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Abstract

We introduce a new class of protocols called Proofs of Work or Knowledge (PoWorKs). In a PoWorK, a
prover can convince a verifier that she has either performed work or that she possesses knowledge of a witness
to a public statement without the verifier being able to distinguish which of the two has taken place.

We formalize PoWorK in terms of three basic properties, completeness, f-soundness and indistinguishabil-
ity (where f is a function that determines the tightness of the proof of work aspect) and present a construction
that transforms 3-move HVZK protocols into 3-move public-coin PoWorKs. To formalize the work aspect in
a PoWorK protocol we define cryptographic puzzles that adhere to certain uniformity conditions, which may
also be of independent interest. We instantiate our puzzles in the random oracle (RO) model as well as via
constructing “dense” versions of suitably hard one-way functions.

We then showcase PoWorK protocols by presenting two applications. We first show how non-interactive
PoWorKs can be used to reduce spam email by forcing users sending an e-mail to either prove to the mail
server they are approved contacts of the recipient or to perform computational work. As opposed to previous
approaches [DN92, DGNO3] that applied proofs of work to this problem, our proposal of using PoWorKs is
privacy-preserving as it hides the list of the receiver’s approved contacts from the mail server. Our second
application for PoWorK relates to zero-knowledge protocols. We show that PoWorK protocols imply straight-
line quasi-polynomial simulatable arguments of knowledge; by applying this result to our construction we obtain
an efficient straight-line concurrent 3-move statistically quasi-polynomial simulatable argument of knowledge,
improving the round complexity of the previously known four-move protocols, [Pas03].
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1 Introduction

We introduce a new class of prover verifier protocols where the prover wishes to convince the verifier that it it
is either in possession of a witness to a publicly known statement or that it has invested a certain amount of
computational effort. A Proof of Work or Knowledge (PoWorK) enables the prover to achieve this objective while
at the same time ensuring that the verifier is incapable of distinguishing which way the prover has followed :
performing the work or exploiting her knowledge of the witness.

At an intuitive level a PoWorK protocol is a disjunction of a proof of work and a proof of knowledge. Proofs
of knowledge are a fundamental notion in cryptography [GMRS85] with a very wide array of applications in the
design of cryptographic protocols. They have been studied extensively, both in terms of efficient constructions,
e.g., [Sch89], as well as in terms of their composability with themselves or within larger protocols, see e.g.,
[DNS98, CGGMO00, Can01, CFO1, Pas03, Pas04]. Proofs of work on the other hand, were first introduced in
[DN92], further studied in [RSW96, Bac97, JB99, DGNO03, CMSWO09], and were primarily applied as a denial of
service network or spam protection mechanism; recently they have also found important applications in building
decentralized cryptocurrencies (notably bitcoin [Nak(08] but also many others).

In an interactive proof protocol, we are interested primarily in two basic properties, soundness and zero-
knowledge, that represent the adversarial objectives of the prover and the verifier respectively: the prover must
not be able to convince the verifier of false statements while the verifier should not extract any knowledge from
interacting with the prover beyond what can be inferred by the public statement. An important class of prover
verifier protocols is the 3-move honest-verifier zero knowledge (HVZK) protocols. They are three-move protocols
that are “public-coin”, i.e., the verifier in the second move merely selects a random value (that is drawn indepen-
dently to the statement of the prover’s first move) and submits it to the prover. 3-move HVZK protocols capture a
very wide class of practical proofs of knowledge (including Schnorr’s identification scheme [Sch89]) but also all
language in NP can be shown with a (computational) HVZK protocol via reduction to e.g., the Hamilton cycle
protocol [Blu87].

Given the above, one may construct a PoWorK protocol for a language £ as follows: the verifier samples a
cryptographic puzzle, puz, and submits it to the prover. The prover provides a commitment 1) and shows that she
either possesses a witness w showing that the statement x belongs to £ or that the commitment ¢ contains a solution
to puz. It is easy to prove that this is a general four-move protocol that implements a PoWorK for any language £
and any cryptographic puzzle. On the other hand, it is known that for zero-knowledge proofs, two-round protocols
do not exist for non-trivial languages [GO94] and this result remains true even if the zero-knowledge property is
relaxed to O(Alogc(’\))-simulatability [Pas03], in the sense that only languages decidable in quasi-polynomial time
may have two-round quasi-polynomial-time simulatable protocols.

1.1 Our results.

We construct efficient three-move PoWorK protocols and we demonstrate how they can instantiate systems that
reduce email spam while preserving user privacy, and how they can give rise to concurrent simulatable protocols.
In more details:

1.1.1 Definition of PoWorKs.

Our formalization entails two definitions, f-soundness and (statistical) indistinguishability. In f-soundness we re-
quire that any prover that has running time (in number of steps) less than a specified parameter calibrated according
to the function f of the running time of the puzzle solver, it is guaranteed to lead to a knowledge extractor. The
importance of the function f is to provide a safe running time upper bound under which the complete protocol exe-
cution is successful only via an (a-priori) knowledge of the witness. Indistinguishability on the other hand, ensures
that a malicious verifier is incapable of discerning whether the prover performs the proof of work or possesses the
knowledge of the witness. We note that timing issues are not taken into account in our model (i.e., we assume that
the prover always takes the same amount of time to finish no matter which one of the two strategies it follows).



What we do care about though, is that the prover who performs a proof of work spends at least a certain amount
of computational resources. Note that indistinguishability easily implies witness indistinguishability [FS90], and
thus any PoWorK is also a witness indistinguishable protocol.

