same trust domain as the
designer), treating the original ASIC as an untrusted accelerator
whose outputs are checked, potentially with some lag.

This leads to our motivating question: can we get high-
assurance execution at a lower price and higher performance
than executing the desired functionality on a trusted platform?
To that end, this paper initiates the exploration of verifiable
ASICs (§2.1): systems in which deployed ASICs prove, each
time they perform a computation, that the execution is correct
(in the sense of matching the intended computation).2 An ASIC
in this role is called a prover; its proofs are efficiently checked
by a (weak) processor or another ASIC, known as a verifier,
that is trusted (say, produced by a foundry in the same trust
domain as the designer). The hope is that this arrangement
would yield a positive response to the question above. But is
the hope well-founded?

On the one hand, this arrangement roughly matches the se-
tups in probabilistic proofs from complexity theory and cryp-
tography: interactive proofs or IPs [18, 49–51, 65, 77], effi-
cient arguments [31, 58, 60, 68], SNARGs [48], SNARKs [30],
and verifiable outsourced computation [19, 46, 49] all yield
proofs of correct execution that can be efficiently checked
by a verifier. Moreover, there is a flourishing literature sur-
rounding the refinement and implementation of these proto-
cols [20, 21, 24, 26, 28, 29, 32, 39, 42–45, 47, 61, 71, 74–
76, 80, 82, 87, 88]. On the other hand, all of this work can be
interpreted as a negative result: despite impressive speedups,
the resulting artifacts are not deployable for the application
of verifiable offloading. The biggest problem is the prover’s
burden: its computational overhead is at least 105×, and usu-
ally at least 107×, greater than the cost of just executing the
computation [91, Fig. 5].

2This is different from, and complementary to, the vast literature on hardware
verification, where the emphasis is on statically verifying that the intended
circuit design (which is assumed to be manufactured faithfully) meets a
higher-level specification.



Nevertheless, this issue is potentially surmountable—at least
in the hardware context. With CMOS technology, many costs
scale down super-linearly; as examples, area and energy reduce
with the square and cube of critical dimension, respectively [72].
As a consequence, the performance improvement, when going
from an ASIC manufactured in a trusted (older) foundry to
one manufactured in an advanced but untrusted foundry, can
be larger than the overhead of provers in the aforementioned
systems (as with the earlier example of India).

This gap implies that our motivating question potentially
has a positive answer, using protocols for verifiable out-
sourcing. However, this picture can be brought to life only
if the prover can be implemented on an ASIC in the first
place—which, owing to the constraints of hardware, is eas-
ier said than done. Many protocols for verifiable outsourc-
ing [20, 21, 24, 26, 28, 29, 32, 39, 43–45, 47, 61, 71, 74–
76, 88] have concrete bottlenecks (cryptographic operations,
serial phases, communication patterns that lack temporal and
spatial locality, etc.) that seem inconsistent with an efficient,
physically realizable hardware design (we learned this the hard
way; see Section 9).

Fortunately, there is a protocol in which the prover’s algo-
rithm uses no cryptographic operations (only field operations),
has highly structured and parallel data flows, and demonstrates
excellent spatial and temporal locality—all of which could
plausibly lead to physical realizability. This is CMT [42] (an
interactive proof that refines Muggles [49]). To be clear, CMT
(with improvements [87]) applies principally to “quasi straight-
line” computations (a term we clarify in Section 2.2). However,
we can live with this restriction because there are computations
that have the required form—particularly those that one would
have thought to implement in an ASIC to begin with (§8).

Moreover, one might naturally expect something to be sac-
rificed (in this case, generality), since our setting introduces
additional challenges to verifiable computation. First, work-
ing with hardware is inherently difficult. Second, whereas
the performance requirement up until now has been that the
verifier save work versus carrying out the computation di-
rectly [32, 42, 46, 71, 74–76, 87, 88], here we have the ad-
ditional requirement that the whole system (verifier together
with prover) has to beat that baseline.

This brings us to the work of this paper, which is to design
and implement a physically realizable, high-throughput ASIC
for a prover and verifier based on CMT; address some of the
accompanying architectural and operational challenges; and
carefully analyze, model, and experiment to understand when
the overall system, which we call Zebra, is truly motivated.

Zebra incorporates work at multiple levels of abstraction (§3).
First, Zebra makes new observations about CMT’s algorithms
to extract additional parallelism (beyond that of prior work [82])
and then exploits those observations in its design. One level
down, Zebra arranges for locality and predictable data flow:
it avoids RAM where the algorithm seems to call for it, and
avoids global communication and synchronization. At the low-
est level, we give Zebra a latency insensitive design [34], with

few timing constraints; and Zebra strategically reuses modules
and circuitry to reduce ASIC area. In addition, Zebra responds
to architectural challenges (§4), including how to meet the re-
quirement, which exists in most implemented protocols for
verifiable computation, of offline pre-processing work by the
verifier; how to endow the verifier with storage without incur-
ring the cost of a trusted storage substrate; and how to limit the
costs of the verifier-prover communication.

The core design is fully implemented (§6): Zebra includes a
compiler that takes an arithmetic circuit description directly to a
synthesizable Verilog implementation. Combined with existing
compilers that take C code to arithmetic circuit descriptions [26,
28, 29, 32, 39, 43, 71, 74, 76, 87, 88], Zebra obtains a pipeline
in which a human writes high-level software, and a toolchain
produces a hardware design.

Our evaluation of Zebra (§7) is based on detailed model-
ing (§5) and measurement. Taking into account energy, area,
and throughput, Zebra outperforms the baseline when all of the
following hold: the technology gap between P and V is at least
seven generations; the computation of interest involves tens of
thousands of operations; and these operations are “expensive”
(i.e., a quarter or more are multiplies). A specific example is the
number theoretic transform (§8): for 210-point transforms, Ze-
bra is competitive with the baseline, and on larger computations
it outperforms the baseline by 2–4×.

Though these results are encouraging, Zebra has clear limi-
tations. Even under its applicability regime (noted earlier), it
provides a gain versus the baseline only for relatively large
computations. And even when it provides a gain, the price of
verifiability is very high, when comparing to untrusted execu-
tion. Furthermore, it does not offer certain properties met by
other systems for verifiable computation (low round complex-
ity, O(1) verifier complexity, public verifiability, zero knowl-
edge properties, etc.); on the other hand, these amenities aren’t
needed in our context. Finally, Zebra’s verifier requires periodic
refreshing of pre-computed advice strings.

Despite the qualified results, we believe that Zebra, viewed
as a first step, makes contributions, both to hardware security
and to verifiable computation:

• It initiates the study of verifiable ASICs, and demonstrates
their feasibility as a response to hardware Trojans, one that
works in a much stronger threat model than most prior work
on hardware Trojans. The high-level picture was folklore,
but there have been many details to work through.

• It makes new observations about, and refinements to, CMT.
While they are of mild theoretical interest (at best), they
matter a lot for the efficiency of an implementation.

• It includes a hardware design that achieves efficiency by com-
posing techniques at multiple levels of abstraction. Though
none is worthy of its own paper, together they produce a
milestone: the first hardware design and implementation of a
probabilistic proof system.

• It performs careful modeling, accounting, and measurement
to characterize performance. At a higher level, this is the first
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FIGURE 1—Verifiable ASICs. A principal outsources the production
of an ASIC (P) to an untrusted foundry and gains high-assurance
execution via a trusted verifier (V ) and a probabilistic proof protocol.

work to identify a setting in which one can simultaneously
capture the “cost” of the prover and verifier together, and
to give an implementation of the prover and verifier for
which this quantity is less expensive than having the verifier
compute on its own.

2 Problem, background, and approach
2.1 Problem statement: verifiable ASICs

Setup and threat model. The setting for verifiable ASICs
is depicted in Figure 1. There is a principal, who defines a
trust domain. The principal could be a government, a fabless
semiconductor company that designs circuits, etc. The principal
wishes to deploy an ASIC that performs some computation Ψ,
and wishes for a third party—outside of the trust domain and
using a state of the art technology node (§1)—to manufacture
the chip. After fabrication, the ASIC, which we call a prover
P , is assumed to remain within the trust domain. In particular,
there is a trusted step in which an integrator produces a single
system by combining P with a trusted component, called a
verifier V . Furthermore, the operator (or end-user) trusts the
system that the principal delivers to it.

During operation, the prover (purportedly) executes Ψ, given
a run-time input x; P returns the (purported) output y to V . For
each execution, P and V engage in a protocol. If y is the cor-
rect output and P follows the protocol, V must be convinced;
otherwise, V must reject the output with high probability.

P can deviate arbitrarily from the protocol. However, it is
assumed to be a polynomial-time adversary and is thus sub-
ject to standard cryptographic hardness assumptions (it cannot
break encryption, etc.). This models multiple cases: P could
have been designed maliciously, manufactured with an arbitrar-
iliy modified design [79], replaced with a counterfeit [8, 52] en
route to the principal’s trust domain, and so on.

The technology node on which V executes is trusted by the
principal. For example, V could be an ASIC manufactured at

a less advanced foundry located onshore. Or V could run in
software on a general-purpose CPU manufactured at such a
foundry, or on an existing CPU that is assumed to have been
manufactured before Trojans became a concern.

V is assumed to have a source of (pseudo)random bits. V
also has private storage, configured by the principal, which
can hold the result of any offline pre-computation required or
permitted by the protocol.

There are, in this setup, requirements that surround the in-
tegration step. Our work does not specifically address them,
so we regard them as assumptions for now. First, P should
do nothing more than computing Ψ (and proving); in prac-
tice, this means P must communicate only with V and that
V ’s internal state is inaccessible to P . (This might necessitate
separate power supplies, shielding V from electro-magnetic
attacks [96], etc.; however, we acknowledge that completely
eliminating covert channels is its own topic.) Second, V may
need to include a fail-safe (such as a kill switch), to handle the
case that P conducts a denial of service attack (by returning
wrong answers, or by refusing to engage in the protocol). Fi-
nally, V may need to be electrically protected, to guard against
a P that tries to disable it.

