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Abstract

We construct a constant-round leakage-resilient zero-knowledge argument system under the
existence of collision-resistant hash function family. That is, using collision-resistant hash func-
tions, we construct a constant-round zero-knowledge argument system such that for any cheating
verifier that obtains arbitrary amount of leakage of the prover’s state, there exists a simulator that
can simulate the adversary’s view by obtaining at most the same amount of leakage of the wit-
ness. Previously, leakage-resilient zero-knowledge protocols were constructed only under a re-
laxed security definition (Garg-Jain-Sahai, CRYPTO’11) or under the DDH assumption (Pandey,
TCC’14).

Our leakage-resilient zero-knowledge argument system satisfies an additional property that it
is simultaneously leakage-resilient zero-knowledge, meaning that both zero-knowledgeness and
soundness hold in the presence of leakage.
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1 Introduction

Zero-knowledge (ZK) proofs and arguments [GMR89] are interactive proof/argument systems with
which the prover can convince the verifier of the correctness of a mathematical statement while pro-
viding zero additional knowledge. This “zero additional knowledge” property is formalized thorough
the simulation paradigm. Specifically, an interactive proof or argument is said to be zero-knowledge
if for any adversarial verifier there exists a simulator that can output a simulated view of the adversary.

Recently, Garg et al. [GJS11] introduced a new notion of zero-knowledgeness called leakage-
resilient zero-knowledge (LRZK). Roughly speaking, LRZK is a notion of zero-knowledgeness in
the setting where adversarial verifiers can obtain arbitrary leakage on the entire state of the honest
prover (including the witness and the randomness) during the entire protocol execution. LRZK is
motivated by the studies of side-channel attacks (e.g., [Koc96, AK96, QS01]), which demonstrated
that adversaries might be able to obtain leakage of honest parties’ secret states by attacking physical
implementations of cryptographic algorithms.

Informally speaking, LRZK requires that the protocol does not reveal anything beyond the validity
of the statement and the leakage that the adversary obtained. More formally, LRZK is defined as
follows. In the definition of LRZK, the cheating verifier is allowed to make arbitrary number of
leakage queries during the interaction with a honest prover, where each leakage query f is answered
by f (w, tape) for the witness w and the randomness tape that the honest prover generated thus far.
On the other hand, the simulator is allowed to make queries to the leakage oracle Lw, which is
parametrized by the witness w of the honest prover and outputs f (w) on input any function f . LRZK
is then defined by requiring that for any cheating verifier V∗ there exists a simulator S such that for
any ` ∈ N, when V∗ obtains ` bits of leakage of the prover’s state via leakage queries, S can simulate
the view of V∗ by obtaining ` bits of leakage of the witness via queries to the leakage oracle Lw.1

In [GJS11], Garg et al. showed a proof system that satisfies a weaker notion of LRZK called
(1 + ε)-LRZK. Specifically, they showed that for any ε > 0, there exists a proof system such that
when V∗ obtains ` bits of leakage from the prover, a simulator can simulate the verifier’s view by
obtaining at most (1 + ε) · ` bits of leakage from Lw. The round complexity of this protocol is
at least ω(log n)/ε, and its security is proven under a standard general assumption (the existence of
statistically hiding commitment scheme that is public-coin w.r.t. the receiver). Garg et al. also showed
that their protocol can be used to relax the assumption on the “tamper-proofness” of hardware tokens
that are used in the design of various cryptographic protocols.

A natural question left open by [GJS11] is whether we can construct a LRZK protocol without
weakening the security requirement. That is, the question is whether we can reduce ε to 0 in the
protocol of [GJS11]. This question is important because, although (1 + ε)-LRZK is useful in several
applications, (1 + ε)-LRZK does not guarantee sufficient level of security in many applications. (In
fact, since (1 + ε)-LRZK allows the simulator to obtain strictly more leakage than the adversary,
(1 + ε)-LRZK protocols can potentially reveal secret information in addition to the leakage.) The
question of reducing ε to 0 is also of theoretical interest because reducing ε to 0 is optimal in the
sense that λ-LRZK for λ < 0 is impossible to achieve in the plain model [GJS11].

Recently, this open question was solved affirmatively by Pandey [Pan14], who constructed the
first LRZK argument system by using the DDH assumption and collision-resistant hash functions.
Pandey’s protocol has a desirable property that it has only constant number of rounds; hence, his
result implies that asymptotically optimal round complexity can be achievable even in the presence
of leakage.

1 In [OPV15], it is pointed out that nowadays leakage tolerance is the commonly accepted term for this security notion.
Nevertheless, in this paper we use the term “leakage resilience” for this security notion for consistency with previous works
[GJS11, Pan14].
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A question that is explicitly left open by Pandey [Pan14, Section 1] is whether we can construct
LRZK protocols under a standard general assumption. In fact, although the protocol of [Pan14] is
superior to the protocol of [GJS11] in terms of both leakage resilience (LRZK v.s. (1 + ε)-LRZK) and
round complexity (constant v.s. ω(log n)/ε), the assumption of the former is seemingly much stronger
than that of the latter (the DDH assumption v.s. the existence of statistically hiding commitment
scheme that is public-coin w.r.t. the receiver, which is implied by, say, the existence of collision-
resistant hash function family or even the existence of one-way functions2).

Question. Can we construct a (constant-round) leakage-resilient zero-knowledge proto-
col under standard general assumptions?

1.1 Our Results

In this paper, we answer the above question affirmatively by constructing a LRZK protocol from
collision-resistant hash functions (CRHFs). Like the protocol of [Pan14], our protocol has only con-
stant number of rounds. Also, our protocol has an additional property that it is public coin (w.r.t. the
verifier).

Theorem. Assume the existence of collision-resistant hash function family. Then, there exists a
constant-round public-coin leakage-resilient zero-knowledge argument for NP.

We notice that the existence of LRZK protocols under CRHFs is somewhat surprising because the
only known LRZK protocol [Pan14] crucially relies on the secure two-party computation protocol of
Yao [Yao86], which requires an assumption that is seemingly stronger than the existence of CRHFs
(i.e., the existence of oblivious transfer protocols). One of our technical novelties is the construction
of LRZK without Yao’s protocol.

Simultaneously leakage-resilient zero-knowledge. Our protocol has an additional property that it
is simultaneously leakage-resilient zero-knowledge [GJS11], meaning that not only zero-knowledgeness
but also soundness holds in the presence of leakage. The leakage-resilient (LR) soundness (i.e.,
soundness in the presence of leakage) of our protocol follows immediately from its public-coin prop-
erty. In fact, any public-coin interactive proof/argument system is LR sound for arbitrary amount of
leakage of the verifier because the verifier has no secret state in public-coin protocols.

To the best of our knowledge, our protocol is the first simultaneously LRZK protocol. The (1+ε)-
LRZK protocol of Garg et al. [GJS11] is LR sound in a weak sense—it is LR sound when there
is an a-priori upper bound on the amount of leakage—but is not LR sound when the amount of
leakage is unbounded,3 and similarly, the LRZK protocol of Pandey [Pan14] is also not LR sound
with unbounded amount of leakage. In contrast, our protocol is sound even when cheating verifiers
obtain arbitrary amount of leakage on the secret state of the verifier.

The summary of the previous results and ours is given in Table 1. In the table, “bounded-LR
sound” means that the soundness holds when there is an a-priori upper bound on the amount of
leakage from the verifier.

1.2 Open Questions

Reducing assumption to one-way functions. An important open question is whether we can con-
struct constant-round LRZK argument systems under the existence of one-way functions.

2A constant-round one can be constructed from collision-resistant hash functions [NY89, DPP98] and a polynomial-
round one can be constructed from one-way functions [HNO+09].

3This is because in the protocol of [GJS11], the verifier commits to the challenge bits of Blum’s Hamiltonicity protocol
in advance and hence an cheating prover can easily break the soundness by obtaining the challenge bits via leakage.
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LR ZKness LR soundness #(round) Assumptions

[GJS11] (1 + ε)-LRZK bounded-LR sound
poly(n) + ω(log n)/ε OWFs

ω(log n)/ε CRHFs
[Pan14] LRZK - O(1) DDH + CRHFs

This work LRZK LR sound O(1) CRHFs

Table 1: Summary of the results on LRZK protocols. The round complexity of the protocol of [GJS11]
depends on the assumption that is used to instantiate the underlying statistically-hiding commitment
scheme; in particular, when only one-way functions (OWFs) are used, there is a polynomial additive
overhead because statistically hiding commitment schemes currently require polynomial number of
rounds in this case [HNO+09].

We notice that solving this question affirmatively seems to require an advancement on “straight-
line” simulation techniques (i.e., techniques that do not use rewinding). This is because, as will
become clear in Section 2, constant-round LRZK seems to require straight-line simulation, and
currently the only known straight-line simulation technique, the one by Barak [Bar01], requires
collision-resistant hash functions.4

Constructing LRZK proof system. Another open question is whether we can construct LRZK proof
systems (instead of argument systems).

We notice that solving this question affirmatively also seems to require an advancement on
straight-line simulation techniques. This is because the straight-line simulation technique by
Barak [Bar01] is currently inherently only computationally sound.

1.3 Related Works

The works relevant to ours are the works that study interactive protocols in the presence of arbitrary
leakage in the models other than the plain model. These works include the works about leakage-
tolerant UC-secure protocols in the CRS model [BCH12], non-transferable interactive proof systems
in the CRS model with leak-free input encoding/updating phase [AGP14], and secure computation
protocols in the CRS model with leak-free preprocessing/input-encoding phase and constant fraction
of honest parties [BGJK12, BGJ+13, BDL14]. We remind the readers that, like [GJS11, Pan14], this
work considers LRZK protocols in the plain model without any leak-free phase.

In [OPV15], Ostrovsky et al. showed an impossibility result about black-box LRZK (and leakage-
resilient MPC for several functionalities) in the model with only leak-free input-encoding phase (i.e.,
without CRS and preprocessing). We notice that this impossibility result does not contradict our result
since the definition of LRZK in [OPV15] is different from the one we use (i.e., the definition given
by [GJS11]). Specifically, in the definition of [OPV15], the simulator is not allowed to obtain any
leakage, whereas in the definition that we use, the simulator can obtain the same amount of leakage as
the cheating verifier. (In other words, Ostrovsky et al. [OPV15] considers leakage resilience whereas
we consider leakage tolerance; see Footnote 1.)

1.4 Outline

In Section 2, we give an overview of our techniques. In Section 3, we give the notations and definitions
that are used throughout the paper. In Section 4, we show the two new building blocks that we use in

4In [CPS13], Chung et al. showed that the simulation technique of Barak can be modified so that it requires only one-
way functions. However, the simulation technique of Chung et al. involves rewinding of the adversary and therefore is no
longer straight-line simulation.
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our LRZK protocol. In Section 5, we describe our LRZK protocol and prove its security.

2 Overview of Our Techniques

2.1 Previous Techniques

Since our techniques rely on the techniques that are used in the previous LRZK protocols of [GJS11,
Pan14], we start by recalling these protocols.

Protocol of [GJS11].

In [GJS11], Garg et al. constructed a (1 + ε)-leakage-resilient zero-knowledge proof system from a
statistically hiding commitment scheme that is public-coin w.r.t. the receiver. That is, they constructed
a proof system such that, when V∗ obtains ` bits of leakage from the prover, its view can be simulated
by obtaining at most (1 + ε) · ` bits of leakage from Lw.