1.1.2 PoWorkK Constructions.

We present a three-move public-coin protocol instantiating a PoWorK given any 3-move HVZK protocol with
special soundness. Our protocol transformation preserves the structure and round complexity of the given 3-move
HVZK protocol. Observe that the verifier cannot simply provide a puzzle challenge since this would violate the
public-coin characteristic of the protocol. To achieve our construction we require puzzle generation algorithms that
have a suitable uniformity characteristics, specifically, we require that the domain of puzzles (the “puzzle space”)
and the challenge space of the 3-move HVZK protocol are statistically very close (in terms of the distributions
induced by the puzzle sample algorithm and the verifier in the protocol). Given such suitable puzzle distribution
we present a protocol where the prover is capable of generating a puzzle solution on the fly (utilizing the verifier’s
public coins) and solve it if she wishes. To establish the practicality of our approach we also construct puzzles that
are “dense” within {0, 1}l and hence consistent with the challenge space of many natural 3-move HVZK protocols.
Our dense puzzle based PoWorK construction has the characteristic that is black-box with respect to the underlying
puzzle system (which is suitable for puzzles whose security is argued, say, in the Random Oracle model). We also
provide a less efficient 3-move PoWorK that works for general puzzles based on the [LS90] protocol; however this
construction is non-black-box w.r.t. the puzzle (i.e., it needs to know the program of puzzle verification).

1.1.3 Definition and instantiations of puzzles.

We give formal definitions of cryptographic puzzle systems PuzSys that are easy to generate, hard to solve, and easy
to verify. We define additional properties like density and amortization resistance and we give two instantiations.
Our first instantiation utilizes the random oracle model [BR93] while the second relies on complexity assumptions.
More specifically, we use Universal One Way Hash Function families (UOWHF) [NY89] to build extractors with
special properties, invoking a variant of leftover hash lemma [Dod05]. We then combine this special extractor
with suitably hard one-way functions to obtain our second puzzle instantiation; we present an instantiation of this
methodology for the discrete-logarithm problem. As an intermediate result, which may be of independent interest,
we show how to convert any arbitrary oneway function to a “dense” oneway function over {0, 1}** for some ()
and security parameter A € Z" (cf. Theorem 4).

Our puzzle definitions are close in spirit to previous formalizations [RSW96, WJHF04, CMSW09, MMV 11,
BGJ ' 16] with the following distinctions. [CMSWO09], defines the hardness of a puzzle as a monotonically in-
creasing function that maps the running time of an adversary to the success rate of solving the puzzle. Con-
trary to this, our definition, motivated by our proof of knowledge application, imposes a sharp time thresh-
old, below which the success rate of solving a puzzle becomes negligible. Also, contrary to time-lock puz-
zles [RSW96, WIHF04, MMV 11, BGJT16], we do not restrict the parallelizability of our puzzles as such feature
does not hurt (and may even be desirable) in the PoWorK context. Parallelizable puzzles, like the ones we are
focusing on here, have become very popular by their applications on cryptocurrencies. The requirement there is
that the puzzle solver should spend a minimum of computational resources to find a solution to the puzzle.

1.1.4 Applications.

Generally speaking, PoWorKs can be used in applications where we would like to allow access to either “regis-
tered” or “approved” users (who know a witness) or to every user who is willing to invest computational effort. The
key property of PoWorKs is that they enhance privacy since they do not leak the type of user (i.e. approved or not)
to the entity that verifies access. A nice illustration of this type of application of PoWorKs is in regard to reducing



spam email. Dwork and Naor proposed using proofs of work to control spam e-mails [DN92]. The gist of the idea
is that every non-approved contact of a receiver would have to perform some work (i.e. invest computational effort)
in order to send her an email. A downside of the method is that the mail server has to maintain an updated list of
“approved-contacts” for every user; this can be a privacy concern for the users (not to mention the cost of updating
the approved contacts database). We show how by using PoWorK'’s, one can still enforce the non-approved senders
to perform work while preserving user privacy, since the mail server (who acts as a PoWorK verifier) will not be
able to distinguish between approved and non-approved contacts because of PoWorK indistinguishability property.

Our second application relates to zero-knowledge protocols and concerns quasi-polynomial time straight-line
simulatable arguments of knowledge. This class of protocols was introduced by [Pas03] and was motivated by the
construction of concurrent zero-knowledge proofs in the plain model (as opposed to using a “setup” assumption).
In [Pas03] a four-move argument of knowledge was presented that is quasi-polynomial time simulatable. We
show that any suitable PoWorK protocol (see Theorem 1 for the precise formulation) implies quasi-polynomial
time straight-line simulatable arguments of knowledge. Together with our PoWorK constructions this improves
the four-move round complexity of the protocol given in [Pas0O3] and has optimal round complexity (due to the
impossibility of two-round protocols in the same setting, at least for languages that are not decidable in quasi-
polynomial time). Note that in [Pas03] a two-move protocol is also presented using Zaps [DNOO] however this
protocol is not an argument of knowledge.

Concurrent work. Concurrent to our work, [CPS™ 15] introduced an efficient OR composition technique that
can be used with “input-delayed” Y -protocols, i.e., protocols where the statement need not be determined ahead of
time. They also observed that their construction can be used to reduce the round complexity of straight-line perfect
quasi-poly-time simulatable arguments of knowledge from 4 rounds to 3. In relation to PoWorKs, we observe that
in the case that a puzzle accepts an input-delayed X proof of knowledge of the puzzle solution (e.g., the DLP based
puzzle) one may use the OR-composition technique of [CPS™15] to construct a PoWorK. We note that our dense
puzzle based PoWorK construction also supports puzzles based on hash functions and the RO model for which no
efficient X protocols exist.