Performance goals. A solution to the above setup makes
sense when—for the given technology nodes and the given
computation Ψ—the cost of V and P together is less than the
native baseline (§1): a chip (or CPU), in the same technology
node as V , that executes Ψ directly.

How should one measure costs? With hardware, choosing a
metric is a delicate task because of trade-offs. As one example,
a common concern is area (the size of the ASIC in square
millimeters), yet area alone cannot be the metric: a design can,
for example, iteratively re-use modules to lower area at the cost
of lower throughput. One also cares about energy consumption
because it drives the chip’s operational cost, an important factor
in many domains (datacenters, mobile computing, etc.).

The metric that we use is E ·As/T (which we sometimes
call EAsT): energy consumed by computing Ψ and running
the proof protocol (E), times area consumed by the integrated
system (As), divided by throughput (T ). This metric (or a vari-
ant that captures delay, as opposed to throughput) is commonly
used in hardware design [17, 40, 95].3 A lower score is better.
The term As is a weighted sum of area consumed in both the
trusted and untrusted technology nodes; the untrusted area is
divided by s. We leave s as a parameter, first, because s will
vary with the principal; and second, because evaluating cost of
silicon across technology nodes is a thorny topic, and arguably
a research question [33, 67].

One thing that is not explicitly captured by the EAsT metric
is physical realizability: one needs to be able to manufacture P
(and V , if it’s an ASIC). In practice, this requirement will show
up by constraining area (large chips have low manufacturing
yield owing to defects, routing issues, etc.); it will also constrain

3Energy-delay (EDP) product is commonly used as a performance metric when
evaluating software running on a CPU. In that case, silicon area is fixed, and
for single threaded execution, D = 1/T .
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power dissipation (because of heat), and thus the product of E
and T . (Recall that E has units of joules/op and T of ops/second;
E×T is in joules/second, i.e., watts.)

In addition, the metric captures only online costs. As noted
above, the protocol may involve precomputation and hence
offline costs. We will treat these costs later (§4).

2.2 Interactive proofs for verifiable computation

In responding to the requirements above, our starting point is
a protocol that we call OptimizedCMT. Using an observation
of Thaler [81] and additional simplifications and optimizations,
this protocol—which we are not claiming as a contribution
of this paper—optimizes CMT-slim [87, §3], which refines
CMT [42, §3; 82], which refines GKR [49; 50, §3]; these are
all interactive proofs [18, 49–51, 65, 77]. In the rest of this
section, we describe OptimizedCMT; this description owes
some textual debts to Vu et al. [87].

A verifier V and a prover P agree, offline, on a computation
Ψ, which is expressed as an arithmetic circuit (AC) C . In the
arithmetic circuit formalism, a computation is represented as a
set of abstract “gates” corresponding to field operations (add
and multiply) in a given finite field, F= Fp (the integers mod
a prime p); a gate’s two input “wires” and its output “wire”
represent values in F. OptimizedCMT requires that the AC be
layered: the inputs connect only to first level gates, the outputs
of those gates connect only to second-level gates, and so on.
Denote the number of layers d and the number of gates in a
layer G (we are assuming, for simplicity, that all layers, except
for the input and output, have the same number of gates).

The aim of the protocol is for P to prove to V that, for a
given input x, a given purported output vector y is truly C (x).
The high-level idea is, essentially, cross-examination: V draws
on randomness to ask P unpredictable questions about the
state of each layer. The answers must be consistent with each
other and with y and x, or else V rejects. The protocol achieves
the following; the probabilities are over V ’s random choices:

• Completeness. If y = C (x) and if P follows the protocol,
then Pr{V accepts}= 1.

• Soundness. If y ̸= C (x), then Pr{V accepts} < ε , where
ε = (⌈log |y|⌉+ 5d logG)/|F| and |F| is typically a large
prime. This is an unconditional guarantee: it holds regardless
of the prover’s computational resources and strategy.

• Efficient verifier. The verifier’s online work can be less than
computing Ψ; it is proportional to the length of the input
and output, and the depth of Ψ times the logarithm of its
width: O(d · logG+ |x|+ |y|). This assumes V has access
to advice strings that have been pre-computed offline and
independently of the input, in time O(d ·G · logG).

• Efficient prover. The prover’s total work is polylogarithmi-
cally more expensive than evaluating the circuit itself, i.e.,
O(d ·G · log 2G).

Applicability. In theory, the protocol can be applied to any suf-
ficiently “wide” computation and achieve work-savings for V
(excluding the cost of pre-processing). But in practice, it excels

for computations that have a sub-linear number of branches
(comparison operations and inequality checks), and do not rely
on indirect memory addressing. (See Allspice [87, §4.3] for
a more precise discussion of applicability.) One can think of
OptimizedCMT as best suited to computations that have quasi-
straightline arithmetic circuit implementations; we note that
several computational tasks of interest follow this form (§8).

Protocol details. Within a layer of the AC, gates are numbered
between 1 and G and have a label corresponding to the binary
representation of their number, viewed as an element of Fb

2
where b = ⌈logG⌉.

The AC’s layers are numbered in reverse order of execution,
so its inputs (x) are inputs to the gates at layer d, and its outputs
(y) are viewed as being at layer 0. At each layer i = 0, . . . ,d,
the evaluator function Vi : Fb

2→ F maps a gate’s label to the
correct output of that gate; these functions are particular to
execution on a given input x. Notice that Vd( j) returns the jth

input element and that V0( j) returns the jth output element.
Observe that C (x) = y, meaning that y is the correct output,

if and only if V0( j) = y j, for all output gates j. However, V
cannot check directly whether this condition holds: evaluating
V0(·) would require re-executing the circuit (which is ruled
out by the problem statement). Instead, the protocol allows
V to efficiently reduce a condition on V0(·) to a condition on
V1(·). That condition also cannot be checked (because it would
require executing most of the circuit), but the process can be
iterated until it produces a condition that V can check directly.

This high-level idea motivates us to express Vi−1(·) in terms
of Vi(·); to this end, define a wiring predicate addi : F3b

2 → F,
where addi(g,z0,z1) returns 1 if g is an add gate at layer i−1
whose inputs are z0,z1 at layer i, and 0 otherwise. multi is
defined analogously for multiplication gates. Now, Vi−1(g) =
∑z0,z1∈{0,1}b addi(g,z0,z1) · (Vi(z0)+Vi(z1)) +multi(g,z0,z1) ·
Vi(z0) ·Vi(z1).

An important concept is extensions. An extension (of a func-
tion f ) is a function f̃ that: works over a domain that encloses
the domain of f , is a polynomial, and matches f everywhere
that f is defined. In our context, given a function g : Fm

2 → F,
the multilinear extension (it is unique) g̃ : Fm → F is a poly-
nomial that agrees with g on its domain and that has degree
at most one in each of its m variables. Throughout this paper,
we will notate multilinear extensions with tildes. Thaler [81],
building on GKR [49, 50], shows the following:

Ṽi−1(q) = ∑
z0,z1∈Fb

2

( ˜addi(q,z0,z1) ·
(
Ṽi(z0)+Ṽi(z1)

)
+ ˜multi(q,z0,z1) ·Ṽi(z0) ·Ṽi(z1)

)
(1)

The signatures are Ṽi,Ṽi−1 : Fb→ F and ˜addi, ˜multi : F3b→ F.
At this point, Ṽi−1(·) is in a form that calls for a sum-check

protocol [65] (an interactive protocol in which a prover estab-
lishes for a verifier a claim about the sum, over a hypercube, of
a given polynomial’s evaluations).

Figure 2 depicts pseudocode for P and V . We do not have
space to justify many of these details. (See [50, §3][42, §A.1–
A.2][87, §2.2,§A][81].) Instead, we want to communicate the
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1: function PROVE(Circuit c, input x)
2: q0← ReceiveFromVerifier() // see line 56
3: d← c.depth
4:
5: // each circuit layer induces one sum-check invocation
6: for i = 1, . . . ,d do
7: w0,w1← SUMCHECKP(c, i, qi−1)
8: τi← ReceiveFromVerifier() // see line 71
9: qi← (w1−w0) · τi +w0

10:
11:
12: function SUMCHECKP(Circuit c, layer i, qi−1)
13: for j = 1, . . . ,2b do
14:
15: // compute Fj(0),Fj(1),Fj(2)
16: parallel for all gates g at layer i−1 do
17: for k = 0,1,2 do
18: // below, s ∈ F3b

2 . s is a gate triple in binary.
19: s← (g, gL, gR) // gL,gR are labels of g’s layer-i inputs
20:
21: uk← (qi−1[1], . . . ,qi−1[b],r[1], . . . ,r[ j−1], k)
22: // notation: χ : F→ F. χ1(t) = t,χ0(t) = 1−t
23: termP←∏

b+ j
ℓ=1 χs[ℓ](uk[ℓ])

24:
25: if j ≤ b then
26: termL← Ṽi (r[1], . . . ,r[ j−1], k, gL[ j+1], . . . ,gL[b])
27: termR←Vi (gR) // Vi = Ṽi on gate labels
28: else // b < j ≤ 2b
29: termL← Ṽi(r[1], . . . ,r[b])
30: termR← Ṽi (r[b+1], . . . ,r[ j−1], k, gR[ j−b+1], . . . ,gR[b])
31:
32: if g is an add gate then
33: F [g][k]← (termL+ termR) · termP
34: else if g is a mult gate then
35: F [g][k]← termL · termR · termP
36:
37: for k = 0,1,2 do
38: Fj[k]← ∑

G
g=1 Fj[g][k]

39:
40: SendToVerifier

(
Fj[0], Fj[1], Fj[2]