A key idea behind the protocol of [GJS11] is to give the simulator two independent ways of
cheating—one for simulating prover’s messages and the other for simulating leakages. Concretely,
Garg et al. constructed their protocol by combining two well-known techniques of constant-round
zero-knowledge protocols—the technique of [GK96] that requires the verifier to commit to its chal-
lenges in advance and the technique of [FS89] that uses equivocal commitment schemes. They then
proved the security by considering a simulator that simulates the prover’s messages by extracting
the challenges and simulates the leakages by using the equivocality of the underlying commitment
scheme.

In more details, the protocol of [GJS11] consists of the following two phases. In the first phase,
the verifier uses an extractable commitment scheme to commit to a challenge string ch of Blum’s
Hamiltonicity protocol as well as trapdoor information td of an equivocal commitment scheme.5 In
the second phase, the prover and the verifier execute Blum’s Hamiltonicity protocol that is instantiated
with the equivocal commitment scheme. In simulation, the simulator extracts ch and td in the first
phase and then simulates the prover’s messages and the leakages in the second phase by using the
knowledge of ch and td in the following way. (For simplicity, we assume that Blum’s protocol is
executed only once instead of many times in parallel.)

• When the extracted challenge ch is 0, the simulator commits to a randomly permuted graph
of statement G, and after V∗ decommits the challenge ch (which must be 0), the simulator
decommits the commitment to the permuted graph of G.

Notice that the simulator does exactly the same things as a honest prover. Hence, the simulator
can simulate prover’s randomness tape easily and therefore can answer any leakage query f
from V∗ by querying f (·, tape) to Lw.

• When the extracted challenge ch is 1, the simulator commits to a randomly chosen cycle graph
H at the beginning and then partially decommits it in the last step so that only the edges on the
cycle are revealed.

When V∗ makes a leakage query, the simulator answers it by using the fact that, given w and td,
it is possible to compute randomness that “explains” the commitment to H as a commitment
to a permuted graph of G. Specifically, the simulator answers a leakage query f from V∗ by
querying Lw the following function f̃ (·).

5Actually, there is a coin-tossing protocol that determines the parameter of the equivocal commitment, and td is the
trapdoor for biasing the outcome of the coin-tossing.
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1. On input w, function f̃ first computes a permutation π that maps the Hamiltonian cycle w
in G to the cycle in H (i.e., computes π such that π(G) has the same cycle as H).

2. Then, by using equivocality6 with trapdoor td, it computes randomness tape that explains
the commitment to H as a commitment to π(G) (i.e., it computes tape such that commit-
ting to π(G) with randomness tape will generate the same commitment as the one that the
simulator has sent to V∗ by committing to H).

3. Finally, it outputs f (w, tape).

Notice that since π(G) has the same cycle as H, the simulated leakages (from which V∗ may be
able to compute π(G)) are consistent with the decommitted cycle of H in the last step.

We remark that the reason why the protocol of [GJS11] satisfies only (1 + ε)-LRZK (rather than
standard LRZK) is that the extraction of ch and td involves the rewinding of V∗. In fact, since V∗

can make new leakage queries after being rewound, the simulator need to obtain new leakages from
Lw in each rewinding and hence the simulator need to obtain more bits of leakage than V∗. From
this observation, it seems that to achieve LRZK, we need to avoid the use of rewinding simulation
techniques.

Protocol of [Pan14].

In [Pan14], Pandey constructed a constant-round LRZK argument system under the DDH assumption.
Roughly speaking, Pandey’s idea is to replace the rewinding simulation technique in the protocol
of [GJS11] with the “straight-line” simulation technique of Barak [Bar01]. In particular, Pandey
replaced the first phase of the protocol of [GJS11] with the following one.

1. First, the prover and the verifier execute an encrypted version of so called Barak’s preamble
[Bar01, PR05b, PR05a], which determines a “fake statement” that is false except with negligi-
ble probability.

2. Next, the prover and the verifier execute Yao’s garbled circuit protocol [Yao86] in which the
prover can obtain ch and td only when it has a valid witness for the fake statement.

From the security of the encrypted Barak’s preamble, no cheating prover can make the fake statement
true; hence, ch and td are hidden from the cheating prover. In contrast, a non-black-box simulator can
make the fake statement true by using the knowledge of the code of the verifier; hence, the simulator
can obtain ch and td without rewinding V∗. An issue is that, to guarantee leakage resilience, it is
required that Yao’s protocol is executed in a way that all prover’s messages are pseudorandom (since
otherwise it is hard to simulate randomness that explains the simulated prover’s messages as honest
prover’s messages during the simulation of the leakages). Since Yao’s protocol involves executions
of an oblivious transfer protocol (in which the prover behaves as a receiver), this property is hard
to satisfy. Pandey solved this problem by using the DDH assumption, under which there exists an
oblivious transfer protocol such that all receiver’s messages are indistinguishable from random group
elements.

2.2 Our Techniques

The reason why the protocols of [GJS11, Pan14] either guarantee only weaker security or rely on
a stronger assumption is that the simulation involves extraction from V∗. In fact, in [GJS11], the

6 What is actually used here is adaptive security, which guarantees that for each underlying commitment, it is possible
to compute randomness tape0 and tape1 such that tapeb explains the commitment as a commitment to b for each b ∈ {0, 1}.
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simulator need to obtain more amount of leakage than V∗ because it rewinds V∗ during extraction,
and in [Pan14], the DDH assumption is required because Yao’s protocol is used for extraction.

Based on this observation, our strategy is to modify the protocols of [GJS11, Pan14] so that no
extraction is required in simulation. We first remove the extraction of trapdoor td and next remove
the extraction of challenge ch. We remark that the latter is much harder than the former.

Removing Extraction of Trapdoor td.

We first modify the protocols of [GJS11, Pan14] so that leakages can be simulated without extracting
the trapdoor td of an equivocal commitment scheme.

Our main tool is Hamiltonicity commitment scheme H-Com [FS89, CLOS02], which is a well-
known instance-dependent equivocal commitment scheme based on Blum’s Hamiltonicity protocol.
H-Com is parametrized by a graph G with q = poly(n) vertices. To commit to 0, the committer
chooses a random permutation π and commits to the adjacent matrix of π(G) using any commitment
scheme Com; in the decommit phase, the committer reveals π and decommits all the entries of the
matrix. To commit to 1, the committer commits to the adjacent matrix of a random q-cycle graph; in
the decommit phase, the committer decommits only the entries that corresponds to the edges on the
cycle. H-Com satisfies equivocality when G has a Hamiltonian cycle; this is because after committing
to 0, the committer can decommit it to both 0 and 1 given a Hamiltonian cycle w in G.

Given H-Com, we remove the extraction of td by combining H-Com with an encrypted variant
of Barak’s preamble. Specifically, we replace the equivocal commitment scheme in the protocols of
[GJS11, Pan14] with H-Com that depends on the fake statement G′ that is obtained by the encrypted
Barak’s preamble. From the security of Barak’s preamble, any cheating prover cannot make G′ true
and hence it cannot use the equivocality of H-Com, whereas the simulator can make G′ true and hence
it can use the equivocality of H-Com as desired.

Remark 1. As observed in [Pan14], it is not straightforward to use the encrypted Barak’s preamble in
the presence of leakage. Roughly speaking, in the encrypted Barak’s preamble, the prover commits
to its messages instead of sending them in clear, and in the proof of soundness, it is required that
the prover’s messages are extractable from the commitments. The problem is that it is not easy to
guarantee this extractability in the presence of leakage (this is because the prover’s messages are
typically not pseudorandom in the techniques of extractability). Pandey [Pan14] solved this problem
by having the prover use a specific extractable commitment scheme based on the DDH assumption.
In this paper, we instead have the prover use a commitment scheme that satisfies only very weak
extractability but the prover’s messages of which are pseudorandom and the security of which is
based on the existence of CRHFs.7 For details, see Section 4.1.

Removing Extraction of Challenge ch.

Next, we modify the protocols of [GJS11, Pan14] so that prover’s messages can be simulated without
extracting the challenge ch of Hamiltonicity protocol. Surprisingly, we can do this without using any
heavy machinery; all that is required is a clever use of the Hamiltonicity protocol.

We first notice that, although the simulator can use equivocality without extraction as shown
above, it is not easy for the simulator to use equivocality for simulating prover’s messages. This is
because when the leakages to V∗ includes the randomness that is used for commitments, V∗ may be
able to determine the committed values from the leakages and therefore equivocation may be detected
by V∗.

7This extractability is used only in the proof of soundness. Hence, the proof of zero-knowledgeness works even in the
presence of this extractable commitment scheme.
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As our main technical tool, then, we introduce a specific instance-dependent equivocal commit-
ment scheme GJS-Com that we obtain by considering the technique of [GJS11] on Hamiltonicity
protocol in the context of H-Com. Recall that in [GJS11], Garg et al. use Blum’s Hamiltonicity
protocol that is instantiated with an equivocal commitment scheme. Here, we use H-Com that is in-
stantiated with an equivocal commitment scheme (i.e., we use H-Com in which the adjacent matrix
is committed to by an equivocal commitment scheme). The equivocal commitment scheme that we
use here is, as above, H-Com that depends on the fake statement generated by the encrypted Barak’s
preamble.8 Hence, the commitment scheme GJS-Com is a version of H-Com that is instantiated by
using H-Com itself as the underling commitment scheme.9 GJS-Com depends on two statements of
the Hamiltonicity problem: The “outer” H-Com (the H-Com that is implemented with H-Com) de-
pends on the real statement G, and the “inner” H-Com (the H-Com that is used to implement H-Com)
depends on the fake statement G′. GJS-Com inherits equivocality from the outer H-Com, i.e., given
a witness for the real statement G, a GJS-Com commitment to 0 can be decommitted to both 0 and 1.

Since GJS-Com is obtained by considering the technique of [GJS11] in the context of H-Com,
we can see that GJS-Com satisfies a property that is useful for proving LRZK property. First, observe
that given GJS-Com, the second phase of the LRZK protocol of [GJS11] (i.e., Blum’s Hamiltonicity
protocol phase) can be viewed as follows.

1. The prover commits to 0 by using GJS-Com.

2. The verifier reveals the challenge ch ∈ {0, 1} that is committed to in the first phase.

3. When ch = 0, the prover decommits the GJS-Com commitment to 0 honestly, and when ch = 1,
the prover decommits it to 1 by using the equivocality with the knowledge of Hamiltonian cycle
w in G.

When the second phase of the protocol of [GJS11] is viewed in this way, the key property that is used
in the simulation of the leakages in [GJS11] is the following.

• Given a Hamiltonian cycle in G and that in G′, a GJS-Com commitment to 1 (in which a
random cycle graph is committed) can be “explained” as a commitment to 0 (in which a per-
mutation of G is committed) by using the equivocality of the inner H-Com. Furthermore, even
after being explained as a commitment to 0, the commitment can later be decommitted to 1 in
a consistent way with the explained randomness (cf. function f̃ in Section 2.1).

Because of this property, even when the simulator commits to 1 instead of 0 using GJS-Com to sim-
ulate the messages, the simulator can answer any leakage query f from V∗ by querying Lw a function
f̃ that, on input w, computes randomness tape that explains the commitment to 1 as a commitment to
0 and then outputs f (w, tape).

A problem of this property is that it can be used only in a very limited situation. Specifically,
this property can be used only when the simulator knows which GJS-Com commitment will be
decommitted to 1, and this is the reason why the extraction of ch is required in the simulation strategy
of [GJS11, Pan14]. Hence, to remove the extraction of ch, we need to use GJS-Com in a way
that, given a witness for the fake statement, the simulator can predict which value each GJS-Com
commitment will be decommitted to.