Roadmap. The rest of this paper is organized as follows. In Section 2, we provide basic notation, and formal-
ize cryptographic puzzles, the additional properties of dense samplable puzzles and the property of amortization
resistance, as well as the notion of PoWorKs by defining completeness, f-soundness and indistinguishability. In
Section 3, we present our efficient dense puzzle based construction built upon an arbitrary 3-move special sound
HVZK protocol for a language £ and some puzzle system, and prove that our construction achieves f-soundness
and indistinguishability. In the same section, we present two dense puzzle instantiations. In Section 4, we describe
two applications of PoWorKs. Namely, (i) a method to reduce the amount of spam email while preserving the pri-
vacy of the receiver and (ii) a more theoretical application by showing that any 3-move PoWorK which satisfies a
couple of plausible assumptions is a 3-move straight-line concurrent statistically AP°Y(°2 ) _simulatable argument
of knowledge as defined in [Pas03, PasO4]. Finally, in Appendix C we provide a second PoWorK construction
based on the Lapidot-Shamir 3-move special sound computationally special HVZK protocol [LS90], which is less
efficient than the dense puzzle based construction but works for all puzzle systems; note that this construction is
not black-box with respect to the puzzle and depending on the puzzle may not be public-coin.

2 Definitions

We start by setting the notation to be used in the rest of the paper. By A we denote the security parameter and by

negl(-) the property that a function is negligible in some parameter. Let z & 2 denote the uniformly at random
selection of z from space Z and A[X,Y] the statistical distance of random variables (or distributions) X, Y.
Composition of functions is defined by o.

Let (P(y) <> V)(x, z) denote the interaction between a prover P and a verifier V on common input x, auxiliary
input z, and P’s private input y. For an algorithm B that is part of an interactive protocol let viewg and outputg



denote the views and the output of B respectively. Let Stepsz () be the number of steps (i.e. machine/operation
cycles) executed by algorithm 5 on input z, and Stepsp((P(y) <+ V)(z, z)) be the number of steps of P, when
interacting on inputs z,y, z'. If R is a witness relation for the language £ € NP (i.e. R, polynomial-time-
decidable and (x,w) € Ry, implies that |w| < poly(|z|)), we define the set of witnesses for the membership x € L
as Rp(z) = {w: (z,w) € R}

2.1 Cryptographic Puzzles

Roughly speaking, a cryptographic puzzle should be easy to generate, hard to solve, and easy to verify. Given a
specific security parameter A, we denote the puzzle space as PS ), the solution space as SS, and the hardness
space as HS ). We first define puzzles with a minimum set of properties, and then add extra properties that are
useful in our constructions.

Definition 1 A puzzle system PuzSys = (Sample, Solve, Verify) consists of the following four algorithms:

* Sample(1*, h) is a probabilistic puzzle instance sampling algorithm. On input the security parameter 1
and a hardness factor h € HS ), it outputs a puzzle instance puz € PS).

* Solve( 12, h, puz) is a probabilistic puzzle solving algorithm. On input the security parameter 1%, a hardness
factor h € HS) and a puzzle instance puz € ‘PS, it outputs a potential solution soln € SS.

* Verify(1*, h, puz, soln) is a deterministic puzzle verification algorithm. On input the security parameter 1*,
a hardness factor h € HS), a puzzle instance puz € PS) and a potential solution soln € SS), it outputs
true or false.

Subsequently, we define the following properties for a puzzle system.

Completeness: We say that a puzzle system PuzSys is complete, if for every h € HS y:

puz < Sample(1*, h); soln ¢ Solve(1*, h, puz) :
(1 = negl(A).

Verify (1%, h, puz, soln) = false

g-Hardness: Letg: N — R™ be a monotonically decreasing function. We say that a puzzle system PuzSys is

g-hard, if for every adversary A, for every auxiliary tape z € {0, 1} and for every h € HS:

puz < Sample(1*, h);soln « A(z,1*, h, puz) :
Pr | Verify(1*, h, puz,soln) = trueA = negl(\).
NSteps (2, 1%, h, puz) < g(Stepssoie(1*, 1, puz))

Dense Samplable Puzzles. In addition to the standard puzzle definition, for our PoWorK construction in Section 3
we need puzzles that can be sampled by just generating random strings (i.e. the puzzle instances should be “dense”
over {0, 1YY" for some function ¢ and A, h € Z1). Formally it holds that for some function £ in A and h,

AlSample(1*, h), Uy ny] = negl(),

where Uy, 5,) stands for the uniform distribution over {0, 1}£(>"h). For such puzzles we will require some addi-
tional properties. First there should be a puzzle sampler that outputs a valid solution together with puz:

* SampleSol(1*, h) is a probabilistic solved puzzle instance sampling algorithm. On input the security pa-
rameter 1* and a hardness factor h € HS,, it outputs a puzzle instance and solution pair (puz,soln) €
PS A X SS -

'In this work we focus on parallelizable puzzles so counting in number steps as opposed to actuall running time is more intuitive.



Correctness: We say that a puzzle system PuzSys is correct, if for every h € HS, we have that:

Pr [ (puz,soln) < SampleSol(1*, h) : Verify(1*, h, puz, soln) = false | = negl()).