)
// see line 82

41: r[ j]← ReceiveFromVerifier() // see line 87
42:
43: // notation
44: w0← (r[1], . . . ,r[b])
45: w1← (r[b+1], . . . ,r[2b])
46:
47: SendToVerifier

(
Ṽi(w0), Ṽi(w1)

)
// see line 99

48:
49: for t = {2, . . . ,b}, wt ← (w1−w0) · t +w0
50: SendToVerifier

(
Ṽi(w2), . . . ,Ṽi(wb)

)
// see line 67

51:
52: return (w0,w1)

53: function VERIFY(Circuit c, input x, output y)
54: q0

R←− Fb

55: a0← Ṽy(q0) // Ṽy(·) is the multilinear ext. of the output y
56: SendToProver(q0) // see line 2
57: d← c.depth
58:
59: for i = 1, . . . ,d do
60: // reduce ai−1

?
= Ṽi−1(qi−1) to h0

?
= Ṽi(w0), h1

?
= Ṽi(w1)

61: (h0,h1,w0,w1)← SUMCHECKV(i,qi−1,ai−1)
62:
63: // reduce h0

?
= Ṽi(w0),h1

?
= Ṽi(w1) to ai

?
= Ṽi(qi):

64: // • let H(t) = Ṽi ((w1−w0)t +w0)
65: // • we want H(0), . . . ,H(b)
66: // • h0,h1 should be H(0),H(1); now expect H(2), . . . ,H(b)
67: h2, . . . ,hb← ReceiveFromProver() // see line 50
68: τi

R←− F
69: qi← (w1−w0) · τi +w0
70: ai← H∗(τi) // H∗ is poly. interpolation of h0,h1,h2, . . . ,hb
71: SendToProver(τi) // see line 8
72:
73: if ad = Ṽd(qd) then // Ṽd(·) is multilin. ext. of the input x
74: return accept
75: return reject
76:
77: function SUMCHECKV(layer i, qi−1,ai−1)

78: r R←− F2b

79: e← ai−1
80: for j = 1,2, . . . ,2b do
81:
82: Fj[0], Fj[1], Fj[2]← ReceiveFromProver() // see line 40
83:
84: if Fj[0]+Fj[1] ̸= e then
85: return reject
86:
87: SendToProver(r[ j]) // see line 41
88:
89: reconstruct Fj(·) from Fj[0],Fj[1],Fj[2]
90: // Fj(·) is degree-2, so three points are enough.
91:
92: e← Fj(r[ j])

93:
94: // notation
95: w0← (r[1], . . . ,r[b])
96: w1← (r[b+1], . . . ,r[2b])
97:
98: // P is supposed to set h0 = Ṽi(w0) and h1 = Ṽi(w1)
99: h0,h1← ReceiveFromProver() // see line 47
100: a′← ˜addi(qi−1,w0,w1)(h0 +h1)+ ˜multi(qi−1,w0,w1)h0 ·h1
101: if a′ ̸= e then
102: return reject
103: return (h0,h1,w0,w1)

FIGURE 2—Pseudocode for P and V in OptimizedCMT [42, 49, 50, 81, 87], expressed in terms of the parallelism used by TRMP [82].
Some of the notation and framing is borrowed from [87]. The protocol proceeds in layers. At each layer i, the protocol reduces the claim that
ai−1 = Ṽi−1(qi−1) to a claim that ai = Ṽi(qi); note that equation (1) in the text expresses Ṽi−1(qi−1) as a sum over a hypercube. The SumCheck
sub-protocol guarantees to V that, with high probability, this sum equals ai−1 if and only if h0=Ṽi(w0) and h1=Ṽi(w1); an additional reduction
connects these two conditions to the claim that ai = Ṽi(qi). See [50, §3][42, §A.1–A.2][87, §2.2,§A][81] for explanation of all details.
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FIGURE 3—Prover’s architecture. Each logical sub-prover handles all
of the work for a layer in a layered arithmetic circuit C of width G
and depth d.

structure of the protocol, as well as what work P must perform.
Specifically, there is one invocation of the sum-check protocol
for each of the i = 1, . . . ,d layers of the circuit. Within such an
invocation, there are 2b rounds (logarithmic in the number of
gates at a layer). Finally, notice that—despite Equation (1)—P
does not explicitly sum over a hypercube. The depicted sum, in
which each gate makes a constant contribution to each round
of the sum-check protocol, is established in CMT [42, §A.2].

3 Design of prover and verifier in Zebra
This section details the design of Zebra’s hardware prover;
we also briefly describe Zebra’s hardware verifier. As noted
in the introduction, Zebra begins from the observation that
OptimizedCMT seems amenable to implementation in hard-
ware. To go from this observation to a physically realizable,
high-throughput, area-efficient design, Zebra exploits new and
existing observations about OptimizedCMT, and uses these
observations at multiple levels of abstraction. Zebra’s specific
design ethos (for both the prover and verifier) is as follows:

• Extract parallelism. This does not reduce the total work that
must be done, but it does lead to speedups. Specifically, hold-
ing area constant, more parallelism yields better throughput.

• Exploit locality. This means avoiding unnecessary communi-
cation among individual modules: communication imposes
constraints during the synthesis process,4 which interferes
with physical realizability. Locality also refers to avoiding
dependencies among modules; in hardware, dependencies
translate to timing relationships, timing relationships create
serialization points, and serialization harms throughput.

4Synthesis is the process of translating a high-level description of a digital
circuit design into a concrete implementation in primitive logic gates. This
translation must satisfy a set of timing constraints, i.e., relationships between
signals in the design. Such constraints can be explicit (e.g., the designer
specifies the frequency of the master clock), or they can be implicit (e.g., if
one flip-flop’s input relies on a combinational function of another flip-flop’s
output, this imposes a constraint on the timing relationship between the two).

Adder tree

Compute
Ṽi (w2) ,. . . ,Ṽi (wb)

Store w0,

w1 −w0

Compute qi

Compute
Fj[g][k],

k ∈ {0,1,2}
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{

Ṽi (·) partial productsFj[g][k]

Fj[k] (once per round)

Ṽi (·) (once per sumcheck
invocation)

FIGURE 4—Design of a sub-prover.

• Reuse work. This means both reusing computation results
(saving energy), and reusing the same modules for different
parts of the computation (saving area). However, this reuse
must be carefully engineered to avoid interfering with the
previous two goals.

3.1 Overview

Figure 3 depicts the top-level design of the prover. The prover
comprises logically separate sub-provers, each multiplexed
over one or more physical modules. Each logical sub-prover
is responsible for executing a layer of C and for the proof
work that corresponds to that layer (lines 7–9 in Figure 2).
The execution runs forward; the proving step happens in the
opposite order. As a consequence, each sub-prover must buffer
the results of executing its layer, until those results will be
used in the corresponding proof step. Zebra is agnostic about
the number of physical sub-prover modules; the choice is a
classical area-throughput trade-off (§3.2).

The design of a sub-prover is depicted in Figure 4. A sub-
prover proceeds through sum-check rounds sequentially, and
reuses the relevant functional blocks over every round of the
protocol (which contributes to area efficiency). Within a round,
gate provers work in parallel, roughly as depicted in Figure 2
(line 16), though Zebra extracts additional parallelism (§3.2).
From one round to the next, intermediate results are preserved
locally at each functional unit (§3.3). At lower levels of the
design, the sub-prover has a latency-insensitive control struc-
ture (§3.3), and the sub-prover leverages careful observations to
reuse computation results, thus avoiding duplicate work (§3.4).

The design of the verifier is similar to that of the prover;
however, the verifier’s work is naturally more serial than the
prover’s, so its design aims to reuse modules (and thus save
area) without introducing execution bottlenecks (§3.5).

The rest of this section delves into details, highlighting the
innovations; our description is roughly organized around the
ethos presented earlier.
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3.2 Pipelining and parallelism

The pseudocode for P (Figure 2) is expressed in terms of
the parallelism that has been observed before [82]. Below, we
describe further parallelism extracted by Zebra’s design.

Exploiting layered circuits. The layering in the arithmetic
circuit that OptimizedCMT works over (§2.2) creates a natural
area-throughput trade-off. At one extreme, Zebra can conserve
area, by having only a single physical sub-prover, which is
iteratively “reused” for each layer of the circuit. The throughput
is given by the time to execute and prove each layer of C .

At the other extreme, Zebra can spend area, dedicate a phys-
ical sub-prover to each layer of the circuit, and arrange them
in a classical pipeline. Specifically, the sub-prover for layer i
handles successive executions, in each “epoch” always perform-
ing the proving work of layer i, and handing its results to the
sub-prover for layer i+1. The parallelism that is exploited here
is that of multiple executions; the acceleration in throughput,
compared to using a single sub-prover for all layers, is d. That
is, Zebra’s prover can produce proofs at a rate determined only
by the time taken to prove a single layer.

Zebra also handles all intermediate points (two logical sub-
provers per physical prover, etc.). The fundamental source of
the flexibility is that in both execution and proving, there are
narrow, predictable dependencies between layers (which itself
stems from OptimizedCMT’s requirement to use a layered AC).

As previously mentioned, each sub-prover must buffer results
of executing its layer of C until it has executed the correspond-
ing proof step. This results in a storage requirement propor-
tional to the maximum number of computations “in-flight” at
one time, independent of the number of physical sub-provers.

Gate-level parallelism. Within a sub-prover, and within a
sum-check round, there is parallel proving work not only for
each gate (as in prior work [82]) but also for each (gate, k) pair,
for k = {0,1,2}. That is, in Zebra, the loops in lines 16 and 17
(Figure 2) are combined into a “parallel for all (g,k)”. This is
feasible in Zebra because, loosely speaking, sharing state read-
only among modules requires only creating wires, whereas in a
traditional memory architecture, accesses are serialized.