Then, our key observation is that we can use this property if we use GJS-Com to implement the
Hamiltonicity protocol in which the fake statement is proven.10 Concretely, we consider the following
protocol.

8Actually, we use an adaptively secure H-Com [CLOS02, LZ11]. See footnote 6.
9In the “inner” H-Com, the underlying commitment scheme is Com as before.

10Hence, we use Hamiltonicity protocol recursively three times: We instantiate Hamiltonicity commitment with Hamil-
tonicity commitment to obtain GJS-Com, and then instantiate Blum’s Hamiltonicity protocol with GJS-Com.
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1. The prover and the verifier execute an encrypted variant of Barak’s preamble. Let G′ be the
fake statement and let q′ be the number of the nodes of G′.

2. (a) The prover commits to a q′ × q′ zero matrix by using GJS-Com.

(b) The verifier sends a challenge ch ∈ {0, 1}.

(c) When ch = 0, the prover sends a random permutation π over G′ to the verifier and then
decommit the GJS-Com commitments to the adjacent matrix of π(G′) by using the equiv-
ocality of GJS-Com with the knowledge of a witness for the real statement.
When ch = 1, the prover chooses a random q′-cycle graph H and decommits some of the
GJS-Com commitments to 1 by using the equivocality of GJS-Com so that the decom-
mitted entries of the matrix correspond to the cycle in H.

(d) When ch = 0, the verifier verifies whether the decommitted graph is π(G′). When ch = 1,
the verifier verifies whether the decommitted entries corresponds to a q′-cycle in a graph.

Since any charting prover cannot make the fake statement G′ true, GJS-Com is statistically binding
when the real statement G is false, and hence soundness follows. In contrast, the simulator can cheat
in Barak’s preamble so that it knows a Hamiltonian cycle w′ in the fake statement G′, and therefore
it can simulate the prover’s messages by “honestly” proving the fake statement, i.e., by committing
to π(G′) in step 2(a) for a randomly chosen π and then revealing the entire graph π(G′) or only the
cycle π(w′) depending on the value of ch. Furthermore, since in step 2(a) the simulator do know
which value each GJS-Com commitment will be decommitted to (the commitments to the edges
on π(w′) will be always decommitted to 1 and others will be decommitted honestly or will not be
decommitted), the simulator can simulate the leakage in the same way as in the protocol of [GJS11]
by using the property of GJS-Com described above.

Since Barak’s preamble is based on the existence of CRHFs and has constant rounds, our protocols
is based on the existence of CRHFs and has constant rounds. This completes the overview of our
techniques.

3 Preliminaries

3.1 Notations

Throughout the paper, we use n to denote the security parameter. For any k ∈ N, we use [k] to denote
the set {1, . . . , k}. For any randomized algorithm Algo, we use Algo(x; r) to denote the execution of
Algo with input x and randomness r, and we use Algo(x) to denote the execution of Algo with input x
and uniformly chosen randomness.

We use LHC to denote the languages of the Hamiltonian graphs. For any G ∈ LHC, we use
RHC(G) to denote the set of the Hamiltonian cycles in G. Generally, for any language L and any
instance x ∈ L, we use RL(x) to denote the set of the witnesses for x ∈ L.

For any two-party protocol 〈A, B〉, we use trans
[
A(x)↔ B(y)

]
to denote a random variable rep-

resenting the transcript of the interaction between A and B with input x and y respectively, and use
outputA

[
A(x)↔ B(y)

]
(resp., outputB

[
A(x)↔ B(y)

]
) to denote a random variable representing the

output of A (resp., B) in the interaction between A and B with input x and y respectively.

3.2 Leakage-resilient Zero-knowledge

We recall the definition of leakage-resilient zero-knowledgeness [GJS11]. For convenience, we use a
slightly different formulation of the definition.
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For any interactive proof system 〈P,V〉, any ppt cheating receiver V∗, any statement x ∈ L, any
witness w ∈ RL(x), and any oracle machine S called simulator, consider the following two experi-
ments.

REALV∗(x,w, z)

1. Execute V∗(x, z) with a honest prover P(x,w) of 〈P,V〉.
During the interaction, V∗ can make arbitrary number of adaptive leakage queries on the
state of P. A leakage query consists of an efficiently compatible function fi (described as
a circuit) and it is answered with fi(w, tape), where tape is the randomness used by P so
far.

2. Output the view of V∗.

IDEALS(x,w, z)

1. ExecuteS(x, z) with access to a leakage oracleLw. A query toLw consists of an efficiently
computable function f and answered with f (w). Let τ be the output of S.

2. If τ is not valid view of V∗, the output of the experiment is ⊥. Otherwise, let ` be the total
length of the leakage that V∗ obtains in τ. If the total length of the answers that S obtained
from Lw is larger than `, the output of the experiment is ⊥. Otherwise, the output is τ.

Let REALV∗(x,w, z) be the random variable representing the output of REALV∗(x,w, z) and IDEALS(x,w, z)
be the random variable representing the output of IDEALS(x,w, z). Then, leakage resilient zero-
knowledgeness is defined as follows.

Definition 1. An interactive argument system 〈P,V〉 for a language L with witness relation R is
leakage-resilient zero knowledge if for every ppt machine V∗ and every sequence {wx}x∈L such that
(x,wx) ∈ RL, there exists a ppt oracle machine S such that the following hold.

Indistinguishability condition.

{REALV∗(x,wx, z)}x∈L,z∈{0,1}∗ ≈ {IDEALS(x,wx, z)}x∈L,z∈{0,1}∗ .

Leakage-length condition. For every x ∈ L and z ∈ {0, 1}∗,

Pr [IDEALS(x,wx, z) = ⊥] = 0 .

3.3 Commitment Scheme

Recall that commitment schemes are two-party protocols between a committer C and a receiver R.
We say that a commitment is valid if there is a value to which the commitment can be decommitted.
We denote by value(·) a function that, on input a commitment (i.e., a transcript in the commit phase),
outputs its committed value if it is uniquely determined and outputs ⊥ otherwise.

3.4 Naor’s Commitment

We recall Naor’s statistically binding commitment scheme Com, which can be constructed from one-
way functions [Nao91, HILL99].
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Commit phase. The commit phase consists of two rounds. In the first round, the receiver sends
a random 3n-bit string r ∈ {0, 1}3n. In the second round, the committer chooses a random seed
s ∈ {0, 1}n for a pseudorandom generator PRG : {0, 1}n → {0, 1}3n and then sends PRG(s) if it wants
to commit to 0 and sends PRG(s) ⊕ r if it wants to commit to 1.

We use Comr(·) to denote an algorithm that, on input b ∈ {0, 1}, computes a commitment to b as
above by using r as the first-round message.

Decommit phase. In the decommit phase, the committer reveals the seed s.

Security. Com is statistically binding and computational hiding. Furthermore, the binding and
hiding property hold even when the same first-round message r is used in multiple commitments.

Committing to strings. For any ` ∈ N, we can commit to an `-bit string by simply committing to
each bit using Com. We notice that the same first-round message r can be used in all the commitments.

We abuse the notation and use Comr(·) to denote an algorithm that, on input m ∈ {0, 1}∗, computes
a commitment to m as above by using r as the first-round message. Notice that Comr(·) has pseudo-
random range. Hence, by using a public-coin algorithm Compub that outputs a random 3n`-bit string
on input 1`, we can obtain a “fake commitment” that is indistinguishable from a real commitment to
an `-bit string.

3.5 Hamiltonicity Commitment

We recall a well-known instance-dependent commitment scheme H-Com [FS89, CLOS02] that is
based on Blum’s zero-knowledge proof for Hamiltonicity.

Commit phase. H-Com is parametrized by a graph G. Let q be the number of its vertices. To
commit to 0, the committer chooses a random permutation π over the vertices of G and then commits
to the adjacent matrix of π(G) by using Com. To commit to 1, the committer chooses a random
q-cycle graph and then commits to its adjacent matrix by using Com.

We use H-ComG,r(·) to denote an algorithm that, on input b ∈ {0, 1}, computes a commitment to
b as above by using r as the first-round message of all the Com commitments.

Decommit phase. When the committer committed to 0, it reveals π, and also reveals all the entries
of the adjacent matrix by decommitting all the Com commitments. When the committer committed
to 1, it reveals only the entries corresponding to the edges on the q-cycle by decommitting the Com
commitments in which these entries are committed.

Security. H-Com is computationally hiding, and it is statistically binding when G < LHC.

Equivocality. When G ∈ LHC, a commitment to 0 can be decommitted to 1 given a Hamiltonian
cycle w ∈ RHC(G) in G. Specifically, a commitment to 0 can be decommitted to 1 by decommitting
the entries that corresponds to the edges on π(w) (i.e., the cycle that is obtained by applying π on w).

3.6 Adaptive Hamiltonicity Commitment

We recall the adaptively secure Hamiltonicity commitment scheme AH-Com, which was used in, e.g.,
[CLOS02, LZ11].
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Commit phase. AH-Com is parametrized by a graph G. Let q be the number of its vertices. To
commit to 0, the committer does the same things as in H-Com; i.e., it chooses a random permutation
π over the vertices of G and then commits to the adjacent matrix of π(G) by using Com. To commit
to 1, the committer chooses a random q-cycle graph and then commits to its adjacent matrix in the
following way: For all the entries corresponding to the edges on the q-cycle, it commits to 1 by
using Com, and for all the other entries, it simply sends random 3n-bit strings instead of committing
to 0. (Since Com has pseudorandom range, random 3n-bit strings are indistinguishable from Com
commitments.)

We use AH-ComG,r(·) to denote an algorithm that, on input b ∈ {0, 1}, computes a commitment to
b as above by using r as the first-round message of all the Com commitments.

Decommit phase. To decommit, the committer reveals all the randomness used in the commit
phase. We use AH-Decr(·, ·, ·) to denote an algorithm that, on input c, b, ρ such that AH-Comr(b; ρ) =

c, outputs a decommitment d as above.

Security. Like H-Com, AH-Com is computationally hiding both when G ∈ LHC and when G < LHC,
and it is statistically binding when G < LHC.

Adaptive security. When G ∈ LHC, a commitment to 0 can be “explained” as a valid commitment
to 1 given a witness w ∈ RHC(G). Specifically, for a commitment c to 0, we can compute ρ such that
AH-Com(1; ρ) = c. This is because commitments to the entries that do not correspond to the edges
on π(w) are indistinguishable from random strings.

Formally, there exists an algorithm AH-ExplainAsOne such that for security parameter n ∈ N,
graphs G ∈ LHC, witness w ∈ RHC(G), and string r ∈ {0, 1}3n, the following hold.

Correctness. Given witness w ∈ RHC(G) and c, ρ such that AH-ComG,r(0; ρ) = c, AH-ExplainAsOneG,r
outputs ρ′ such that AH-ComG,r(1; ρ′) = c.

Indistinguishability. Consider the following two probabilistic experiments.

EXPAH
0 (n,G,w, r)

/* commit to 1 and reveal randomness */

1. Computes c← AH-ComG,r(1).
Let ρ1 be the randomness used in AH-Com.

2. Output (c, ρ1).

EXPAH
1 (n,G,w, r)

/* commit to 0 and explain it as commitment to 1 */

1. Computes c← AH-ComG,r(0).
Let ρ0 be the randomness used in AH-Com.
Compute ρ1 := AH-ExplainAsOneG,r(w, c, ρ0).

2. Output (c, ρ1).

Let EXPAH
b (n,G,w, r) be the random variable representing the output of EXPAH

b (n,G,w, r) for
each b ∈ {0, 1}. Then, the following two ensembles are computationally indistinguishable.