Efficient Samplability: We say SampleSol is efficient with respect to the puzzle g-hardness, if for every A\ € Z™,
h € HS) and puz € PS), we have that:

StepsSampleSol(l)\a h)) < g(StepSSolve(l)\v h7 puz)).
Statistical Indistinguishability: We define the following two probability distributions

Dgan =l {(puz, soln) « SampleSol(1*, h)} and

Dyan =l {puz <+ Sample(1*, h), soln < Solve(1*, h, puz) : (puz, soln)} .
We say a PuzSys is statistically indistinguishable, if for every A € Z+ and h € HS):
A[Dg \ ny Dpap) = negl(N).

(7, k)-Amortization Resistance. For certain applications it is important that the puzzle is not amenable to amor-
tization. We say that a g-hard puzzle system, PuzSys, is (7, k)-amortization resistant if for every adversary A, for
every auxiliary tape z € {0,1}" and for every h € HS):

V1 <i <k : puz; < Sample(1*, h);
{solny,...,solng} < A(z,1* h,{puzy,...,puz;}) :
Pr (Vi<i<k: Verify(1*, h, puz;, soln;) = true A = negl(A).

/\(StepSA(Za 1/\7 h? {puzl}é{:l) < T( Zf:l g(StepsSolve(l/\7 ha pUZZ))))

Informally, (7, k)-amortization resistance implies a lower bound on the hardness preservation against adversaries
that attempt to benefit from solving vectors of puzzles of length k.

2.2 Definition of PoWorK

In a PoWorK, the prover P may interact with the verifier } by running in either of the two following modes: (a)
the Proof of Knowledge (PoK) mode, where P convinces V that she knows a witness for some statement z, or (b)
the Proof of WorK (PoW) mode, where P makes calls to the puzzle solving algorithm to solve a certain puzzle.
For some language in AP and a fixed puzzle system PuzSys, we define PoWorK to satisfy: (i) completeness, (ii)
f-soundness (for some “computation-scaling” function f) and (iii) indistinguishability, as follows:

Definition 2 (PoWorK) Let L be a language in N'P and R be a witness relation for L. Let PuzSys = (Sample,
Solve, Verify) be a puzzle system anf f be a function. We say that (P, V) is an f-sound Proof of Work or Knowledge
(PoWorK) for L and PuzSys, if the following properties are satisfied:

(i). Completeness: forevery x € LN{0, 1}p°1ym ,w € Re(x),z € {0,1}" and every hardness factor h € HS),
it holds that

(i.a) Prloutputy < (P(w) <> V)(x, z, h) : outputy = accept] = 1 — negl(\) and
(i.b) Prloutputy < (PSOVe(Vh) o5 V(2 2 h) : outputy = accept] = 1 — negl()) .



(ii). f-Soundness: For every x € {0,1}P°YWN) o > < {0,1}*, every hardness factor h € HSy and prover P*
define by 7 - 1, the probability

puz + Sample(1*, h); outputy + (P*(y) <> V)(z, 2, h) : (outputy = accept)
AStepsp- ((P*(y) <> V)(x, 2, h)) < f(Stepssope (17, R, puz))

f-Soundness holds if there are non-negligible functions s, q such that for any P* there exists a PPT witness-
extraction algorithm K, such that if 7o, ., > s(\) (representing the knowledge error) then the probability

Pr[K”" (z,y,2,h) € Re(z)] > q(\) .

(iii). Statistical (resp. Computational) Indistinguishability: for every x € L N {0, 1}p°13’(’\), w € Re(x), z €
{0,1}", for every hardness factor h € HS and for every verifier (resp. PPT verifier) V* , the following two
random variables are statistically (resp. computationally) indistinguishable:

Dy,x et {viewy- < (P(w) <> V*)(z,2,h)}

Dl 9 {viewys (P00 170,21

Intuitively, soundness is related to the hardness of solving a presumably hard cryptographic puzzle. The hardness
threshold 7T is set to be the (probabilistic) computational complexity (in number of steos) of the puzzle solver,
when the latter is provided some output of the puzzle sampling algorithm, scaled to some function f. According
to Definition 2, any prover who does not know a witness, cannot convince the verifier in steps less than f(7") with
some good probability. Observe that in the definition of f-soundness, the convincing capability of the prover is
limited by the hardness of solving puzzle challenges. This implies that in an f-sound protocol, provers who do not
know (per the knowledge extractor) are forced to “work” in order to convince the verifier. The indistinguishability
property of PoWorKs implies that a (potentially malicious) verifier cannot distinguish the running mode (PoK or
PoW) that P follows.

3 The Dense Puzzle Based PoWorK Construction

In this section, we show how to transform an arbitrary 3-move, public coin, special sound, honest verifier zero-
knowledge (SS-HVZK) (cf. App. A.1) into a 3-move public-coin PoWorK. Our construction is lightweight and
requires dense samplable puzzle systems that we formalized in Section 1. Additionally, we provide a second
construction (cf. App. C) which is less efficient, non-black-box on the puzzle, but it works for all puzzle systems
and may not be public-coin (depending on the puzzle).

3.1 Preliminaries

For both constructions, we consider a puzzle system PuzSys that achieves completeness and g-hardness for some
function ¢ : N — R™T. In addition, for dense samplable puzzle systems, we also require correctness, effi-
cient samplability, and statistical indistinguishability. The puzzle, solution and hardness spaces are denoted by
PSy,SSx, HS y, as in Section 2.1. Our PoWorK protocols are interactive proofs between a prover P and a verifier
V, denoted by (P, V).