The computation of termP (line 23) is an example. To explain
it, we first note that each gate prover stores state, which we
notate Pg. Now, for a gate prover g, let s = (g, gL, gR), where
gL,gR are the labels of g’s inputs in C . We have used g to
refer both to a given gate and its gate prover; throughout our
description, each gate prover will be numbered and indexed
identically to its corresponding gate in C .) Pg is initialized to
∏

b
ℓ=1 χs[ℓ](q[1], . . . ,q[b]); at the end of a sum-check round j,

each gate prover updates Pg by multiplying it with χs[b+ j](r[ j]).
At the beginning of a round j, Pg is shared among the the (g,0),
(g,1), and (g,2) functional blocks, permitting simultaneous
computation of termP (by multiplying Pg with χs[b+ j](k)).

Removing the Ṽi(w2), . . . ,Ṽi(wb) bottleneck. At the end of a
sum-check invocation, the prover apparently has a bottleneck:
computing Ṽi(w2), . . . ,Ṽi(wb) (line 50 in Figure 2) is costly and
serialized. (Indeed, prior work [82] performs this step at the

end.) However, Zebra observes that there is a way to compute
these quantities in parallel with the rest of the invocation, using
incremental computation and local state.

Computing Ṽi(w2), . . . ,Ṽi(wb) can be performed with
(b−1) ·G · b products (= O(G · log 2G)).5 This is because Ṽi
has to be evaluated at each of the b−1 vectors, and Ṽi has the
form:6

Ṽi(q) =
G

∑
g=1

Vi(g)
b

∏
ℓ=1

χg[ℓ](q[ℓ]), (2)

where q ∈ Fb, g[ℓ] is the ℓth bit of the binary expansion of
gate g, and q[ℓ] is the ℓth component of q. At first glance, the
required evaluation work seems as though it can be done only
after line 42 (Figure 2) because for t > 2, wt depends on w0,w1
(via wt← (w1−w0) ·t+w0), which are not fully available until
the end of the outer loop.

However, we observe that all of w0 is available after round b,
and w1 is increasingly revealed over the remaining rounds. It is
possible to exploit this observation.

Specifically, after round b + 1, the prover can perform
(b−1) ·G of the required products. To see this, notice that after
round b+1, P has w1[1] (because this is just r[b+1], which
is revealed in line 41, Figure 2). P also has w0[1] (because
w0 has been fully revealed). Thus, P has, or can compute,
w0[1], . . . ,wb[1] (by definition of wt ). Given these, P can com-
pute Vi(g) ·χg[1] (wt [1]), for g ∈ {1, . . . ,G} and t ∈ {2, . . . ,b}.

Similarly, after round b+ 2, r[b+2] is revealed; thus, us-
ing the (b− 1) ·G products from the prior round, P can
perform another (b − 1) · G products to compute and re-
tain Vi(g) ·∏2

ℓ=1 χg[ℓ] (wt [ℓ]), again for all g ∈ {1, . . . ,G}, t ∈
{2, . . . ,b}. This process continues, until P is storing Vi(g) ·
∏

b
ℓ=1 χg[ℓ] (wt [ℓ]), for all g and all t, at which point, summing

over the g is enough to compute Ṽi(wt), by Equation (2).
Zebra’s design exploits this observation with G circular shift

registers. For each update (that is, each round j, j > b), and for
each g ∈ {1, . . . ,G}, Zebra’s sub-prover reads a value from the
head of the gth circular shift register, multiplies it with a new
value, replaces the previous head value with the product, and
then circularly shifts, thereby yielding the next value to be oper-
ated on. For each g, this happens b−1 times per round, with the
result that at round j, j > b, Vi(g) ·∏ j−b−1

ℓ=1 χg[ℓ] (wt [ℓ]) is mul-
tiplied by χg[ j−b](wt [ j−b]), for g ∈ {1, . . . ,G}, t ∈ {2, . . . ,b}.
At the end, for each t, the sum over all g uses an adder tree.

3.3 Extracting and exploiting locality

Locality of data. Zebra’s sub-prover must avoid RAM, be-
cause it would cause serialization bottlenecks. Beyond that,
Zebra must avoid globally consumed state, because it would
add global communication, which has the disadvantages noted
5In fact, leveraging common factors among the partial products of each Ṽi (·)
evaluation, it is possible to reduce this work to O(G · logG); but doing so
entails substantial communication and synchronization overhead. This is an
example of the tension between reusing work and exploiting locality (§3).
Future work is a more careful study of how to incorporate this optimization.

6One knows that Ṽi, the multilinear extension of Vi, has this expression because
this expression is a multilinear polynomial that agrees with Vi everywhere that
Vi is defined, and because multilinear extensions are unique.
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earlier. These points imply that, where possible, Zebra should
maintain state “close” (in time and space) to where it is con-
sumed; also, the paths from producer-to-state, and from state-
to-consumers should follow static wiring patterns. We have
already seen two examples of this, in Section 3.2: the Pg val-
ues (which are stored in accumulators within the functional
blocks of the gate provers that need them), and the circular shift
registers. Below, we present a further example, as a somewhat
extreme illustration.

A key task for P in each round of the sumcheck protocol is
to compute termL and termR (lines 26 through 30, Figure 2), by
evaluating Ṽi(·) at various points. Prior work [42, 82, 87] per-
forms this task efficiently, by incrementally computing a basis:
at the beginning of each round j, P holds a lookup table that
maps each of the 2b− j+1 hypercube vertexes Tj = (t j, . . . , tb)
to Ṽ (r[1], . . . ,r[ j−1], Tj), where t1, . . . , tb denote bits. (We are
assuming for simplicity that j ≤ b; for j > b, the picture is
similar but not identical.) Then, for each (g,k), the required
termL can be read out of the table, by looking up the entries
indexed by (k, gL[ j+1], . . . ,gL[b]) for k = 0,1.7 This requires
updating (and shrinking) the lookup table at the end of each
round, a step that can be performed efficiently because for all
Tj+1 = (t j+1, . . . , tb) ∈ Fb− j

2 ,

Ṽi(r[1], . . . ,r[ j],Tj+1) =(1− r[ j]) ·Ṽi(r[1], . . . ,r[ j−1],0,Tj+1)

+ r[ j] ·Ṽi(r[1], . . . ,r[ j−1],1,Tj+1).

Zebra must implement equivalent logic (on-demand
“lookup”, and incremental update) but without using random-
access state. To do so, Zebra maintains 2b ≈ G registers; each
is initialized as in prior work, with Ṽi(t1, . . . , tb) =Vi(t1, . . . , tb),
for all (t1, . . . , tb) ∈ Fb

2. The update step relies on a static wiring
pattern (because, roughly speaking, each entry T is updated
based on 2T and 2T +1). Then, for the analog of the “lookup,”
Zebra delivers the basis values to the gate provers that need
them. This step uses what we call a shuffle tree: a tree of mul-
tiplexers in which the basis values are inputs to the tree at
multiple locations, and the outputs are taken from a different
level of the tree at each round j. The effect is that, even though
the basis keeps changing (by the end, it is only two elements),
the required elements are sent to all of the gate provers.

Locality of control. Zebra’s prover must orchestrate the work
of execution and proving. The naive approach would be a top-
level state machine controlling every module. However, this
approach would destroy locality (control wires would be sent
throughout the design), and create inefficiencies (not all mod-
ules have the same timing, leading to idling and waste).

Instead, Zebra’s prover has a latency-insensitive design.
There is a top-level state machine, but it handles only natu-
ral serialization points (such as communication with the veri-
fier). Otherwise, Zebra’s modules are arranged in a hierarchical
structure: at all levels of the design, parents send signals to
children indicating that their inputs are valid, and children pro-
duce signals indicating valid outputs. These are the only timing
7These values (multiplying one by 2 and the other by -1, and summing) also
yield termL for k = 2, which is a consequence of Equation (2).

relations, so control wires are local, and go only where needed.
As an example, within a round of the sum-check protocol, a
sub-prover instructs all gate provers g to begin executing; when
the outputs are ready, the sub-prover feeds them to an adder tree
to produce the required sum (line 38, Figure 2). Despite the fact
that gate provers complete their work at different times (owing
to differences in, for example, mult and add), no additional
control is required.

3.4 Reusing work

We have already described several ways in which a Zebra
sub-prover reuses intermediate computations. But Zebra’s sub-
provers also reuse modules themselves, which saves area. For
example, computing each of Fj(0),Fj(1),Fj(2) uses an adder
tree, as does computing Ṽi(w2), . . . ,Ṽi(wb) (§3.2). But these
quantities are never needed at the same time during the proto-
col. Thus, Zebra uses the same adder tree.

Something else to note is that nearly all of the sub-prover’s
work is field operations (indeed, all multiplications and addi-
tions in the algorithm, not just the AC C , are field operations).
This means that optimizing the circuits implementing these
operations improves the performance of every module of P .

3.5 Design of V

In many respects, the design of Zebra’s verifier is similar to the
prover; for example, the approach to control is the same (§3.3).
However, the verifier cannot adopt the prover’s pipeline struc-
ture: for the verifier, different layers impose very different
overheads. Specifically, the verifier’s first and last layers are
costly (lines 55, 73 in Figure 2), whereas the interior layers are
lightweight (in part because of the precomputed advice strings;
see §4 and line 100 of Figure 2).

To address this issue, Zebra makes two observations. First,
the work of the first and last layers can happen in parallel; this
work determines the length of a pipeline stage. Within that
length, interior layers can be handled sequentially (for example,
two or more interior layers can happen during one of the stages;
the exact ratio depends on the length of the input and output,
versus logG). As noted earlier (§3.2), sequential work enables
area savings (through reuse), and in this case the savings do not
detract from throughput. Together, these observations permit
flexibility: the designer can choose parameters to optimize the
ratio of the verifier’s area and throughput (§5, §7.4).