•
{
EXPAH

0 (n,G,w, r)
}
n∈N,G∈LHC,w∈RHC(G),r∈{0,1}3n

•
{
EXPAH

1 (n,G,w, r)
}
n∈N,G∈LHC,w∈RHC(G),r∈{0,1}3n
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3.7 Barak’s Non-black-box Zero-knowledge Protocols

As explained in Section 2, in our LRZK protocol, we use a variant of so called “encrypted” Barak’s
preamble [PR05b, PR05a], which is based on the preamble stage of Barak’s non-black-box zero-
knowledge protocol [Bar01]. In this section, we recall Barak’s non-black-box zero-knowledge proto-
col. Our variant of encrypted Barak’s preamble is described in Section 4.1.

Barak’s non-black-box zero-knowledge protocol is constructed from any collision-resilient hash
function familyH . Informally speaking, Barak’s protocol BarakZK proceeds as follows.

Protocol BarakZK

1. The verifier V sends a random hash function h ∈ H and the first-round message r1 ∈ {0, 1}3n of
Com to the prover P.

2. P sends c← Comr1(0n) to V . Then, V sends random string r2 to P.

3. P proves the following statement by a witness-indistinguishable argument.

• x ∈ L, or

• (h, c, r2) ∈ Λ, where (h, c, r2) ∈ Λ holds if and only if there exists a machine Π such that
c is a commitment to h(Π) and Π outputs r2 in nlog log n steps.

Note that the statement proven in the last step is not in NP. Thus, P proves this statement by a
witness-indistinguishable universal argument (WIUA), with which P can prove any statement in
NEXP. Intuitively, BarakZK is sound since Π(c) , r holds with overwhelming probability even
when a cheating prover P∗ commits to h(Π) for a machine Π. On the other hand, the zero-knowledge
property can be proven by using a simulator that commits to h(Π) such that Π is a machine that emu-
lates the cheating verifier V∗; since Π(c) = V∗(c) = r holds from the definition, the simulator can give
a valid proof in the last step.

For our purpose, it is convenient to consider a variant of BarakZK that we denote by 〈PB,VB〉.
〈PB,VB〉 is the same as BarakZK except that in the last step, instead of proving x ∈ L∨(h, c, r2) ∈ Λ by
using WIUA, P proves (h, c, r2) ∈ Λ by using four-round public-coin universal argument system UA
[BG08]. (Hence, 〈PB,VB〉 is no longer zero-knowledge protocol.) The formal description of 〈PB,VB〉

is shown in Figure 1. We remark that in 〈PB,VB〉, the language proven in the last step is replaced with
a slightly more complex language as in, e.g., [Bar01, PR05b, PR05a, Pan14]. This replacement is
important for using 〈PB,VB〉 in the setting of leakage-resilient zero-knowledge, because the cheating
verifier can obtain arbitrary information (i.e., leakage) before sending r2.

In essentially the same way as the soundness of BarakZK, we can prove the following lemma on
〈PB,VB〉, which roughly states that there exists a “hard” language LB on the transcript of 〈PB,VB〉

such that no cheating prover can generate a transcript that is included in LB.

Lemma 1 (Soundness). Let LB be the language defined in Figure 2. Then, for any cheating prover
P∗ against 〈PB,VB〉, any n ∈ N, and any z ∈ {0, 1}∗,

Pr
[
τ← trans

[
P∗(1n, z)↔ VB(1n)

]
: τ ∈ LB

]
≤ negl(n) .

Proof sketch of Lemma 1. We first remark that the language Λ depicted in Figure 1 is overly sim-
plified and therefore we can prove this lemma only when the underlying hash function family H is
secure against poly(nlog log n)-time adversaries. By using the language given in [BG08], we can prove
this lemma even whenH is secure only against polynomial-time adversaries.
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Stage 1:
The verifier VB sends a random hash function h ∈ H to the prover PB, where the domain
of h is {0, 1}∗ and the range of h is {0, 1}n. VB also sends r1 ∈ {0, 1}3n (the first-round
message of Com) to PB.

Stage 2:

1. PB computes c← Comr1(0n) and send c to VB.

2. VB sends random r2 ∈ {0, 1}n+n2
to PB.

Stage 3: PB proves statement (h, r1, c, r2) ∈ Λ by using UA.

1. VB sends the first-round message α.

2. PB sends the second-round message β.

3. VB sends the third-round message γ.

4. PB sends the fourth-round message δ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Language Λ:
(h, r1, c, r2) ∈ Λ if and only if there exist

• a machine Π

• randomness rand for Com

• a string y such that |y| ≤ n2

such that

• c = Comr1(h(Π); rand), and

• Π(c, y) outputs r2 within nlog log n steps.

Figure 1: Encrypted Barak’s preamble 〈PB,VB〉.

Language LB:
τ = (h, r1, c, r2, α, β, γ, δ) ∈ LB if and only if (α, β, γ, δ) is an accepting transcript of UA
for statement (h, r1, c, r2) ∈ Λ.

Figure 2: A “hard” language LB.

Assume for contradiction that there exists P∗ such that for infinitely many n’s, there exists z ∈
{0, 1}∗ such that the following holds for a polynomial p(·).

Pr
[
τ← trans

[
P∗(1n, z)↔ VB(1n)

]
: τ ∈ LB

]
≥

1
p(n)

.

Fix any such P∗, n, and z. Then, consider interacting with P∗ in the following way.

1. Interacts with P∗ as a honest VB until the end of 〈PB,VB〉. Let (h, r1, c, r2) be the transcript of
the first two stages. If the UA proof in the last stage in not accepting, abort. Otherwise, extracts
witness w = (Π,R, y) for (h, r1, c, r2) ∈ Λ using the extractability of UA. (From the definition
of the extractability of UA, this extraction takes at most poly(nlog log n) steps.)
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2. Rewind P∗ to the point just before sending r2 to P∗, and interacts with P∗ again as a honest VB
with fresh randomness until the end of 〈PB,VB〉. Let (h, r1, c, r′2) be the transcript of the first
two stages. If the UA proof in not accepting, abort. Otherwise, extracts witness w′ = (Π′,R′, y′)
for (h, r1, c, r′2) ∈ Λ using the extractability of UA.

From an average argument and the extractability of UA, we can obtain w and w′ with probability
1/p′(n) for a polynomial p′(·). We then show that when we obtain w and w′, we can obtain a collision
of h. First, observe that since Π is deterministic, we have∣∣∣∣{r : ∃y ∈ {0, 1}∗ s.t. |y| ≤ n2 ∧ Π(c, y) = r

}∣∣∣∣ ≤ 2n2+1 .

Since r′2 is chosen uniformly at random from {0, 1}n+n2
, the probability that there exists y ∈ {0, 1}n

2

such that Π(c, y) = r′2 is at most 2n2+1/2n+n2
= 1/2n−1. Then, since we have Π′(c, y′2) = r′2 because

w′ is a valid witness, we have Π , Π′ except with probability 1/2n−1. Furthermore, since both h(Π)
and h(Π′) are the committed value of c, from the statistical binding property of Com, h(Π) = h(Π′)
holds except with negligible probability. Hence, the pair of Π and Π′ is a collision of h except with
negligible probability. �

3.8 Somewhat Extractable Commitment Scheme

As we mentioned in Remark 1 in Section 2.2, in our variant of encrypted Barak’s preamble, we use a
commitment scheme that satisfies only very weak extractability, which we call somewhat extractabil-
ity. An important point is that since only very weak extractability is required, we can construct a
somewhat extractable commitment scheme such that the committer sends only pseudorandom mes-
sages. Furthermore, we can construct such a scheme from one-way functions.

Concretely, we consider the commitment scheme SWExtCom in Figure 3. SWExtCom is the
same as the extractable commitment scheme of [PW09] except that in the last step, the committer
simply reveals the values that it committed to in the first step (instead of decommitting the commit-
ments). Because of this simplification, SWExtCom does not satisfy extractability in the standard
sense. Still, it is not hard to see that SWExtCom satisfies extractability in the sense that, given two
valid commitments c and c′ such that the transcripts of the commit stage are identical but those of the
challenge stage are different, then the committed value of c can be extracted. Formally, SWExtCom
satisfies the following extractability.

Lemma 2 (Somewhat extractability). Let us say that two commitments c = ({ci,b}i∈[n],b∈{0,1}, {ei}i∈[n], {ai,ei}i∈[n])
and c′ = ({c′i,b}i∈[n],b∈{0,1}, {e′i}i∈[n], {a′i,ei

}i∈[n]) are admissible if

• ci,b = c′i,b for every i ∈ [n] and b ∈ {0, 1},

• there exists i∗ ∈ [n] such that ei∗ , e′i∗ , and

• the committed value of ci,b is uniquely determined for every i ∈ [n] and b ∈ {0, 1}.

Let Extract(·, ·) be the algorithm shown in Figure 3. Then, for any two admissible commitments c and
c′, if both c and c′ are valid, ṽ def

= Extract(c, c′) is equal to value(c) (i.e., ṽ is the committed value of
c).

Proof . First, when c and c′ are valid, ai∗,ei∗ and a′i∗,e′i∗
are the committed values of ci∗,ei∗ and ci∗,e′i∗

(since otherwise, any decommitments of c and c′ would be rejected because the decommitted values
of ci∗,ei∗ and ci∗,e′i∗

are not consistent with ai∗,ei∗ and a′i∗,e′i∗
). Second, when c and c′ are valid, the

committed value of c can be computed by XORing the committed values of ci∗,ei∗ and ci∗,e′i∗
(since

otherwise, any decommitments of c and c′ would be rejected). From these, the lemma follows. �
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Commit phase. The committer C and the receiver R receive common inputs 1n. To commit to
v ∈ {0, 1}n, the committer C does the following with the receiver R.

Commit stage.
For each i ∈ [n], the committer C chooses a pair of random n-bit strings (ai,0, ai,1)
such that ai,0 ⊕ ai,1 = v. Then, for each i ∈ [n] in parallel, C commits to ai,0 and ai,1
by using Com. For each i ∈ [n] and b ∈ {0, 1}, let ci,b be the commitment to ai,b.

Challenge stage.
R sends random n-bit string e = (e1, . . . , en) to C.

Reply stage.
For each i ∈ [n], C sends ai,ei to R.
Comment: C just sends ai,ei and does not decommit ci,ei .

Decommit phase. C sends v to R and decommits ci,b to ai,b for all i ∈ [n] and b ∈ {0, 1}. R
checks whether a1,0 ⊕ a1,1 = · · · = an,0 ⊕ an,1 = v holds and whether a1,e1 , . . . , an,en are
equal to the values that were revealed in the commit phase.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extracting algorithm Extract.
On input two commitments c = ({ci,b}i∈[n],b∈{0,1}, {ei}i∈[n], {ai,ei}i∈[n]) and c′ =

({c′i,b}i∈[n],b∈{0,1}, {e′i}i∈[n], {a′i,ei
}i∈[n]) such that ci,b = c′i,b for every i ∈ [n] and b ∈ {0, 1},

do the following.

1. Find any i ∈ [n] such that ei , e′i . If no such i exist, output fail.

2. Output ṽ def
= ai,ei ⊕ a′i,e′i

.

Figure 3: A somewhat extractable commitment scheme SWExtCom

A nice property of SWExtCom is that all the messages that the committer sends in the commit
phase are pseudorandom. Formally, we have the following lemma.

Lemma 3 (Existence of public-coin fake committing algorithm). Let C be a honest committer algo-
rithm of SWExtCom. There exists a ppt public-coin algorithm Cpub such that for any ppt cheating
receiver R∗ that interacts with C in the commit phase of SWExtCom, the following ensembles are
computationally indistinguishable.