The challenge space of our dense puzzle based construction (P, V), denoted by CS,, is determined by the
security parameter A. From an algebraic point of view, CS), is set to be a group with operation &, where performing
@ and inverting an element should be efficient. For the first construction, we require that PS) C CS). For instance,
we may set CS) as the group (GF(ZZ(A), @), where £()) is the length of the challenges and ¢ is the bitwise XOR
operation. Of course, one may select a different setting which could be tailor made to the algebraic properties of
the underlying primitives.

Let ChSampler be the algorithm that samples a challenge from CS . For a fixed security parameter, we define
the following random variables (r.v.):



* The challenge sampling r.v. C} 5, = ChSampler(1*, h).

* The puzzle sampling r.v. P 5, =l {puz < Sample(1*, h) : puz}.

Finally, we denote by = @ D (resp. D'"V) the r.v. of performing @ on some fixed z € CS) and an element y
sampled from r.v. D (resp. inverting an element sampled from D). The r.v. D & z is defined similarly. Formally,

xEBDdéf{yeD::UEBy},D@wdéf{yeD:yEB:L‘}, D'“Vd;f{yeD:y_l}.

3.2 The Dense Puzzle Based Compiler

We now provide a detailed description of our protocol (P, )), which can be viewed as a compiler that can trans-
form a SS-HVZK protocol IT = (Plyy, P2y, Veryy) for £ € NP (cf., App. A.1 for details) and a g-hard puzzle
system PuzSys into a 3-move PoWorK. The resulting PoWorK protocol achieves ©(g)-hardness and statistical
indistiguishability. From a syntax point of view, our compiler will set the challenge space of the PoWorK CS, to
be equal to CSt;. We denote by Simpy the HVZK simulator of II.

The protocol (P, V) can be executed in either of the two following modes:

1. Proof of Knowledge (PoK) mode: P has a witness w € R (x) as private input. In order to prove knowl-
edge of w to V, P runs Pl and P2y as described by the original SS-HVZK protocol, with the difference
that instead of providing P27 with the challenge ¢ from V directly, P runs the puzzle sampler algorithm to
receive a pair of a puzzle and its solution, (puz,soln), computes the value ¢ = ¢ @ puz and runs P2y with
challenge ¢.

2. Proof of Work (PoW) mode: P has no private input and tries to convince V that it has performed a minimum
amount of computational “work” (i.e. at least some expected number of steps). To achieve this, PP runs Simyg
to simulate a transcript of the original SS-HVZK protocol. Then, it receives the challenge ¢ from V and
computes the value puz = ¢~! @ ¢. It runs the Solve algorithm on input puz, and if puz is a puzzle in PS)
(which, as we argue later, must occur with high probability), then it obtains a solution soln of puz, except
for some negligible error.

The verification mechanism, must be the same for both modes, so that indistinguishability can be achieved.
Namely, the verifier checks that: (i) the relation ¢ = ¢ & puz holds, (ii) the transcript of the SS-HVZK protocol is
accepting and (iii) the prover has output a correct pair of a puzzle puz and some solution soln of puz. The protocol
(P, V) is presented in detail in Figure 1.

3.3 Security of the Dense Puzzle Based Construction.

In order to prove that our protocol satisfies soundness and indistinguishability, we need to assume that the challenge
and puzzle distributions satisfy some plausible properties and that the presumed g-hardness of the puzzle system
dominates the step complexity of the group operation and challenge sampling algorithms. In detail, we require
that:

(A). The challenge and puzzle sampling distributions are statistically close.

(B). The challenge sampling distribution is (statistically) invariant to any group operation, i.e. (a) inverting a
challenge sampled from CS) and (b) performing & operations on some element x in CS) = CSy and a
sampled challenge. Observe that these two assumptions imply that the puzzle sampling distribution is also
(statistically) @-invariant.



Statement: 2 € £ {0, 1}*°Y™),
Prover’s private input: w € R, (x).

P: (d,¢1) — Pl]‘[(’w,.’L‘).
P —V:a.
P < V: ¢ + ChSampler(1*, h);

‘P : e sample a puzzle-solution pair
(puz, soln) < SampleSol(1*, h);
e set ¢ = ¢ P puz;
e execute 7 < P2 (o1, ¢);

P — V: ¢ 7, puz,soln.
Verification:
1. ¢ =c® puz.
2. Vern(z,a,c¢,7) = 1.

3. Verify(1*, h, puz,soln) = true.

Statement: = € £ {0, 1PV,
Prover’s private input: —

P : e execute (a, é,7) « Simp(z);
P —V:a.
P <+ V: ¢ + ChSampler(1*, h);

Presetpuz=c ' B
e compute a puzzle solution
soln < Solve(1*, h, puz);

P — V: ¢, 7, puz,soln.

Verification:
1. ¢ =c® puz.
2. Verg(z,a,c,7) = 1.

3. Verify(1*, h, puz, soln) = true.

(a) Knowing the witness (PoK)

(b) Doing work (PoW)

Figure 1: The Dense Puzzle Based PoWorK Construction for fixed security parameter A\ and pre-determined hard-
ness factor h € HS ), given a 3-move-SS-HVZK protocol 11 for language £ and a dense samplable puzzle system
PuzSys satisfying that PSy C CSy = CSt; ChSampler is the challenge sampling algorithm over CS)y.

(C). With high probability, the number of steps needed for Stepsg,,.(17, k, puz) to solve a g-hard puzzle puz
according to P j, scaled to the puzzle hardness function g, is more than the number of steps of performing
group operations (inversion and & operation), or sampling from CSy.