4 System architecture
Having described the design of P and V , we articulate sev-
eral challenges of system architecture and operation, and walk
through Zebra’s responses.

Precomputation and amortization. All built systems for ver-
ifiable computation (except CMT applied to highly regular
ACs) presume offline precomputation on behalf of the veri-
fier that exceeds the work of simply executing the computa-
tion [20, 21, 24, 26, 28, 29, 32, 39, 42–45, 47, 61, 71, 74–
76, 80, 82, 87, 88]. They must therefore—if the goal is to save
the verifier work—amortize the precomputation in one way
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or another. In Zebra, the integrator is presumed to install the
results of this precomputation as advice strings (§2.2) in V ’s
private storage (§2.1); V consumes one advice string for each
execution. This description raises three questions, which we
answer below: (1) What is the required precomputation and ad-
vice string? (2) What happens when V ’s storage is exhausted?
(3) How does the work of creating the advice strings amortize?

The required precomputation (whose asymptotic cost is
given in Section 2.2) is to evaluate ˜addi(qi−1,r[1], . . . ,r[2b])
and likewise for ˜multi (line 100, Figure 2), for i = {1, . . . ,d}
(as well as some lower order work to compute Lagrange co-
efficients, to accelerate the computation of H∗ in line 70). As
an important optimization, V ’s advice string includes, in ad-
dition to the aforementioned quantities, a pseudorandom seed.
Using this seed, V can rederive the pseudorandom inputs to
the precomputation (namely the d · (2b+ 1)+ b− 1 pseudo-
random field elements, coming from lines 54, 68, and 78, in
Figure 2). Without this optimization, V would need to store
these quantities directly, because the protocol requires V to
successively reveal them to P . The optimization reduces V ’s
storage costs by approximately 2/3. Per-execution, the advice
string is the aforementioned evaluations, plus the seed, for a
total of d · (b+2)+1 field elements.

When storage is exhausted, the principal must securely re-
fresh with new advice strings computed offline. Thus, it is the
responsibility of the principal to select the storage parameter
according to the application. For example, at a throughput of
104 executions per second, and roughly 104 bytes per advice
string, a 1TB memory suffices for 104 seconds.

To amortize this work, Zebra presumes that the integrator
reuses the precomputations over all V (for example, over all
V chips that are currently operating).8 Preserving soundness in
this regime requires that each extant prover is isolated, a stipu-
lation of the setup (§2.1). Asymptotically, since pre-computing
one advice string requires O(d ·G · logG) offline computation,
as long as the number of operating verifiers is substantially
larger than logG, then the overhead of the pre-computation can
be amortized to negligible across the entire deployment of V .

Managing storage costs. Given the number of precomputa-
tions that V ’s private storage must hold, it could impose an
enormous area cost to build that storage in the trusted tech-
nology node. Zebra’s solution is to endow V with untrusted
storage, and to layer an authentication-encryption protocol.
Specifically, V and the integrator are assumed to share an en-
cryption key (that V can protect in a small amount of trusted
storage). When V ’s integrator installs into (untrusted) storage,
it provides the data in (authenticated) encrypted form using the
key; when V retrieves, it decrypts, implicitly checking authen-
tication and rejecting (implying halting, entering the fail-safe
state, etc. (§2.1)) if tampering is detected. (Note that we do

8Allspice, for example, handles the same issue with batch verification [87, §4]:
the evaluations, and the random values that feed into them, are reused over
parallel instances of the proof protocol (on different inputs). But batch verifica-
tion, in our context, would require P to store intermediate gate values (§3.2)
for the entire batch.

not need ORAM: given the protocol, V ’s access pattern is
known.) We account for V ’s cost for AES in our modeling and
evaluation (§5, §7).9

Communication and integration. The default integration
approach—a printed circuit board—would limit bandwidth
and impose high cost in energy (and thus EAsT) for commu-
nication. This would be problematic for Zebra because the
protocol contains a lot of inter-chip communication (for P , it
is lines 8, 40, 41, 47, and 50; for V , lines 67, 71, 82, 87, and
99). Moreover, the preceding paragraph added communication
because V ’s storage is on a different chip. Zebra’s response
is to draw on 3D packaging technology [64], in which ASICs
can be vertically stacked and connected using a dense array
of short vertical interconnects, referred to as through-silicon
vias (TSVs). This enables high bandwidth and low energy com-
munication between chips (§5). This arrangement requires the
integrator (§2.1) to have access to 3D packaging technology.
This assumption seems reasonable, first, because vertical inter-
connects, even in the most advanced 3D packages, are several
times larger than the length of a transistor in a relatively mature
technology. Moreover, several small vendors already provide
trusted 3D packaging services to government agencies [10]
(albeit for a different purpose [57]).

5 Cost analysis and accounting
This section presents an analytical model for the energy, area,
and throughput costs of Zebra when applied to ACs of width
G and depth d. The cost model serves as an expository tool
to understand Zebra’s performance on the EAsT metric. The
following rough analogies hold: E is the number of operations
in a single execution of OptimizedCMT; As is the parallelism
with which Zebra executes; and T is limited by the critical path
of execution.

Figure 5 summarizes the cost model. It covers the follow-
ing operations: (1) protocol execution (compute; §2.2, Fig. 2);
(2) communication (tx; §2.2); (3) storage (and decryption for
V ; store; §4); and (4) for V , pseudorandom number generation
(PRNG; §4). In Section 7.1, estimates for the parameters are
derived through synthesis and simulation.

Energy and area costs. The energy costs relate to the run-
time invocations of operations (1)–(4) in P and V . Area costs
reflect Zebra’s design, i.e., the number of hardware modules
allocated, and the way those modules are shared among oper-
ations. We observe, and later affirm in Section 7.2, that field
arithmetic dominates energy and area costs for P and V . Many
of Zebra’s design decisions and optimizations (§3) show up in
the constant factors in the energy and area “compute” rows.

Area and throughput trade-offs. Zebra’s throughput is de-
termined by the slowest pipeline delay in either V or P; that
is, the pipeline delay of the faster component can be increased
without hurting throughput. The cost model includes parame-

9We find that in practice this cost is modest: the energy to decrypt one field
element is about one-fifth the cost of a field multiply (§7.1, Figs. 6, 7). Mean-
while, V executes 7× more multiplications than decryptions (§5).
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cost verifier prover
energy

compute (7d logG+6G)Emul,t +(15d logG+2G)Eadd,t dG log 2G ·Emul,u +9dG logG ·Eadd,u +4dG logG
〈
Eg,u

〉
tx (2d logG+G)Etx,t (7d logG+G)Etx,u

store d logG ·Esto,t 2dG ·Esto,u
PRNG 2d logG ·Eprng,t —

area
compute nV ,sc

(
2Amul,t +3Aadd,t

)
+2nV ,io

(
Amul,t +Aadd,t

)
nP,sc

(
7G ·Amul,u + ⌊7G/2⌋ ·Aadd,u

)
tx (2d logG+G)Atx,t (7d logG+G)Atx,u

store d logG ·Asto,t 2dG ·Asto,u
PRNG 2d logG ·Aprng,t —

delay: Zebra’s overall throughput is 1/max(P delay,V delay)
max

{
d/nV ,sc

(
2logG

(
λmul,t +2λadd,t

)
+ ⌈(7+ logG)/2⌉λmul,t +4λadd,t

)
,(⌈

3G/nV ,io + lognV ,io
⌉)

λmul,t +
⌈
lognV ,io

⌉
λadd,t

} d/nP,sc
[
3log 2G ·λadd,u +18logG

(
λmul,u +λadd,u

)]
nV ,io: V parameter; trades area vs i/o delay

〈
Eg,u

〉
: mean per-gate energy of C , untrusted d: depth of arithmetic circuit C

nV ,sc: V parameter; trades area vs sumcheck delay nP,sc: P parameter; trades area vs delay G: number of gates in one layer of C
E{add,mul,tx,sto,prng},{t,u}: energy cost in {trusted, untrusted} technology node for {+, ×, transmit, store, PRNG}
A{add,mul,tx,sto,prng},{t,u}: area cost in {trusted, untrusted} technology node for {+, ×, transmit, store, PRNG}
λ{add,mul},{t,u}: delay in {trusted, untrusted} technology node for {+, ×}

FIGURE 5—V and P costs as a function of C parameters and technology nodes (simplified model). Energy and area of transmit, store,
and PRNG indicate costs for a single element of Fp. Transmit, store, and PRNG occur in parallel with execution; thus, their delay is not
included, provided that the corresponding circuits execute quickly enough (§5, §7.1). Physical quantities depend on both technology node and
implementation particulars; we give values for these quantities in Section 7.1.

ters to allow Zebra to trade increased pipeline delay for reduced
area by removing functional units (e.g., sub-provers) in either
P or V (§3.2, §3.5). Such trade-offs are typical in hardware
design [69]; in the current context, they are used to optimize
Zebra’s EAsT score by balancing V ’s and P’s delays (§7.4).

For P , this parameter is nP,sc: the number of physical sub-
prover modules (§3.2). For V , these parameters are nV ,sc and
nV ,io: roughly, the area apportioned to sum-check work versus
computation over C ’s inputs and outputs, respectively (§3.5).
During our evaluation and synthesis, these parameters will be
constrained to keep area at or below some fixed size, to reflect
manufacturability constraints.

Storage versus precomputation. Our cost model captures on-
line costs, only. Thus, it accounts for the area and energy nec-
essary to store, retrieve, and decrypt the precomputed advice
strings (§4) but does not cover the costs of computing those
strings (these costs were briefly treated in Section 4).