•
{
outputR∗ [C(v)↔ R∗(1n, z)]

}
n∈N,v∈{0,1}n,z∈{0,1}∗

•
{
outputR∗

[
Cpub(1n)↔ R∗(1n, z)

]}
n∈N,v∈{0,1}n,z∈{0,1}∗

Proof sketch. Cpub is an algorithm that is the same as C except that, instead of sending commitments
of Com, it sends fake commitments of Com using Compub (i.e., sends random strings with the same
length as the Com commitments). Since Com has pseudorandom range, the indistinguishability can
be proven by using a standard hybrid argument (in which the commitments of Com are replaced with
random strings one by one). The formal proof is omitted. �

4 Building Blocks

In this section, we introduce the building blocks that we use in our LRZK protocol.
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Stage 1:
The verifier VB sends a random hash function h ∈ H to the prover PB. VB also sends
r1 ∈ {0, 1}3n (the first-round message of Com) to PB.

Stage 2:

1. PB gives a fake commitment c of Com to VB by running c← Compub(1n).

2. VB sends random r2 ∈ {0, 1}n+n2
to PB.

Stage 3 (Encrypted UA):

1. VB sends the first-round message α of UA for statement (h, r1, c, r2) ∈ Λ.

2. PB gives a fake commitment of SWExtCom to VB by running Cpub(1n). Let β̂ be the
fake commitment (i.e., the transcript of this step).

3. VB sends the third-round message γ of UA for statement (h, r1, c, r2) ∈ Λ.

4. PB gives a fake commitment of SWExtCom to VB by running Cpub(1n). Let δ̂ be the
fake commitment.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Language Λ (same as the one in Figure 1):
(h, r1, c, r2) ∈ Λ if and only if there exist

• a machine Π

• randomness rand for Com

• a string y such that |y| ≤ n2

such that

• c = Comr1(h(Π); rand), and

• Π(c, y) outputs r2 within nlog log n steps.

Figure 4: Special-purpose encrypted Barak’s preamble 〈PB,VB〉.

4.1 Special-purpose Encrypted Barak’s Preamble

In our LRZK protocol, we use a variant of so called “encrypted” Barak’s preamble [PR05b, PR05a].
The encrypted Barak’s preamble is the same as (a variant of) Barak’s non-black-box zero-knowledge
protocol 〈PB,VB〉 in Section 3.7 except that PB commits to its UA messages β and δ instead of sending
them in clear. In this paper, we use a variant in which, instead of giving valid commitments, PB gives
fake commitments of Com and SWExtCom by using Compub and Cpub. A nice property of this
variant is that the prover sends only random strings; as will become clear later, this property is useful
for constructing leakage-resilient protocols. The formal description of this variant, which we denote
by 〈PB,VB〉, is shown in Figure 4.

We first show that, as in the case of 〈PB,VB〉, there exists a “hard” language on the transcript of
〈PB,VB〉.

Lemma 4 (Soundness). Let LB be the language defined in Figure 5. Then, for any cheating prover
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Language LB:
(h, r1, c, r2, α, β̂, γ, δ̂) ∈ LB if and only if there exist

• decommitments d1, d2 ∈ {0, 1}poly(n) for SWExtCom

• the second-round and the fourth-round messages β, δ ∈ {0, 1}n of UA

such that

• d1 is a valid decommitment of β̂ to β, and

• d2 is a valid decommitment of δ̂ to δ, and

• (α, β, γ, δ) is an accepting transcript of UA for statement (h, r1, c, r2) ∈ Λ.

Figure 5: Language LB.

P∗ against 〈PB,VB〉, any n ∈ N, and any z ∈ {0, 1}∗,

Pr
[
τ← trans

[
P∗(1n, z)↔ VB(1n)

]
: τ ∈ LB

]
≤ negl(n) .

Proof . Assume for contradiction that there exists P∗ such that for infinitely many n’s, there exists
z ∈ {0, 1}∗ such that

Pr
[
τ← trans

[
P∗(1n, z)↔ VB(1n)

]
: τ ∈ LB

]
≥

1
p(n)

for a polynomial p(·). We use P∗ to construct a cheating prover P∗ against 〈PB,VB〉 and show that it
contradicts the soundness of 〈PB,VB〉 (i.e., Lemma 1).

Consider the following cheating prover P∗ against 〈PB,VB〉. First, P∗ internally invokes P∗. Then,
while externally interacting with a honest VB of 〈PB,VB〉, P∗ interacts with internal P∗ as a verifier of
〈PB,VB〉 in the following way.

• In Stage 1 and 2 (of 〈PB,VB〉), P∗ forwards all messages from external VB to internal P∗ and
forwards all messages from internal P∗ to external VB. (Notice that the verifier of 〈PB,VB〉 and
that of 〈PB,VB〉 are identical.) Let (h, r1, c, r2) be the transcript of these stages.

• In Stage 3-1, P∗ forwards α from external VB to internal P∗.

• In Stage 3-2, P∗ interacts with internal P∗ as a honest receiver of SWExtCom and obtains β̂1.
Let st be the current state of P∗. Then, P∗ rewinds P∗ to the point just before the challenge
stage of SWExtCom, interacts with P∗ again, and obtains β̂2. Then, P∗ computes a potential
committed value β̃ def

= Extract(̂β1, β̂2) of β̂1 (recall that Extract is the extracting algorithm of
SWExtCom shown in Figure 3) and sends β̃ to external VB.

• In Stage 3-3, P∗ receives γ from VB and sends it to internal P∗ (which is restarted from state st).

• In Stage 3-4, P∗ interacts with internal P∗ as a honest receiver of SWExtCom and obtains δ̂1.
Then, P∗ rewinds P∗ to the point just before the challenge stage of SWExtCom, interacts with
P∗ again, and obtains δ̂2. Then, P∗ computes δ̃ := Extract(̂δ1, δ̂2) and sends δ̃ to external VB.

Whenever internal P∗ aborts, P∗ also aborts.
Before analyzing the success probability of P∗, we first introduce some terminologies regarding

the internally emulated interaction between P∗ and VB. Let τ = (h, r1, c, r2, α, β̂1, γ, δ̂1) be its tran-
script. Notice that since P∗ emulates VB for internal P∗ perfectly, we have τ ∈ LB with probability at
least 1/p(n).
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• We say that a transcript τ1 up until the commit stage of SWExtCom in Stage 3-2 is good if
under the condition that τ1 is a prefix of τ, the probability that τ ∈ LB holds is at least 1/2p(n).

• We say that a transcript τ2 up until the commit stage of SWExtCom in Stage 3-4 is good if (1)
a prefix of τ2 up until the commit stage of SWExtCom in Stage 3-2 is good and (2) under the
condition that τ2 is a prefix of τ, the probability that τ ∈ LB holds is at least 1/4p(n).

We then analyze the success probability of P∗ as follows. Let GOOD1 be the event that a prefix of
τ up until the commit stage of SWExtCom in Stage 3-2 is good, and let GOOD2 be the event that a
prefix of τ up until the commit stage of SWExtCom in Stage 3-4 is good. From an average argument,
we have

Pr [GOOD1] ≥
1

2p(n)
and Pr [GOOD2 | GOOD1] ≥

1
4p(n)

.

Hence, we have

Pr [GOOD2] = Pr [GOOD1 ∧ GOOD2] ≥
1

8 (p(n))2 . (1)

(The first equation holds since GOOD1 occurs whenever GOOD2 occurs.) Also, from the definition of
GOOD2, we have

Pr [τ ∈ LB | GOOD2] ≥
1

4p(n)
. (2)

Hence, from Equation (1) and (2), we have

Pr [GOOD1 ∧ GOOD2 ∧ τ ∈ LB] = Pr [GOOD2 ∧ τ ∈ LB] ≥
1

32 (p(n))3 . (3)

Next, we observe that when the transcript up until the commit stage of SWExtCom in Stage 3-2 is
good, P∗ gives a valid commitment of SWExtCom in Stage 3-2 with probability at least 1/2p(n), and
similarly, when the transcript up until the commit stage of SWExtCom in Stage 3-4 is good, P∗ gives
a valid commitment of SWExtCom in Stage 3-4 with probability at least 1/4p(n). (This is because
when the transcript is in LB, the SWExtCom commitments in Stage 3-2 and 3-4 are valid.) Hence,
under the condition that GOOD1 ∧ GOOD2 ∧ τ ∈ LB, the probability that both of β̂2 and δ̂2 are valid
is at least 1/8(p(n))2. Also, from the definition of LB, both of β̂1 and δ̂1 are valid when τ ∈ LB, and
furthermore, β̂1 and β̂2 (resp, δ̂1 and δ̂2) are admissible except with negligible probability. Hence,
from Lemma 2, for β̃ = Extract(̂β1, β̂2) and δ̃ = Extract(̂δ1, δ̂2) we have

Pr
[
β̃ = value(̂β1) ∧ δ̃ = value(̂δ1) | GOOD1 ∧ GOOD2 ∧ τ ∈ LB

]
≥

1
8(p(n))2 − negl(n) . (4)

Hence, from Equation (3) and (4), we have

Pr
[
GOOD1 ∧ GOOD2 ∧ τ ∈ LB ∧ β̃ = value(̂β1) ∧ δ̃ = value(̂δ1)

]
≥

1
256(p(n))5 − negl(n) .

Notice that from the definition of LB, when τ ∈ LB ∧ β̃ = value(̂β1) ∧ δ̃ = value(̂δ1), it holds that
(α, β̃, γ, δ̃) is an accepting UA proof for (h, r1, c, r2) ∈ Λ. Hence, we have

Pr
[
(h, r1, c, r2, α, β̃, γ, δ̃) ∈ LB

]
≥

1
256(p(n))5 − negl(n) ,

which contradicts Lemma 1. �
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We next note that a non-black-box simulator can simulate the transcript τ in such a way that
τ ∈ LB holds, and the simulator can additionally output a witness for τ ∈ LB.

Lemma 5 (Simulatability). Let LB be the language defined in Figure 5. Then, for any ppt cheating
verifier V∗ against 〈PB,VB〉, there exists a ppt simulator S such that the following hold.

• Let S1(x, z) be the random variable representing the first output of S(x, z). Then, the following
indistinguishability holds.{

viewV∗
[
PB(1n)↔ V∗(1n, z)

]}
n∈N,z∈{0,1}∗ ≈

{
S1(1n, z)

}
n∈N,z∈{0,1}∗

• For any n ∈ N and z ∈ {0, 1}∗, the following holds.

Pr
[

(v,w)← S(1n, z);
reconstruct transcript τ from view v of V∗

: w ∈ RLB(τ)
]
≥ 1 − negl(n)

This lemma can be proven in essentially the same way as the zero-knowledge property of Barak’s
non-black-box zero-knowledge protocol. For completeness, a proof sketch is given below.

Proof sketch of Lemma 5. To simulate the view of V∗, the simulator S internally invokes V∗ and
interacts with it as follows.

• After receiving h and r1 in Stage 1, S sends c← Comr1(h(V∗)) to V∗ in Stage 2-1. Let rand be
the randomness that was used in this step.

• After receiving r2 in Stage 2-2 and α in Stage 3-1, S computes the second-round UA mes-
sage β by using witness (V∗, rand, ε) for (h, r1, c, r2) ∈ Λ (where ε is an empty string) and
then honestly commits to β by using SWExtCom. Let β̂ be the commitment and d1 be the
decommitment.

• After receiving γ in Stage 3-3, S computes the fourth-round UA message δ and then honestly
commits to δ by using SWExtCom. Let δ̂ be the commitment and d2 be the decommitment.