The assumptions described are stated formally in Figure 2. Assumptions (A) and (B) can be met for meaningful
distributions, widely used in cryptographic protocols. For example, when C) j, and P} ;, are close to uniform, it
is straightforward that assumption (A) holds. Moreover, since the uniform distribution is invariant under group
operations, we have that assumption (B) also holds. The assumption (C) is expected to hold for any meaningful
cryptographic puzzle construction. Indeed, if we believe that solving a puzzle is hard (on average) within a bounded
amount of steps 7', then performing efficient tasks, such as group operations or sampling a challenge in the space
where this puzzle belongs must be feasible in a number of steps much less than 7'

We prove that our dense puzzle based construction is a PoWorK, assuming (A),(B),(C), the g-hardness of
PuzSys and the soundness and ZK properties of the original SS-HVZK protocol. The soundness of our protocol is
in constant relation with the hardness of PuzSys.

Theorem 1 Ler L be a language in N'P and let 11 = (Ply, P2py, Veryy) be a special-sound 3-move statistical
HVZK protocol for L, where the challenge sampling distribution is uniform. Let PuzSys = (Sample, SampleSol,
Solve, Verify) be a dense samplable puzzle system that satisfies g-hardness for some function g. Define (P,V) as
the protocol described in Figure 1 when built upon 11, PuzSys and assume that (A ),(B),(C) in Figure 2 hold. Then,
(P,V)isa ((1 —K)/ 2) - g-sound PoWorK for L and PuzSys with statistical indistiguishability, where k is the
constant defined in assumption (C).

Proof:

Completeness. By the completeness of II and the correctness of PuzSys, the dense puzzle based PoWorK con-
struction is complete in the case that P executes the PoK mode of the protocol. Regarding the PoW mode, an
honest execution of PuzSys is incorrect, only if either of the two following cases is true:



(A). For every hardness factor h € HS, the r.v. Cyp, and P p, are ¢;-statistically close, where €;(-) is a negligible
(B). Forevery z € CS) and hardness factor h € HS ), ther.v. Cy j, is ex-statistically close to the r.v. B Cy 5, Cyr p, D

(C). There exists a constant x < 1 and a negligible function e3(-) s.t. for every hardness factor h € HS) and every

function.
and C''"Y , where €5(+) is a negligible function.

r,r’ € CSy
Pr[puz < Sample(1*, h) : & - g(Stepssope (17, b, puz)) >
> Stepschsampler (17 1) + Stepsy, () + Stepsg (7, 7)) > 1 — €3(A),

where Steps,,,, Steps,, denote the number of steps needed for inversion and group operation in CS .

Figure 2: Assumptions for our Dense Puzzle Based PoWorK Construction, where C) ;, and P, ;, are the challenge
sampling and the puzzle sampling distributions respectively.

().

(i1).

puz = ¢ @ ¢ € CSy \ PSy, ie. puzis not a puzzle. By assumptions (A), (B) in Figure 2, this happens
with negligible probability, since

AP p, Canl < e1(A) AA[Cop, CY @ < 2-2(A) = APy, CFY, 68 < (V) + 2 e2(N),
where we applied (B) two times (one for inversion and one for & operation).

puz is a puzzle, but the puzzle solver algorithm Solve does not output a solution for puz. Namely, we
have that Verify(1*, h, puz, soln) = false. By the completeness property of PuzSys, this also happens with
negligible probability.

Therefore, (P, V) achieves completeness with high probability, as required in Definition 2.

((1 - K)/ 2) - g-Soundness. First, we make use of the special soundness PPT extractor Ky of II to construct

a knowledge extractor K that on input (z,y, z) and given oracle access to an arbitrary prover P, executes the
following steps:

1.

2.

3.

By applying standard rewinding, K interacts with 75(3/) for statement x and auxiliary input z, using two
challenges c1, ¢ sampled from C) ;, and receives two protocol transcripts (a1, c1, (¢1,71, puzy,solny)) and
(a1, c2, (G2, T2, puzy, solny)).

K runs Kyy on input (z, (a1, ¢1,71), (@1, C2,T2)).

IC returns the output of Kry.

Since Ky is a PPT algorithm, X also runs in polynomial time.

Assume that for some = € {0, 1}P°YN oy € {0,1}*, 2 € {0,1}", h € HS,, there exists a prover P* and a
non-negligible function s(-) s.t

Pr[puz < Sample(1*, h); outputy « (P*(y) < V)(z, 2, h) : (outputy = accept)
A Stepsp- ((P*(y) > V)(,2,h)) < (1 — K)/2) - g(Stepssone(1*, b, puz))] > 5(X).

We will construct an algorithm W that will make use of P* to break the g-hardness of PuzSys. The input that
W receives is {(x,y, ), 1%, h, puz), where (z,y, z) is the auxiliary input and puz sampled from Sample(1*, h).
Then, WV executes the following steps:

1.

It samples c; by running ChSampler(1*, h).



2. It interacts with P*(y) for statement z, auxiliary input z, hardness factor / and challenge c;. It receives the
transcript (a1, c1, (¢1, 71, puzy,solny)).

3. It computes the inverse of puz, denoted by puz—1.

4. It computes c; = ¢; P puz_l.

5. It rewinds P* at the challenge phase and provides P* with challenge cy. It receives a second transcript
(a1, c2, (G2, T2, puzy, solng)).