6 Implementation of Zebra
Our implementation of Zebra comprises four components.

The first component of Zebra is a compiler toolchain that pro-
duces P . The toolchain takes as input a high-level description
of an AC (in the format required for use with the Allspice com-
piler [1]), the implementation trade-off parameter nP,sc (§5,
§7.4), and designer-supplied primitive blocks for field addition
and multiplication in Fp; the toolchain produces a synthesiz-
able SystemVerilog implementation of Zebra. The compiler is
written in C++, Perl, and SystemVerilog (making heavy use of
the latter’s metaprogramming facilities [5]).

Second, Zebra contains a parameterized implementation of
V in SystemVerilog. As with P , the designer supplies primi-
tives for field arithmetic blocks in Fp. Additionally, the designer
selects the parameters nV ,sc and nV ,io (§5, §7.4).

Third, Zebra contains a C/C++ library that implements V ’s
input-independent precomputation for a given AC, using the
same high-level description as the toolchain for P .

Finally, Zebra implements a framework for cycle-accurate
RTL simulations of complete interactions between V and P .
For this purpose, Zebra extends standard RTL simulators (tested
with Cadence Incisive [2] and Icarus Verilog [4]) with an inter-
face that abstracts communication between P and V (§2.2),
and between V and its private memory (§4). The interface is
written in C using the Verilog Procedural Interface (VPI) [5].

In total, our implementation comprises approximately 6000
lines of SystemVerilog, 9500 lines of C/C++ (partially inher-
ited from Allspice [1]), 600 lines of Perl, and 300 lines of
miscellaneous scripting glue.

7 Evaluation
In this section, we seek to answer: For which ACs can Zebra
outperform other techniques for high-assurance execution?

We evaluate Zebra on synthetic benchmarks across a range
of arithmetic circuit sizes and physical parameters. We find
that, on computations to which Zebra applies—i.e., quasi-
straightline computations (§2.2)—it can meet or exceed the
performance of optimized baseline implementations when both
(1) the technology gap between V and P is at least seven gen-
erations; and (2) the computation is “hard” for the baseline, i.e.,
it involves tens of thousands of operations, and those operations
are expensive on average (that is, at least a quarter of them are
multiplies, which are substantially costlier than adds; §7.1).
At a high level, the first condition helps offset P’s proving
costs, and the second ensures that V ’s savings overwhelm the
overhead of participating in the protocol (§2.2).

Section 8 makes this evaluation concrete by comparing Zebra
to a real-world baseline on an application of real interest.
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350 nm (V ) 45 nm (P)

Fp +Fp Fp×Fp Fp +Fp Fp×Fp

energy (nJ/op) 3.1 220 0.006 0.21
area (µm2) 2.1×105 27×105 6.5×103 69×103

delay (ns) 6.2 26 0.7 2.3

FIGURE 6—Synthesis data for field operations in Fp, p = 261−1.

Method. Zebra’s implementation allows us to evaluate using
cycle-accurate SystemVerilog simulations, and by synthesizing
directly to hardware. However, this approach comes with a prac-
tical limitation: synthesizing and simulating even a moderately-
sized chip design can take hundreds of core-hours; meanwhile
the aim here is to characterize Zebra over a wide range of ACs.
Thus, we leverage the analytical cost model for Zebra described
in Section 5. We do so in three steps.

First, we obtain values for the parameters of this model, i.e.,
the energy, area, and delay of Zebra’s basic operations (§5,
(1)–(4)), using a combination of hardware synthesis results and
data published in the literature. This is described in Section 7.1.

Next, in Section 7.2, we validate the cost model by compar-
ing predictions from the model with synthesis results of one full
layer of P , and cycle-accurate simulations of an entire Zebra
instance. The synthesis and simulation data closely match our
analytical predictions.

Finally, we use the validated cost model to compare Zebra
against several baselines. A natural baseline for comparison
is high-assurance execution in a trusted technology; in Sec-
tion 7.3, we describe how we estimate the baseline costs, and
in Section 7.4, we evaluate how Zebra relates to (and can out-
perform) the baseline. In Section 7.5, we compare Zebra with
alternate approaches to high-assurance execution, i.e., lazy re-
execution and execution on a trusted CPU. In Section 7.6, we
briefly discuss the “price of verifiability” by comparing Zebra
to an approach that simply foregoes high-assurance.

7.1 Estimating parameters

Synthesis of field operations. Figure 6 reports synthesis data
for both field operations in Fp for prime p = 261− 1. This
prime allows for an efficient and easily implementable modular
reduction. Both operations were written in Verilog and synthe-
sized using Cadence RTL Compiler to two technology libraries:
Nangate 45 nm Open Cell [6] and a 350 nm library from NC
State University and the University of Utah [7].

Communication, storage, and PRNG costs. Figure 7 reports
area and energy costs of communication, storage, and random
number generation using published measurements from built
chips. Specifically, we take results from CPUs built with 3D
packaging [64]; longitudinal studies of RAM costs [86]; and
ASICs for cryptographic operations [53, 55, 83].

For all parameters, we use standard CMOS scaling models
to extrapolate to other technology nodes for evaluation.10

10A standard technique in CMOS circuit design is projecting how circuits will
scale into other technology nodes. Modeling this behavior is of great practical
interest, because it allows accurate cost modeling prior to designing and
fabricating a chip. As a result, such models are regularly used in industry [54].

350 nm (V ) 45 nm (P)

pJ/Fp µm2/(Fp/ns) pJ/Fp µm2/(Fp/ns)

tx 1100 3400 600 1900
store 42×103 380×106 550 1900

PRNG 8700 17×106 — —

FIGURE 7—Costs for communication, storage (including decryption,
for V ), and PRNG. These costs are extrapolated from published re-
sults [53, 55, 64, 83, 86] using standard scaling models [54].

logG measured predicted error

area 4 8.76 9.42 +7.6%
(mm2) 5 17.06 18.57 +8.8%

6 33.87 36.78 +8.6%
7 66.07 73.11 +11%

delay 4 682 681 -0.2%
(cycles) 5 896 891 -0.6%

6 1114 1115 +0.1%
7 1358 1353 -0.4%

+,× ops 4 901, 1204 901, 1204 0%
5 2244, 3173 2244, 3173 0%
6 5367, 8006 5367, 8006 0%
7 12494, 19591 12494, 19591 0%

FIGURE 8—Comparison of cost model (§5) with measured data. Area
numbers come from synthesis; delay and operation counts come from
cycle-accurate RTL simulation.

7.2 Validating the cost model

To validate our cost model (§5), we synthesize the full P logic
for one layer of an arithmetic circuit of alternating addition
and multiplication gates for several values of G. We also per-
form cycle-accurate RTL simulations for the same P logic,
and record the pipeline delay (§5, Fig. 5) and the number of
invocations of field addition and multiplication.11

Fig. 8 compares the data obtained from synthesis/simulation
to that predicted by our model. Our model predicts slightly
greater area than the synthesis results show. This is likely be-
cause, in the context of a larger circuit, the synthesizer has more
information (e.g., related to critical timing paths), and thus is
better able to optimize the field arithmetic primitives.

Although we have not presented a similar validation of V ’s
costs, our cost model has similar fidelity for V .

7.3 Baseline: native trusted implementations

For a quasi-straightline AC parameterized with depth d, width
G and a δi fraction of multiplication gates, we estimate the
costs of a “reasonable” implementation in the trusted tech-
nology node. To do so, we devise an optimization procedure
to minimize E ·As/T cost (§2.1) for such a circuit under the
constraint that total area is limited to some maximum value.

Optimization proceeds in two steps. In the first step, the
procedure apportions area to multiplication and addition prim-

11We use the number of field operations as a proxy for the energy consumed
by P’s sub-provers in executing the protocol. This gives a good estimate
because (1) the sub-prover’s area is dominated by these circuits (Fig. 8), and
(2) the remaining area of each sub-prover is dedicated to control logic, which
includes only slowly-varying signals (implying negligible energy cost).

11
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(a) Performance vs d.
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(b) Performance vs G.
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(c) Performance vs δi.
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(d) Performance vs trusted node.

7 14 22 35 45

10
−2

10
−1

10
0

untrusted process technology, nm

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 n
at

iv
e

ba
se

lin
e 

(h
ig

he
r 

is
 b

et
te

r)

 

 

s=10
s=3
s=1
s=1/3

(e) Performance vs untrusted node.
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(f) Performance vs maximum chip area.

FIGURE 9—Zebra performance relative to baseline (§7.3) on E ·As/T metric (§2.1), varying C parameters, technology nodes, and maximum
chip area. In each case, we vary one parameter and fix the rest. Fixed parameters are as follows: trusted technology node = 350 nm; untrusted
technology node = 7 nm; depth of C , d = 20; width of C , G = 214; fraction of multipliers in C , δi = 0.5; maximum chip area, Amax = 200 mm2.
In all cases, designs follow the optimization procedures described in Sections 7.1–7.3.

itives, based on δi and on the relative time and area cost of
multiplication and addition primitives. In the second step, the
procedure chooses a pipelining strategy that minimizes delay,
subject to sequencing requirements imposed by C ’s layering.

It is possible, with hand-optimization, to exploit the structure
of particular ACs in order to improve upon this optimization
procedure; our goal is a procedure that gives good results for
a generic quasi-straightline AC. We note that our strategy is
roughly similar to the one used by automated hardware design
toolkits such as Spiral [69].

7.4 Zebra versus baseline

This section evaluates the performance of Zebra versus the
baseline high-assurance implementation described immediately
above, on the metric E ·As/T , as a function of C parameters
(G, d, δ ), and as a function of technology nodes and maximum
allowed chip size. We vary each of these parameters, one at a
time, fixing others. Fixed parameters are as follows: d = 20,
G = 214, δi = 0.5, trusted technology node = 350 nm, untrusted
technology node = 7 nm, and Amax = 200 mm2.

We do not report power dissipation, though it is a concern
for physical realizability (§2.1). However, when Zebra is com-
petitive with the baseline (on EAsT), its power dissipation is
lower, since Zebra reduces energy consumption by more than
it increases throughput (Figs. 12a, 12c; §8).