S then outputs (v,w), where v is the view of internalV∗ and w def
= (d1, d2, β, δ). Let τ := (h, r1, c, r2, α, β̂, γ, δ̂).

We analyze S as follows. First, from the hiding property of Com and the indistinguishability of
Cpub (Lemma 3), v is indistinguishable from the real view of V∗. Next, from the definitions of Λ and
LB, we have τ ∈ LB and w is its witness. Hence, the lemma follows. �

4.2 Special-purpose Instance-dependent Commitment

In our LRZK protocol, we use a special-purpose instance-dependent commitment scheme GJS-Com,
which is shown in Figure 6. GJS-Com is parametrized by two graphs, G and G′, and obtained
by modifying Hamiltonicity commitment scheme H-ComG,r in such a way that the adjacent ma-
trix is committed to by using AH-ComG′,r instead of Comr. GJS-Com inherits many properties
from H-Com—hiding, binding, and equivocality—and additionally, thanks to the adaptive security
of AH-Com, it provides adaptive security in the following sense: When G ∈ LHC and G′ ∈ LHC,
a commitment to 1 can be explained as a valid commitment to 0, and furthermore, even after being
explained as a commitment to 0, it can be decommitted to 1 in a consistent way. Details follow.

Lemma 6 (Hiding and binding). GJS-Com is computationally hiding. Furthermore, it is statistically
binding when G < LHC and G′ < LHC.
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Parameters:

• Security parameter n.

• Two graphs G and G′, where the number of vertices in G is q = poly(n) and that in
G′ is q′ = poly′(n).

Inputs:

• C has secret input b ∈ {0, 1}, which is the value to be committed to.

Commit phase:

1. R sends the first-round message r ∈ {0, 1}3n of Com.

2. To commit to 0, C chooses a random permutation π over the vertices of G, com-
putes H0 := π(G), and commits to its adjacent matrix A0 = {a0,i, j}i, j∈[q] by using
AH-ComG′,r, i.e., sends ci, j ← AH-ComG′,r(a0,i, j) for every i, j ∈ [q].

To commit to 1, C chooses a random q-cycle graph H1 and commits to its ad-
jacent matrix A1 = {a1,i, j}i, j∈[q] by using AH-ComG′,r, i.e., sends ci, j ←

AH-ComG′,r(a1,i, j) for every i, j ∈ [q].

Let GJS-ComG,G′,r(·) be a function that, on input b ∈ {0, 1}, computes a commitment to b
as above by considering r as the first-round message from the receiver.

Decommit phase:

• When C committed to 0, it reveals π and decommits ci, j to a0,i, j for every i, j ∈ [q].
R verifies whether the decommitted matrix is the adjacent matrix of π(G).

• When C committed to 1, it decommits ci, j to 1 for every i, j such that edge (i. j)
is on the q-cycle in H1 (i.e., every i, j such that a1,i, j = 1). R verifies whether the
decommitted entries correspond to the edges on a Hamilton cycle.

Let GJS-Decr(·) be a function that, on input (c, b, ρ) such that GJS-ComG,G′,r(b; ρ) = c,
outputs a decommitment to b as above.

Figure 6: Special-purpose instance-dependent commitment GJS-Com.

Proof . The hiding property follows directly from the hiding property of AH-ComG′ . To see the
binding property, observe the following: When G′ < LHC, AH-ComG′ is statistically binding and
therefore the matrix committed to in the commit phase of GJS-Com is uniquely determined except
with negligible probability; furthermore, when the committed matrix is uniquely determined and
G < LHC, decommitting to both 0 and 1 is clearly impossible; hence, when G < LHC and G′ < LHC, a
commitment of GJS-Com can be decommitted to both 0 and 1 only with negligible probability. �

Lemma 7 (Equivocality). There exists an algorithm GJS-EquivToOne that is parametrized by graphs
G,G′ and a string r ∈ {0, 1}3n and satisfies the following: When G ∈ LHC, on input any w ∈ RHC(G)
and any c and ρ such that GJS-ComG,G′,r(0; ρ) = c, GJS-EquivToOneG,G′,r outputs a valid decom-
mitment of c to 1.

Proof . We need to show that, on inputs a commitment c to 0, a witness w ∈ RHC(G), and randomness
ρ that is used to compute c, an algorithm GJS-EquivToOne can decommit c to 1.

GJS-EquivToOne decommits c to 1 as follows. From the construction of GJS-Com, commitment
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c consists of {ci, j}i, j∈[q], which are AH-Com commitments to the adjacent matrix of H0 = π(G). To
decommit c to 1, GJS-EquivToOne need to decommit some of {ci, j}i, j∈[q] to 1 so that decommitted
entries of the matrix correspond to the edges on a Hamiltonian cycle in a q-vertex graph. To do
such decommitments, GJS-EquivToOne first computes a Hamiltonian cycle π(w) in H0 by using
Hamiltonian cycle w in G and permutation π (which is included in ρ). Then, GJS-EquivToOne
decommits ci, j to ai, j honestly for every i, j such that (i, j) is an edge on π(w). Clearly, this is a valid
decommitment to 1. �

Lemma 8 (Adaptive security). There exists an algorithm GJS-ExplainAsZero that is parametrized
by graphs G,G′ and a string r ∈ {0, 1}3n and satisfies the following.

Correctness. When G,G′ ∈ LHC, on input any w ∈ RHC(G) and w′ ∈ RHC(G′) and any c and ρ1 such
that GJS-ComG,G′,r(1; ρ1) = c, GJS-ExplainAsZeroG,G′,r outputs ρ0 such that GJS-ComG,G′,r(0; ρ0) =

c.

Indistinguishability. For security parameter n ∈ N, graphs G,G′ ∈ LHC, witnesses w ∈ RHC(G) and
w′ ∈ RHC(G′), and string r ∈ {0, 1}3n, consider the following two probabilistic experiments.

EXPGJS
0 (n,G,G′,w,w′, r)

/* commit to 0 and decommit it to 1 using equivocality */

1. Compute c← GJS-ComG,G′,r(0).
Let ρ0 be the randomness used in GJS-Com.

2. Compute d1 := GJS-EquivToOneG,G′,r(c,w, ρ0).
3. Output (c, ρ0, d1).

EXPGJS
1 (n,G,G′,w,w′, r)

/* commit & decommit to 1 and explain it as commitment to 0 */

1. Compute c← GJS-ComG,G′,r(1).
Let ρ1 be the randomness used in GJS-Com.
Compute d1 := GJS-DecG,G′,r(c, 1, ρ).

2. Compute ρ0 := GJS-ExplainAsZeroG,G′,r(c,w,w′, ρ1).
3. Output (c, ρ0, d1).

Let EXPGJS
b (n,G,G′,w,w′, r) be the random variable representing the output of EXPGJS

b (n,G,G′,w,w′, r)
for each b ∈ {0, 1}. Then, the following two ensembles are computationally indistinguishable.

•
{
EXPGJS

0 (n,G,G′,w,w′, r)
}
n∈N,G,G′∈LHC,w∈RHC(G),w′∈RHC(G′),r∈{0,1}3n

•
{
EXPGJS

1 (n,G,G′,w,w′, r)
}
n∈N,G,G′∈LHC,w∈RHC(G),w′∈RHC(G′),r∈{0,1}3n

Proof . GJS-ExplainAsZero is shown in Figure 7. A key idea behind GJS-ExplainAsZero is that
given the ability to explain AH-Com commitments to 0 as AH-Com commitments to 1, we can explain
a commitment to 1 (which is AH-Com commitments to the adjacent matrix of a cycle graph) as a
commitment to 0 (which is AH-Com commitments to the adjacent matrix of a Hamiltonian graph G).
Intuitively, this is because a cycle graph can be transformed to any Hamiltonian graph by appropriately
adding edges (which corresponds to changing some entries of the adjacent matrix from 0 to 1).

We first prove the correctness. A key is that since H0 is defined in such a way that H0 has the
same q-cycle as H1, for every i, j ∈ [q] we have only the following three cases regarding the values
of a0,i, j and a1,i, j.

Case 1. a0,i, j = 0, a1,i, j = 0
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Parameter:

• Graphs G,G′ ∈ LHC

• String r ∈ {0, 1}3n

Input:

• Witnesses w ∈ RHC(G) and w′ ∈ RHC(G′)

• Commitment c and randomness ρ1 s.t. GJS-ComG,G′,r(1; ρ1) = c

Output:

1. Parse c as {ci, j}i, j∈[q], where each ci, j is a AH-Com commitment. Also, from ρ1,
reconstruct A1 = {a1,i, j}i, j∈[q] and {σ1,i, j}i, j∈[q] such that A1 is the adjacent matrix of a
q-cycle graph H1 and AH-ComG′,r(a1,i, j;σ1,i, j) = ci, j for every i, j ∈ [q].

2. Choose a random permutation π under the condition that a q-cycle in H0
def
= π(G)

coincides with the q-cycle in H1 (i.e., H0 has the same cycle as H1).a Let A0 =

{a0,i, j}i, j∈[q] be the adjacent matrix of H0.

3. For every i, j ∈ [q], define σ0,i, j by σ0,i, j
def
= σ1,i, j when a0,i, j = a1,i, j and by σ0,i, j

def
=

AH-ExplainAsOneG′,r(w′, ci, j, σ1,i, j) when a0,i, j , a1,i, j.b

4. Outputs ρ0
def
= (π, {σ0,i, j}i, j∈[q]).

aGiven w, this can be done efficiently.
bWhen a0,i, j , ai, j, it holds that a0,i, j = 1 and a1,i, j = 0; see the proof.

Figure 7: GJS-ExplainAsZero.

Case 2. a0,i, j = 1, a1,i, j = 1

Case 3. a0,i, j = 1, a1,i, j = 0

In particular, we do not have the case that a0,i, j = 0 and a1,i, j = 1 because when a1,i, j = 1, edge
(i, j) is on the q-cycle in H1, and therefore edge (i, j) is also on a q-cycle in H0 and thus a0,i, j =

1. Then, since we have only these three cases, from the property of AH-ExplainAsOne we have
AH-ComG′,r(a0,i, j;σ0,i, j) = ci, j for every i, j such that a0,i, j , a1,i, j. Therefore, the output ρ0 satisfies
GJS-ComG,G′,r(1; ρ) = c.

We next prove the indistinguishability. Toward this end, we consider the following hybrid exper-
iments.

Hybrid HYB0 is the same as EXPGJS
0 (n,G,G′,w,w′, r). Recall that in EXPGJS

0 , output (c, ρ0, d1) is
computed as follows:

• Choose ρ0 = (π, {σ0,i, j}i, j∈[q]), where π is a randomly chosen permutation and each σ0,i, j
is randomly chosen randomness for AH-Com.

• Compute c = {ci, j}i, j∈[q] by ci, j := AH-ComG′,r(a0,i, j;σ0,i, j) for each i, j ∈ [q], where
A0 = {a0,i, j}i, j∈[q] is the adjacent matrix of H0 = π(G).

• Define d1
def
= {σ0,i, j}(i, j)∈π(w), where π(w) is the set of the edges on the Hamiltonian cycle

in H0 that is obtained by applying π on Hamiltonian cycle w in G.

Hybrid HYB1 is the same as HYB0 except that π is chosen as follows:
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1. Choose a random q-cycle graph H1. Let A1 = {a1,i, j}i, j∈[q] be the adjacent matrix of H1.
2. Choose a random permutation π under the condition that a q-cycle in H0 = π(G) coincides

with the q-cycle in H1.