6. It returns the value solns.

By the assumption for P* and the splitting Lemma, we have that when P* is challenged with two honestly se-
lected c1, ¢, it outputs two accepting transcripts by running in no more than ((1—x)/2) - g(Stepsseye (1%, 2, puz))
steps with at least (s(\)/2)? probability. We denote by Equal, the event that this happens and ¢ = ¢ holds. Ob-
viously, either Equal, or =Equal will occur with at least (s(\)/2)?/2 = s()\)?/8 probability.

Assume that Equal happens with at least s(\)2 /8 probability. We will show that this case leads to a contradic-
tion; namely, WV will output a solution of puz while running in no more than g(Stepss,(1*, h, puz)) steps, hence
breaking the g-hardness of PuzSys.

We observe that for any puz, if both transcripts generated by the interaction with P* are accepting and the
values ¢1, ¢2 are equal, then we have that

(c2=c1®puz ') A (G2 = c2 ® puzy) A (61 = &) = puzy = (puz ) ™! = puz,
where the second equality holds due to verification step 1. Therefore, it holds that
Verify(1*, h, puz,, solny) = true < Verify(1*, h, puz, solny) = true. €))

By the assumptions (A),(B) in Figure 2, we have that there are negligible functions €1 (), e2(\) s.t. for any ¢;
that P* returns,

A[El D CI)':\]/N 1P PI):\;L] < 261()\) and A[C)Ju 1P CI):\;L] < 262()\),

where in the first and second inequality, we applied assumptions (A) and (B) respectively two times (one for
inversion and one for & operation). Therefore, by the triangular inequality we have that

A[Cyp, é1 ® PYY] < 2e1(X) + 2e2(N). )

Eq. (2) implies that the probability distribution of co = & ©puz~! that W computes is [2¢1 (-) +2¢o(-)]-statistically
close to the challenge sampling distribution of V.
By construction, the running time of W (in number of steps) is at most

2 - Stepsp: ((P*(y) <> V)(x, 2, h)) + Steps(puz ') + Steps(¢1 ® puz~') + Stepscpsampler (1%, 7).
By assumption (C) in Figure 2, there is a negligible function €3(-) and a constant x < 1 s.t.

PI‘[pUZ — Sample(lAa h) ‘R g(StepSSolve(l)\a h, puz)) < StepsChSampIer(l/\7 h)+

+Steps(puz~!) + Steps(¢; @ puz!)] < e3(N). )

When Equal occurs, then it holds that

Stepsp. ((P*(y) ¢ V) (@, 2,h)) < ((1 — #)/2) - g(Stepssone(1”, A, puz)),
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hence by the assumption for P* and Eq. (2), (3), the probability that the running time of W is bounded by

StepsW(lAa ($> Y, Z), ha puz) <2 Steps’P* (<P*(y) e V>(:Cv 2, h)) + K- g(StepSSolve(lAa ha puz)) <
< (2 ’ ((1 - H)/2)) ’ g(StePSSolve(l/\7 h, pUZ)) + K- g(StePSSoIve(l)\v h, pUZ)) =
= g(StepSSolve(l)\a h, puz)),

is at least Pr[Equal] — (2€1()) 4 2e2(A) + e3())). By Eq. (1) ,(2), (3),and the assumption Pr[Equal] > s())?/8,
we have that for auxiliary tape (x,y, z) and harndess factor h:

puz < Sample(1*, h);
soln, « W(1*, (z,y, 2), h, puz) :
Pr | Verify(1*, h,puz,soln,) =true A | > s(A)?/8 — (2e1(N) + 2e2(A) + e3(N)),
AStepsyy (17, (2,9, 2), h, puz)
< g(Stepssone(1*, 1, puz))

which contradicts to the g-hardness of PuzSys, since s(A\)?/8 — (2€1(A) 4 2€2(\) + €3())) is a non-begligible
function. Therefore, it holds that Pr[Equal] < s()\)?/8 which implies that

Pr[-Equal] > s(\)?/8. 4)

By the construction of X and the special soundness property of II, we have that C will return a witness for
whenever Ky is provided with different ¢;, &. Define ¢(\) = s(\)?/8. By Eq. (4), we have that when K is given
oracle access to P*, it holds that

Pr[KP (x,y, 2 h) € Re(z)] = Pr[=Equal] > g(\).

Thus, we conclude that our protocol is ((1 — «)/2) - g-sound.

Statistical Indistinguishability. Assume that the protocol described in Figure 1 does not satisfy the PoWorK in-
distinguishability property in Definition 2. Then, for some (x, z, h) there exists a verifier V* that w.l.o.g. outputs
a single bit and can distinguish between:

DY,k = {viewy « (P(w) < V*)(x,2,h)} and

DYy = {m’ewy* — <PS°|Ve(lk’h”) “ V*>(:E,Z,h)}.

with non-negligible advantage n(\).

In the following, we will show that if such a V* exists, then we can construct an adversary 3 who breaks the
statistical (auxiliary input) HVZK property of the underlying 3-move protocol IT = (P1yy, P2y, Veryy). This means
(see Appendix A.1) that B can distinguish between:

Dy = {(a, 1) < Pl(w,z); & & CSm: 7 « P2n(61,8) : (@, f)} and
Dsim = {(d@,&,7) « Simu(, (2, h)) : (@, 7)}

with some non-negligible advantage 1’ (\), where (z, h) is the auxiliary input. Namely, B takes as input (z, (2, h),
(a,¢,7)), and works as follows:

1. Invokes V* with input z, 2z, h and first move message a.
2. V* responds back with his challenge c.
3. B computes puz = ¢~ @ ¢ and runs Solve on input (1)‘, h, puz) to receive back soln.