At the outset of an experiment, we optimize nV ,io, nV ,sc,
and nP,sc (§5, Fig. 5). To do so, we first set nV ,io and nV ,sc to

balance delay among V ’s layers (§3.5), and to minimize these
delays subject to area limitations. We then choose nP,sc so that
P’s pipeline delay is no greater than V ’s.

Figure 9 summarizes the results. In each plot, the break-
even point is designated by the dashed line at 1. We vary s ∈
{1/3,1,3,10}; this is the downweighting factor for As (i.e., As =
Atrusted +Auntrusted/s; §2.1).

We observe the following trends:
• As C grows in size (Figs. 9a, 9b) or complexity (Fig. 9c),12

Zebra’s performance improves compared to the baseline.
This is because, for small circuits or those of low complexity,
V ’s savings are not significant compared to the overhead of
executing the protocol (§2.2).

• As the performance gap between the trusted and untrusted
technology nodes grows (Figs. 9d, 9e), Zebra becomes in-
creasingly competitive with the baseline. This is because
Zebra relies on the technology gap to defray the high cost,
for P , of participating in the protocol.

• Figure 9b illustrates a tension between V ’s savings versus
the baseline on complex circuits and P’s work over such
circuits: as logG grows, P’s costs increase dramatically (§5,
Fig. 5), resulting in increased P area. This is demonstrated
by the s = 1/3 curve, which is highly sensitive to P’s area.

• Finally, we note that Zebra’s competitiveness with the base-
line is relatively insensitive to maximum chip area (Fig. 9f).

12Recall from Fig. 6 that multiplication is much more expensive than addition.
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(b) Performance vs G.
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(c) Performance vs δi.

FIGURE 10—Zebra-lazy performance relative to lazy re-execution baseline (§7.5) on E ·As metric (§2.1, §7.5), varying C parameters. In
each case, we vary one parameter and fix the rest. Fixed parameters are as follows: trusted technology node = 350 nm; untrusted technology
node = 7 nm; depth of C , d = 20; width of C , G = 214; fraction of multipliers in C , δi = 0.5; maximum chip area, Amax = 200 mm2.

7.5 Zebra versus other approaches

How do Zebra’s costs compare to other approaches to verifiable
execution? We consider two alternatives to the baseline of
Section 7.3: (1) execution on untrusted hardware, followed by
lazy re-execution on trusted hardware at a later point13; and
(2) evaluating C on a trusted general purpose CPU (instead of
an ASIC).

Execute now, check later. To evaluate the first alternative, we
compare to an alternative instantiation of Zebra, which we call
Zebra-lazy. In Zebra-lazy, outputs are computed as quickly as
possible, on the same chip as P; later—on the same time scale
as alternative baseline (1)—P convinces V that this answer
was correct, using the same machinery as Zebra.

Note that both Zebra-lazy and lazy re-execution yield re-
sults of computations at the same rate, namely, the speed of
the untrusted chip. Thus, we compare these solutions using a
simplified metric, E ·As, where we further stipulate that both
solutions occupy the same area in the trusted technology node
(note that we still charge Zebra-lazy for untrusted area).

For this comparison, we fix parameters as in Section 7.4,
and we measure E ·As versus C parameters d, G, and δi. Fig-
ure 10 summarizes the results. Zebra-lazy is still competitive
with the lazy re-execution baseline, but the two systems are
closer in performance. This is because, especially for “hard”
computations (i.e., deep arithmetic circuits comprising mostly
multiplications), Zebra gains a throughput advantage (and con-
versely on arithmetic circuits comprising mostly additions, it
takes a speed penalty). Meanwhile, throughput is not part of
the metric for the lazy setting.

Execute on trusted CPU. As an alternative to producing an
ASIC in a trusted technology node, a principal might instead
manufacture a general-purpose CPU for high-assurance exe-
cution, or even purchase older CPUs that the principal deems
trustworthy (§2.1). A detailed analysis of these options requires
addressing architecture and integration issues (like those in Sec-

13This scenario obtains, among others, when the principal is able to take com-
pensating measures after discovering that the untrusted hardware executed
incorrectly. For example, a bank that discovers an incorrectly-processed
transaction can coordinate with other banks to revert the transaction.

tion 4); but in general, because CPUs are far less efficient than
purpose-built ICs, this approach will not yield a system that is
comparable with Zebra on the E ·As/T metric. Of course, other
concerns (e.g., simplicity or ease of development) may militate
in favor of the trustworthy CPU option; further treatment of
these trade-offs is future work.

7.6 What is the price of verifiability?

A remaining high-level question is: what is the price of ver-
ifiability? It’s clear from our evaluation that it is high: after
all, Zebra only beats implementation in a trusted technology
node when assisted by a far more advanced untrusted node, and
only for sufficiently complex computations. Still, we regard
this as progress: Zebra enables better performance than a native
baseline, while preserving the latter’s trustworthiness.

8 Applying Zebra to the NTT
This section evaluates Zebra on a specific computation of inter-
est: the number theoretic transform over Fp.

8.1 Number theoretic transform over Fp

The Number Theoretic Transform is an algorithm closely
related to the FFT that takes as input, the coefficients,
a0, . . . ,an−1, of a degree n− 1 polynomial p(x), and returns
the tuple p(ω0), . . . , p(ωn−1), where ω is a primitive nth root
of unity in the field Fp. This transform is used prolifically in
computer algebra packages and in cryptographic algorithms
such as the SWIFFTX hash function [16]. Given its use in
security-critical cryptographic applications, it is a suitable can-
didate for verifiable execution in hardware.

We implemented an iterative version of the NTT in Zebra
using the standard sequence of butterfly operations [41]. This is
convenient because this algorithm, which is the fastest known,
is essentially given as an arithmetic circuit. However, this arith-
metic circuit induces overhead when naively implemented in
Zebra; we next refine OptimizedCMT to reduce that overhead.

8.2 Expanding Zebra’s arithmetic circuit toolbox

The arithmetic circuit for NTT directly encodes the required
butterfly operations. Each butterfly operation takes as input

13



x1,x2 ∈ Fp, and outputs y1 = ω i (x1 + x2) and y2 = ω j (x1− x2)
for some i, j ∈ {0, . . . ,n−1}.

Recall from Section 2.2 that OptimizedCMT supports arith-
metic circuit gates corresponding to + and ×. While this is
sufficient for computing the butterfly operation, it is ineffi-
cient: computing the difference x1−x2 requires first computing
−1×x2. This increases the number of gates in each butterfly cir-
cuit; more importantly, it increases the depth of the AC, which
increases both E (because it requires additional sumcheck invo-
cations) and As/T (because performing these additional sum-
check invocations either requires more computational units, or
increases the work for existing ones).14

To address this limitation, we follow an observation by
CMT [42, §3.2] and introduce a small refinement to Opti-
mizedCMT: direct support for subtraction gates. For P , this
change requires adding a new type of gate prover (§3.1).
For V there are two small changes. First, we define a new
wiring predicate (§2.2), subi, and its multilinear extension

˜subi : F3b → F. During V ’s final computation at the end of
each sumcheck round (line 100, Fig. 2), V adds an additional
term ˜subi(qi−1, w0, w1)(h0−h1) accounting for the new gates.
Second, V must retrieve from its private memory one additional
precomputed value per round (§4).

This modification to Zebra mitigates overhead associated
with the butterfly operations, at the cost of a small, constant
amount of additional computation and storage per layer of C .

8.3 Evaluation

Baseline and assumptions. The baseline is a direct implemen-
tation of the iterative arithmetic circuit for the NTT, optimized
for E ·As/T as described in Section 7.3. Our direct implementa-
tion is similar to hardware generated by the Spiral toolkit [69],
a package for generating optimized hardware implementations
of linear transforms.

In optimized NTT implementations, computing powers of ω

is often inexpensive because ω can sometimes be chosen as a
power of 2 (and thus multiplication by ω is just a bit shift). To
model this optimization, we conservatively do not charge for
computing powers of ω in our baseline.

On the other hand, for a length-n NTT, Zebra must either
take n/2 powers of ω as inputs, or compute these values within
C . Because V ’s costs scale linearly with the number of inputs
but only logarithmically with the size of each layer of C (§5),
computing powers of ω in C seems to be the natural approach—
but a naive implementation dramatically increases the depth of
C , erasing any savings. We observe that only 2i−1 distinct pow-
ers of ω are needed before the ith butterfly operation. Thus, by
providing as inputs only the logn powers {ω,ω2,ω4,ω8, . . .},
and by constructing each layer of C to compute powers of ω

just as they are needed, we reduce the number of inputs to
C from 3n/2 to n+ logn with no increase in depth, improving
E ·As/T by 25% or more when logn≥ 10.

14In Section 7.4, increasing d improved the performance of Zebra relative to
the baseline; but in that case, depth increased for both Zebra and the baseline.
Here the restriction to + and × comes from OptimizedCMT, and does not
apply to the baseline, so baseline d would not increase.
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FIGURE 11—Zebra performance relative to baseline (§7.3, §8.3) on
E ·As/T metric (§2.1), for number theoretic transform with a given
number of points, over Fp, p = 263 +219 +1. Untrusted technology
node = 350 nm; trusted technology node = 7 nm; maximum chip area,
Amax = 200 mm2.

Method and results. We now evaluate Zebra versus the base-
line described immediately above on the metric E ·As/T , for
length-n NTTs over Fp, p = 263 +219 +1.15 As in Section 7.4,
we fix trusted technology node = 350 nm, untrusted technology
node = 7nm, and Amax = 200 mm2. We consider the cost weight-
ing parameter s ∈ {1/3,1,3,10}, and vary logn ∈ {6, . . . ,13}.