Hybrid HYB2 is the same as HYB1 except for the following.

• ci, j is computed by ci, j := AH-ComG′,r(a1,i, j;σ1,i, j) for every i, j ∈ [q], where σ1,i, j is
randomly chosen randomness.

• σ0,i, j is defined byσ0,i, j
def
= σ1,i, j when a0,i, j = a1,i, j and byσ0,i, j

def
= AH-ExplainAsOneG′,r(w′, ci, j, σ1,i, j)

when a0,i, j , a1,i, j.

Hybrid HYB3 is the same as EXPGJS
1 (n,G,G′,w,w′, r).

From a hybrid argument, we can show the indistinguishability of EXPGJS
0 and EXPGJS

1 by showing
the indistinguishability of each neighboring hybrids.

Claim 1. The outputs of HYB0 and HYB1 are identically distributed.

Proof . HYB0 and HYB1 differ only in the way π is chosen. However, the distribution of π is uniformly
random in both hybrids. (In particular, the distribution of π is uniformly random in HYB1 since H1 is
chosen randomly.) Hence, the claim follows. �

Claim 2. The outputs of HYB1 and HYB2 are computationally indistinguishable.

Proof . We first remark that, as noted above, we have a0,i, j = 1 and a1,i, j = 0 when a0,i, j , a1,i, j.
Because of this, HYB1 and HYB2 differ only in that for every i, j such that a0,i, j , a1,i, j,

• in the case of HYB1, ci, j is a commitment to 1 and σ0,i, j is randomly chosen randomness that is
used to generate ci, j, whereas

• in the case of HYB2, ci, j is a commitment to 0 and σ0,i, j is the randomness that is computed by
AH-ExplainAsOne.

Hence, the indistinguishability follows from the adaptive security of AH-Com. In particular, we can
prove the indistinguishability by considering a sequence of intermediate hybrids HYB1,0, . . . ,HYB1,q2

such that

• HYB1,0 is the same as HYB1, and

• for every u, v ∈ [q], HYB1,(u−1)q+v is the same as HYB1,(u−1)q+v−1 except that cu,v and σ0,u.v are
computed in the same way as in HYB2,

and then proving the indistinguishability of each neighboring intermediate hybrids by designing an
adversary against the adaptive security of AH-Com in a straight-forward manner so that, depend-
ing on the value of (c, ρ1) that it receives externally, it internally emulates either HYB1,(u−1)q+v or
HYB1,(u−1)q+v−1 (i.e., when c is a commitment to 1 and ρ is its randomness, the adversary internally
emulates HYB1,(u−1)q+v−1, and when c is a commitment to 0 and ρ is the randomness that is generated
by AH-ExplainAsOne, the adversary internally emulates HYB1,(u−1)q+v). �

Claim 3. The outputs of HYB2 and HYB3 are identically distributed.

Proof . It can be seen by inspection that in HYB2, the output (c, ρ0, d1) is computed in exactly the
same way as in EXPGJS

1 . Hence, the claim follows. �

From these claims, we obtain the indistinguishability of EXPGJS
0 and EXPGJS

1 . This concludes the
proof of Lemma 8. �
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5 Our Leakage-resilient Zero-knowledge Argument

In this section, by using the two building blocks 〈PB,VB〉 and GJS-Com in Section 4, we construct a
constant-round LRZK argument system.

Theorem 1. Assume the existence of collision-resistant hash function family. Then, there exists a
constant-round public-coin leakage-resilient zero-knowledge argument system LR-ZK.

Proof . LR-ZK is shown in Figure 8. Since 〈PB,VB〉 can be constructed from any collision-resistant
hash function family, and SWExtCom can be constructed from any one-way function (which can
be obtained from any collision-resistant hash function family), LR-ZK can be constructed from any
collision-resistant hash function family. Also, by inspection, it can be seen that LR-ZK is public-coin
and has constant rounds.

In the following, we prove soundness in Section 5.1 and leakage-resilient zero-knowledgeness in
Section 5.2.

5.1 Soundness

Lemma 9. LR-ZK is sound against ppt adversaries.

Proof . For any cheating ppt prover P∗, we show that P∗ cannot give an accepting proof for a false
statement G < LHC except with negligible probability. Notice that from the soundness of 〈PB,VB〉, the
statement τ generated in Stage 1 satisfies τ < LB except with negligible probability. Hence, it suffices
to show that under the condition that τ < LB (and hence G′ < LHC), P∗ cannot give an accepting proof
except with negligible probability.

A key is that when G < LHC and G′ < LHC, GJS-ComG,G′ is statistically binding, and therefore
the matrix that is committed to in Stage 2-1 is uniquely determined in each of the n iterations except
with negligibly probability. Using this fact, we can prove the soundness in essentially the same way as
the soundness of Blum’s Hamiltonicity protocol. Specifically, when the committed matrix is uniquely
determined in each of the n iterations, P∗ can give a valid response in Stage 2-3 with probability
at most 1/2 in each of n iterations. (This is because, when G′ < LHC, no Hamiltonian graph is
isomorphic to G′.) Hence, under the condition that τ < LB, P∗ can give an accepting proof with only
negligible probability. This completes the proof of soundness. �

5.2 Leakage-resilient Zero-knowledgeness

Lemma 10. LR-ZK is leakage-resilient zero-knowledge.

In the following, we prove this lemma only w.r.t. a simplified version of LR-ZK in which Stage
2-1, 2-2, and 2-3 are executed only once (instead of executed n times in parallel). The proof w.r.t.
LR-ZK can be obtained by modifying the following proof in a straight-forward way.

Proof . Without loss of generality, we assume that after receiving each message from the prover, the
cheating verifier makes exactly a single leakage query. To see that we indeed do not lose gener-
ality, observe that instead of making two queries f1 and f2, the cheating verifier can always query
a single query f such that, on input witness w and prover’s randomness tape, it computes the first
leakage L1 := f1(w, tape), chooses the second query f2 adaptively, computes the second leakage
L2 := f2(w, tape), and outputs (L1, L2).

In the following, we describe our simulator, observe that our simulator obtains the same amount
of leakage as the adversary, and prove the indistinguishability of views.
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Input.

• Common input is graph G ∈ LHC.
Let n def

= |G|, and q be the number of vertices in G.

• Private input to the prover P is witness w ∈ RHC(G).

Stage 1.

• P and V execute special-purpose encrypted Barak’s preamble 〈PB,VB〉. Let τ be the
transcript.

• P and V reduce statement “τ ∈ LB” to Hamiltonicity problem via generalNP reduc-
tion. Let G′ be the graph that P and V obtained. Let q′ be the number of vertices in
G′.

Stage 2.

• V sends the first-round message r ∈ {0, 1}3n of Com to P.

• P and V do the following for n times in parallel.

1. P commits to a q′ × q′ zero matrix in a bit-by-bit manner by using
GJS-ComG,G′,r. That is, P sends ci, j ← GJS-ComG,G′,r(0) to V for every
i, j ∈ [q′]. Let ρi, j be the randomness that was used to compute ci, j.

2. V sends a random bit ch ∈ {0, 1} to P.
3. When ch = 0:

– P chooses a random permutation π and computes H0 := π(G′). Let A0 =

{a0,i, j}i, j∈[q′] be the adjacent matrix of H0.
– P sends π to V and decommits the GJS-Com commitments in Stage 2-1

to A0 by using the equivocality of GJS-Com. That is, for every i, j ∈
[q], P sends a honest decommitment di, j := GJS-DecG,G′,r(ci, j, 0, ρi, j)
to V when a0,i, j = 0 and sends a fake decommitment di, j :=
GJS-EquivToOneG,G′,r(ci, j,w0, ρi, j) to V when a0,i, j = 1.

– V computes H0 = π(G′) and verifies whether the decommitted matrix is
equal to the adjacent matrix of H0.

When ch = 1:
– P chooses a random q′-cycle graph H1. Let A1 = {a1,i, j}i, j∈[q′] be the

adjacent matrix of H1.
– P decommits ci, j to a1,i, j for every i, j such that a1,i, j = 1 (i.e.,

for every i, j such that edge (i, j) is on the q′-cycle of H1). That
is, for every such i and j, P sends a fake decommitment di, j :=
GJS-EquivToOneG,G′,r(ci, j,w0, ρi, j) to V .

– V checks whether the decommitted entries of the matrix correspond to
the edges on a q′-cycle.

Figure 8: Constant-round leakage-resilient zero-knowledge argument LR-ZK.

5.2.1 Description of the simulator.

Given access to leakage oracle Lw and input (G, z), our simulator S simulates the view of cheating
verifier V∗ by internally invoking V∗(G, z) and interacting with it as follows.
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Simulating messages and leakages in Stage 1. Roughly speaking, S simulates the messages in
Stage 1 by interacting with V∗ in the same way as the simulator of 〈PB,VB〉 (cf. Lemma 5). To
simulate the leakages in Stage 1, S uses the fact that Stage 1 of LR-ZK is public coin w.r.t. the
prover and therefore all the randomness that a honest prover generates during Stage 1 is the messages
themselves. Specifically, S simulates the leakages by considering the messages msgs that it has sent
to V∗ thus far as the randomness of the prover. An issue is that due to the existence of leakage queries,
S cannot use the simulator of 〈PB,VB〉 in a modular way. Nonetheless, S can still use the technique
used in the simulator of 〈PB,VB〉 as long as the length of the leakages is bounded by n2. (Notice that
when the length of leakage exceeds n2, S can simply obtain a Hamiltonian cycle w of G from Lw.)

Formally, S interacts with V∗ as follows.

1. After receiving h and r1 from V∗, S sends c← Comr1(h(V∗)) to V∗. Let rand be the randomness
that was used in this step.
Leakage query: When V∗ makes a leakage query f , S does the following.

• Let tape := c.

• If the output length of f is more than n2, S obtains w from Lw and returns f (w ‖ tape) to
V∗.

• Otherwise, S queries f (·, tape) to Lw, obtains reply L from Lw, and forwards L to V∗.

If S obtained w, from now on S interacts with V∗ in exactly the same way as a honest prover.
Otherwise, do the following.

2. After receiving r2 and α from V∗, S computes the second-round UA message β by using witness
(V∗, rand, L) and then honestly commits to β by using SWExtCom. Let β̂ be the commitment
and d1 be the decommitment.
Leakage query: When V∗ makes a leakage query f , S sets tape := msgs, queries f (·, tape)
to Lw, and forwards the reply from Lw to V∗, where msgs are the messages that S has sent to
V∗ thus far.

3. After receiving γ from V∗, S computes the fourth-round UA message δ and then honestly
commits to δ by using SWExtCom. Let δ̂ be the commitment and d2 be the decommitment.
Leakage query: When V∗ makes a leakage query f , S answers it in exactly the same way as
above.

Let τ def
= (h, r1, c, r2, α, β̂, γ, δ̂) and w̄ def

= (d1, d2, β, δ). Since (V∗, rand, L) is a valid witness for
(h, r1, c, r2) ∈ Λ, we have τ ∈ LB and w̄ ∈ RLB(τ). Let G′ and w′ be the graph and its Hamilto-
nian cycle that are obtained by reducing statement “τ ∈ LB” to Hamiltonicity problem through the
NP reduction.

Simulating messages Stage 2. If S obtained w during Stage 1, it interacts with V∗ in the same way
as a honest prover. Otherwise, S interacts with V∗ as follows. The idea is that, since S know a witness
w′ for G′ ∈ LHC, S can correctly respond to the challenge for both ch = 0 and ch = 1 by committing
to a random permutation of G′ in the first step.