For the baseline, we compute E · As/T when area and
pipeline stages are optimally partitioned subject to C and
area limitations. For Zebra, we generate Verilog for P and
V using our compiler toolchain (§6) and run cycle-accurate
RTL simulations for sizes up to logn = 6 using Cadence Inci-
sive [2].16 From these simulations we obtain (1) exact cycle
counts (throughput), (2) exact field operation counts (energy),
and (3) exact field arithmetic module counts (area); we use
these to confirm that our cost model is still correctly calibrated
for the new field (§5, §7.2). We use the cost model to compute
E ·As/T for larger n.

Figure 11 shows Zebra’s performance compared to the base-
line. Consistent with the results of Section 7.4, Zebra is not
competitive for small computations, but it equals or exceeds
the baseline when C is large enough.

To better understand why Zebra wins, we also compare Zebra
and the baseline on each of E, As, and T individually. Figure 12
illustrates the results. At large NTT sizes, Zebra improves over
the baseline on both E and T (Figs. 12a, 12c); in other words,
for large computations, V executes fewer operations than the
native baseline (this is consistent with the notion that V saves
work by outsourcing; §2.2); and fewer operations executed
translates to greater throughput. However, this advantage is
diminished by the fact that the native computation is only about
30% multiplications (recall that this is a disadvantage for Zebra;
§7.4); this is reflected in V ’s requiring larger NTT sizes to win
on T (Fig. 12c). Finally, because Zebra and the baseline are
constrained to the same trusted area (and P’s area is nonzero),
Zebra never wins on As (Fig. 12b); for larger NTTs (i.e., as

15We use a different field from §7.1 because the NTT requires a field with a
subgroup of size 2n; this requirement is fulfilled by this p for n≤ 19.

16This limit on simulation size reflects a practical issue: larger NTT sizes entail
hours or days of simulation and massive amounts of RAM, even when using
a highly optimized commercial Verilog simulator.
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(a) Relative E vs. NTT size.
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(b) Relative As vs. NTT size.
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(c) Relative T vs. NTT size.

FIGURE 12—Individual performance comparisons of E, As, and T , for the number theoretic transform experiments (§8.3, Fig. 11).

P’s area grows), As worsens compared to the baseline.
We conclude that Zebra applies to computations of interest,

and gives materially better performance for E, T , and E ·As/T
than an optimized baseline, but uses more (untrusted) area.

9 Discussion
Zebra is not perfect. As our evaluation makes clear, its over-
head is high (relative to untrusted execution), and it does not
beat the baseline in all cases. On the other hand, the perfor-
mance requirement, of including the prover in the cost when
considering the break-even point, is extremely stringent (as
noted earlier, prior works on verifiable computation work in a
model in which only the verifier has to beat native execution).
Furthermore, even if Zebra is more expensive than the baseline
of executing directly on the trusted platform, it may still be war-
ranted. Zebra’s verifier can be fabbed once, or a small number
of times (with different design parameters; §3, §5), and then
the computation (C ) that it applies to can be configured after-
ward (C shows up in V ’s workload through the precomputed
advice strings). Comparing the reuse of V ’s design and pro-
duction to the fab-it-each-time requirement under the baseline,
Zebra might be more attractive, its operational restrictions (§4)
notwithstanding.

Moreover, as noted in the introduction, we expected to have
to sacrifice something. Indeed, getting anything at all to work
in hardware was challenging. We began this project by study-
ing alternative verifiable computation machinery, based on
GGPR [47], specifically Zaatar [74] and Pinocchio [71]. How-
ever, despite several months of work, we were unable to pro-
duce a physically realizable design that achieved reasonable
throughput. The core reasons for this are severalfold. First,
GGPR-based frameworks require expensive cryptographic op-
erations, which are challenging to program in hardware. Sec-
ond, the data flows are not local: the execution trace of the
computation effectively has to be run through an FFT, and
all parts of the proving algorithm have to touch it. As a third
and related point, we found it difficult to extract the necessary
parallelism in these frameworks.

Our experience building Zebra points to another question,
namely, can we identify other protocols that are truly paral-
lelizable in practice? Indeed, prior probablistic proof work is
efficiently parallelizable in theory [27, §3], but our experience

suggests that this does not immediately lead to a highly parallel
hardware implementation. We leave further exploration of this
question to future work.

10 Related work
Zebra relates to two broad strands of work: defenses against
hardware Trojans and built systems for verifiable computation.

Hardware Trojans. Defenses against hardware Trojans com-
prise Trojan detection and disabling techniques that operate
either post-fabrication or in-field, and deterrence techniques at
chip design time.

Post-fab techniques work within existing IC testing frame-
works: they exercise the chip with certain inputs and verify that
the outputs are correct. Wolff et al. [94] and Chakraborty et
al. [37] propose augmenting these tests with certain sequences
of inputs (or “cheat codes”), that are likely to trigger a Trojan.
However, these techniques do not provide comprehensive guar-
antees (untested inputs could still produce incorrect outputs),
nor do they defend against Trojans designed to stay dormant
during post-fabrication testing [79, 89], for instance, those acti-
vated by internal timers.

Other work proposes to detect changes in the delay and
power of chips measured post-fabrication versus estimates ob-
tained from pre-fabrication simulations [22, 59, 62, 63, 93].
However, the approach relies on the assumption that the im-
pact of a Trojan on delay and power is large enough to be
distinguished from modeling inaccuracies and from inherent
variability in the chip fabrication process. Wei et al. [92] exploit
this uncertainty in the design of hardware Trojans that evade
detection by such defenses.

Agrawal et al. [15] propose to extract “known good” delay
and power profiles by destructively testing chips (meaning that
they are depackaged, delayered, and optically imaged by a
high resolution microscope) to establish that they are Trojan-
free. However, such testing of large, complex ICs with billions
of nanometer sized transistors is expensive, error-prone, and
“stretches analytical capabilities to the limits” [84]. Furthermore,
this approach is built on a restrictive assumption: that adver-
sarial modifications to chips follow expected abstractions of
“transistors” and “gates.” Becker et al. [23] exploit this weak-
ness to design stealthy Trojans that change only the doping
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concentration of a few transistors in the chip; such Trojans are
undetectable to optical imaging.

Waksman and Sethumadhavan [89] propose a run-time de-
fense to disable Trojan triggers by power cycling the chip in the
field (disabling timers), and to give the chip encrypted inputs
(disabling in-built cheat codes). However, a limiting assump-
tion in this work is that the chip can compute on encrypted
inputs, which could have high cost. Moreover, an adversary can
still use a randomly chosen input or sequence of inputs, or a
chip aging sensor [92] to trigger an attack.

Another line of research is hardware obfuscation. Here, the
aim is to protect intellectual property [36, 57, 73]. In addition,
these projects propose to deter Trojans via obfuscation, the
underlying assumption being that if the foundry cannot infer
the chip’s function, it cannot interfere with that function.

In contrast to all of the above approaches, Zebra defends
against arbitrary misbehavior (under the assumptions of its
setup), with a formal and comprehensive soundness guarantee.

A separate line of research focuses on mechanisms to detect
Trojans inserted by a malicious designer before the chip is sent
for fabrication [78, 90]; these techniques are complementary to
Zebra’s focus on an untrusted foundry.

Verifiable computation. The last several years have seen a
flurry of work in built systems based on probabilistic proof
protocols [20, 21, 24, 26, 28, 29, 32, 39, 42–45, 47, 61, 71, 74–
76, 80, 82, 87, 88]. For our present purposes, these works fall
into two categories. The first category descends from the Mug-
gles [49] interactive proof (IP), and includes CMT [42], as
well as Allspice [87], both of which Zebra builds on. The sec-
ond category includes arguments of various kinds: interactive
arguments with preprocessing [74–76] and non-interactive ar-
guments with preprocessing [20, 26, 28–30, 39, 43, 47, 61, 71]
(the non-interactive category is sometimes known as SNARKs,
for succinct non-interactive arguments of knowledge).

The IP-based schemes offer information-theoretic security
and, when they are applicable, have more efficient verifiers,
with lower (or no) preprocessing costs. However, argument-
based protocols handle a broader set of computations. In fact,
recent works have extended arguments to handle ANSI C pro-
grams, RAM computations, cloud applications, set computa-
tions, databases, etc. [20, 26, 29, 32, 39, 43, 61, 88]. In ad-
dition, arguments offer lower round complexity than the IP
schemes, and SNARKs go further: they offer non-interactivity,
zero knowledge, public verifiability, etc. The trade-off is that
they make cryptographic assumptions (standard ones in the
case of interactive arguments, non-falsifiable [70] ones in the
case of SNARKs).

We were certainly inspired by this activity: as noted in Sec-
tion 9, our initial objective was to implement SNARKs in hard-
ware. However, implementing these protocols in hardware has
proved challenging; to our knowledge, there are no prior hard-
ware implementations of probabilistic proof protocols.

An intriguing middle ground is the GPU implementation of
CMT, by Thaler et al. [82]. This implementation exploited some
of the parallelism in CMT (as noted in Figure 2 and Section 3.2),

and achieves speedups, versus CPU implementations of the
prover and verifier. However, Zebra needs far greater speedups.
This is because Zebra is working in a new (almost: see below)
model, where the requirement is that the prover’s overhead also
be lower than the baseline.

One work, by Ben-Sasson et al. [25], has previously artic-
ulated the goal of considering both the prover’s and verifier’s
costs, when analyzing performance relative to the naive base-
line. Their context is different: their paper is a theory paper, they
work with classical PCPs, and they assume that V has access
to a PCP. By contrast, Zebra explicitly targets an implementa-
tion, and requires preprocessing and interaction. Nevertheless,
this is inspiring work, because their result implies that, when
considering another probabilistic proof framework, the com-
bined overhead drops below the naive baseline asymptotically.
However, the point at which this occurs in their setup—the
“concrete-efficiency threshold” [25]—is problem sizes on the
order of 243, which is larger than any of the aforementioned
works can handle.
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