1. S chooses a random permutation π and computes H := π(G′). Then, S commits to the
adjacent matrix A = {ai, j}i, j∈[q′] of H by using GJS-ComG,G′,r. That is, S sends ci, j ←

GJS-ComG,G′,r(ai, j) to V∗ for every i, j ∈ [q′].

Let {ρi, j}i, j∈[q′] be the randomness used in the GJS-Com commitments and π(w′) be the Hamil-
tonian cycle in H that is obtained by applying π on Hamiltonian cycle w′ in G′.
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2. S receives a random bit ch ∈ {0, 1} from V∗.

3. When ch = 0, S sends π to V and decommits ci, j to ai, j honestly for every i, j ∈ [q′]. That is,
S sends di, j := GJS-DecG,G′,r(ci, j, ai, j, ρi, j) to V for every i, j ∈ [q′].

When ch = 1, S decommits ci, j to 1 honestly for every i, j such that edge (i, j) is on the
Hamiltonian cycle π(w′) in H. That is, for every such i and j,S sends di, j := GJS-DecG,G′,r(ci, j, ai, j, ρi, j)
to V∗.

Simulating leakage queries in Stage 2. When V∗ makes a leakage query f , S simulates the leakage
as follows. Recall that in Stage 2-1, a honest prover commits to a q′ × q′ zero matrix whereas S
commits to the adjacent matrix of H. Hence, S simulates the leakage by “explaining” commitments
{ci, j}i, j∈[q′] to {ai, j}i, j∈[q′] as commitments to {0} by using the adaptive security of GJS-Com and the
knowledge of w′. Concretely, S does the following.

• First, for each i, j ∈ [q′], S constructs a function Fi, j(·) such that on input w, it outputs ρ̃i, j such
that GJS-ComG,G′,r(0; ρ̃i, j) = ci, j. Concretely, when ai, j = 0, Fi, j(·) is a function that always

outputs ρi, j, and when ai, j = 1, Fi, j(·)
def
= GJS-ExplainAsZeroG,G′,r(ci, j, ·,w′, ρi, j).

• Next, S constructs a function f̃ such that on input w, it computes tape := msgs‖ {Fi, j(w)}i, j∈[q′]
and outputs f (w, tape).

• Finally, S queries f̃ to Lw and forwards the reply from Lw to V∗.

5.2.2 Amount of total leakage.

From the construction of S, it always obtains at most the same amount of leakages as V∗. Hence, we
have

Pr [IDEALS(x,wx, z) = ⊥] = 0 .

5.2.3 Indistinguishability of views.

We show that for any cheating verifier V∗ and any sequence {wG}G∈LHC such that wG ∈ RHC(G), the
following indistinguishability holds.

{REALV∗(G,wG, z)}G∈LHC,z∈{0,1}∗ ≈ {IDEALS(G,wG, z)}G∈LHC,z∈{0,1}∗ . (5)

Toward this end, we consider the following hybrid experiments.

Hybrid HYB0(G, z) is identical with experiment REALV∗(G,w, z). That is, V∗ interacts with honest
P(G,w) and obtains leakage that is computed honestly based on witness w and the prover’s
randomness. The outputs of this hybrid is the view of V∗.

Hybrid HYB1(G, z) is the same as HYB0 except for the following.

• In Stage 1, a honest prover is replaced with the simulator. That is, c is computed by
committing to h(V∗), β̂ is computed by committing to β, and δ̂ is computed by committing
to δ.
Let τ and w̄ be the statement and the witness generated in it. Let G′ and w′ be the graph
and its Hamiltonian cycle that are obtained by reducing statement “τ ∈ LB” to Hamil-
tonicity problem through the NP reduction.
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• The leakage queries are answered by considering that the randomness generated by the
prover during Stage 1 is equal to the messages sent to V∗ during Stage 1.

Hybrid HYB2(G, z) is the same as HYB1 except for the following.

• As in S, a random permutation π is chosen randomly at the beginning of Stage 2-1. Let
H def

= π(G′), and A = {ai, j}i, j∈[q′] be the adjacent matrix of H. Let π(w′) be the Hamiltonian
cycle in H that is obtained by applying π on Hamiltonian cycle w′ in G′.
We remark that in this hybrid, the prover still commits to a q′ × q′ zero matrix as in HYB1.
Also, the leakage query immediately after Stage 2-1 is answered in exactly the same way
as in HYB1. In particular, when the leakage query is answered, π is not included in the
randomness generated by the prover in Stage 2-1.

• In Stage 2-3, graph H0 or H1 is chosen as follows.

When ch = 0, H0 := H.
When ch = 1, H1 is the graph that is obtained by removing every edge in H except for

the ones on Hamiltonian cycle π(w′).

The leakage query immediately after Stage 2-3 is answered in the same way as in HYB1
by considering that H0 or H1 was chosen during Stage 2-3 as in HYB1.

Hybrid HYB3(G, z) is the same as HYB2 except for the following.

• In Stage 2-1, for every i, j ∈ [q′], commitment ci, j is computed by committing to ai, j

(instead of 0), i.e., ci, j ← GJS-ComG,G′,r(ai, j).

• In Stage 2-3, for every i, j ∈ [q′], if commitment ci, j need to be decommitted, it is decom-
mitted to ai, j honestly.

• When the leakage queries are answered during Stage 2, the randomness ρi, j used for
computing ci, j is simulated by ρ̃i, j that is computed by function Fi, j as in S for every
i, j ∈ [q′].

Hybrid HYB4(G, z) is identical with IDEALS(x,w, z). That is, S(G, z) is executed given access to
Lw. The outputs of this hybrid is that of S.

From a hybrid argument, we can obtain Equation (5) by showing that the outputs of each neighbor-
ing hybrids are indistinguishable. Let HYBi(x, z) be the random variable representing the output of
HYBi(x, z) for each i ∈ {0, . . . , 4}.

Claim 4. We have the following indistinguishability.

{HYB0(G, z)}G∈LHC,z∈{0,1}∗ ≈ {HYB1(G, z)}G∈LHC,z∈{0,1}∗ .

Proof . HYB1 differs from HYB0 only in that fake commitments of Com and SWExtCom are replaced
with real commitments. Hence, the indistinguishability follows from the security of Compub and Cpub
(see Section 3.4 and 3.8). �

Claim 5. We have the following indistinguishability.

{HYB1(G, z)}G∈LHC,z∈{0,1}∗ ≡ {HYB2(G, z)}G∈LHC,z∈{0,1}∗ .
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Proof . This claim can be proven by inspection. Observe that HYB2 differs from HYB1 only in the way
graph H0 or H1 is chosen in Stage 2. When ch = 0, the distribution of H0 in HYB2 is the same as that
in HYB1 since H0 is obtained both in HYB2 and HYB1 by applying a random permutation on G′. When
ch = 1, the distribution of H1 in HYB2 is the same as that in HYB1 since the Hamiltonian cycle w′ in
G′ is mapped to a random q-cycle by π. Hence, the output of HYB2 is identically distributed with that
of HYB1. �

Claim 6. We have the following indistinguishability.

{HYB2(G, z)}G∈LHC,z∈{0,1}∗ ≈ {HYB3(G, z)}G∈LHC,z∈{0,1}∗ .

Proof . Assume for contradiction that for infinitely many G ∈ LHC, there exists z ∈ {0, 1}∗ such that
a distinguisher D distinguishes HYB2(G, z) and HYB3(G, z) with advantage 1/p(n) for a polynomial
p(·). Fix any such G and z. To derive a contradiction, we consider the following intermediate hybrids.

Hybrid HYB2:0(G, z) is identical with HYB2(G, z).

Hybrid HYB2:k(G, z) , where k ∈ [q′2], is the same as HYB2:k−1 except for the following. Let u def
=

b(k − 1)/q′c + 1 and v def
= k − b(k − 1)/q′c · q′.

• In Stage 2-1, commitment cu,v is computed by committing to au,v (instead of 0), i.e.,
cu,v ← GJS-ComG,G′,r(au,v).

• In Stage 2-3, if commitment cu,v need to be decommitted, it is decommitted to au,v hon-
estly.

• When the leakage queries are answered during Stage 2, the randomness ρu,v used for
computing cu,v is simulated by ρ̃u,v that is computed by function Fu,v as in S.

Clearly, HYB2:q′2 is identical with HYB3. Hence, there exists k∗ ∈ [q′2] such that the output of HYB2:k∗−1
and that of HYB2:k∗ can be distinguished with advantage 1/q′2 p(n). Furthermore, from an average
argument, there exists a prefix σ of the execution of HYBk∗−1 up until permutation π is chosen in
Stage 2-1 (i.e., just before {ci, j}i, j∈[q′] is sent to V∗) such that under the condition that a prefix of
the execution is σ, the output of HYB2:k∗−1 and that of HYB2:k∗ can be distinguished with advantage
1/q2 p(n). Notice that σ determines G′, w′, r, {ai, j}i, j∈[q′].

We derive a contradiction by showing that we can break the adaptive security of GJS-Com
(Lemma 8). Specifically, we show that EXPGJS

0 (n,G,G′,w,w′, r) and EXPGJS
1 (n,G,G′,w,w′, r) can

be distinguished with advantage 1/q2 p(n). Toward this end, consider the following distinguisherD′.

• Externally, D′ takes (c, ρ0, d1) as well as (n,G,G′,w,w′, r) as input. D′ also takes (σ, z) as
non-uniform input.

• Internally, D′ invokes V∗ and simulates HYB2:k∗−1(G, z) for V∗ from σ honestly except for the
following. Let u∗ def

= b(k∗ − 1)/q′c + 1 and v∗ def
= k∗ − b(k∗ − 1)/q′c · q′. Notice that it must hold

that au∗,v∗ = 1 since HYB2:k∗ is identical with HYB2:k∗−1 when au∗,v∗ = 0.

– In Stage 2-1, commitment cu∗,v∗ is defined by setting cu∗,v∗ := c.

– In Stage 2-3, when commitment cu∗,v∗ is decommitted, it is decommitted to au∗,v∗ = 1 by
sending d1.

– When the leakage queries are answered during Stage 2, the randomness ρu∗,v∗ used for
computing cu∗,v∗ is simulated by setting ρ̃u∗,v∗ := ρ0.

Let view be the view of V∗. Then,D′ outputsD(view).
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When (c, ρ0, d1)← EXPGJS
0 (n,G,G′,w,w′, r) (i.e., when c is a commitment to 0, ρ0 is the randomness

that is used to generate c, and d1 is a decommitment to 1 that is computed by GJS-EquivToOne),D′

emulates HYB2:k∗−1 for V∗ perfectly. On the other hand, when (c, ρ0, d1)← EXPGJS
1 (n,G,G′,w,w′, r)

(i.e., when c is a commitment to 1, ρ0 is randomness that is computed by GJS-ExplainAsZero, and
d1 is a decommitment to 1 that is computed honestly), D′ emulates HYB2:k∗ for V∗ perfectly. Hence,
from our assumption, D′ distinguishes EXPGJS

0 (n,G,G′,w,w′, r) and EXPGJS
1 (n,G,G′,w,w′, r) with

advantage 1/q2 p(n), and therefore we reach a contradiction. �

Claim 7. We have the following indistinguishability.

{HYB3(G, z)}G∈LHC,z∈{0,1}∗ ≡ {HYB4(G, z)}G∈LHC,z∈{0,1}∗ .

Proof . In HYB3, the prover interacts with V∗ in exactly the same way as S. Hence, the claim follows.
�

From Claim 4, 5, 6, and 7, we obtain Equation (5). This concludes the proof of Lemma 10.
�

This concludes the proof of Theorem 1. �
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