4. B sends (¢, 7, puz,soln) to V*.

11



5. Breturns V*’s output b*.

By construction of B, what is left to argue is that puz = ¢~ @ & and soln < Solve(l’\7 h, puz) are indistin-
guishable from a pair (puz’, soln’) that was picked by SampleSol(1*, ). We stusy the following two cases:

1. B’s input is sampled according to Dry: By the assumption (B) in Figure 2 and for any c returned by V*, we
have that:

A[Cyp, C',\"y‘,’L ® & < 2ex(N),

where we applied (B) two times (one for inversion and one for & operation). By assumption (A), we have
that
A[Cyn, Pap] < er(N).

By the triangular inequality, we have that for the distribution of puz = ¢~! @ ¢, it holds that
APy 4, CY @8 < e1(N) + 262 (V).

By the statistical indistinguishability property of PuzSys (Definition 1), we have that the distribution {soln <«
Solve(1*, h, puz) : soln} is e4(\)-statistically close to the distribution {(soln’, puz’) <~ SampleSol(1*, h) :
soln’}, for some negligible function 4. Consequently, the probability distribution of puz that 3 computes is
[€1(A\) + 2€2(X) 4 €4(N)]-statistically close to the puzzle sampling distribution.

2. B’s input is sampled according to Dsi,: in this case, it is straightforward that B simulates perfectly the
PoW mode of the PoWorK protocol.

By the above and given that the probability of success of V* is at least (), we have that
| Pr((a, ¢, 7) < D : B(w, (2, h),a,é7) = 1] — Pr((@,¢,7) < Dsim : B(z, (2, h),a,¢,7) = 1]| >

> |( Prlviewy < DY,k : V¥ (viewys) = 1] — (e1(\) + 2e2(\) + €4(N))) —

— Prlviewy- < D¥%, y : V*(viewy«) = 1]| >
> ‘Pr[viewy* — DY i : V*(viewy-) = 1] — Prlviewy- « D%, : V¥ (viewy«) = 1]‘ —

— (e1(N) + 2€2(A) + €a(N))) >
> n(A) = (e1(A) + 2e2(A) + ea(N)).

Therefore, B is successful in breaking the statistical HVZK property of the underlying 3-move SS-HVZK
protocol with non-negligible advantage 7/ (A) = 1(X) — (e1(X) + 2e2(A) + €4(X)). This leads us to the conclusion
that the protocol in Figure 1 is a PoWorK with statistical indistinguishability.

O

Remark. Theorem 1 can be extended to encompass the case where the protocol II to be compiled in the construc-
tion described in Figure 1 achieves T'(\)-computational HVZK, i.e. it is HVZK for every verifier B which runs in
T'()\) steps. Specifically, in the indistinguishability proof the running time of the HVZK adversary B is (in number
of steps) bounded by:

Stepsy« (((P111, P211)(w), Vern(¢))(x, z, h)) + Steps),, (¢) + Steps@(c_l, é) + Stepssowe(l)‘, h, puz).

Therefore, we can prove that if T'(\) is an asymptotically larger function than the time of the puzzle solving
algorithm, then our dense puzzle based construction achieves computational indistinguishability.
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Define PSy = {0, 1}’\, S8y = {0, 1}’\, and HSy = [log? A\, A\/4]. Let H(-) := LSB»/2(O(+)), where LSBy, stands for k&
least significant bits.

« Sample(1*, h): Return puz + {0,1}*.
* SampleSol(1*, h): Pick random z < {0, 1}’\ and y « {0, 1}’\/2. Return puz = (H(x,y),y) and soln = z.
* Solve(1*, h, puz):
— Parse puz to (z,y); set soln = L and initialize an empty set X.
- Forctr = {1,... 2" 2ls 1.
Randomly pick z <+ {0,1}* \ X, and add z to X. Set soln = x if LSBy,(2) = LSBy, (H (x, ).

— Return soln.

* Verify(1*, h, puz, soln): Parse puz to (z,y). Return true if and only if LSB,(2) = LSB;,(H (soln, y)).

Figure 3: The Dense Puzzle System from the Random Oracle O.

3.4 Dense Puzzle Instantiation in the Random Oracle Model

We now instantiate a dense puzzle system in the random oracle model. For a given security parameter A, let
O :{0,1}" — {0,1}"™ be a random oracle, where m > \/2. Our dense puzzle system is described in Figure 3.

Theorem 2 Let A\ € Z* be the security parameter. Define PSy = {0,1}", 88y = {0,1}*, and HS, =
[log? A, \/4]. Let O be a random oracle mapping from {0,1}* to {0,1}™, where m > \/2. For any h € HS),
the puzzle system PuzSys described in Figure 3 is correct, complete with Solve’s running time 2/t21°8 2 efficiently
sampleable, statistically indistinguishable, and g-hard, where g(T) = T /e, for any constant ¢ > 2. In addition,
for any k that is O(2™?®), PuzSys is (id(-), k)-amortization resistant, where id(-) is the identity function.

Proof: See Appendix B.1. O

3.5 Dense Puzzle Instantiation From Complexity Assumptions

In this section, we show how to construct a puzzle system whose puzzle instance distribution is statistically close
to the uniform distribution (over {0, 1}m(>‘)) without random oracles. The main challenge is, given an arbitrary
oneway function ¢ : X +— ), to build another oneway function with uniform output distribution (on random
inputs) while still maintaining its onewayness. As an intuition, we would like to first map the output of the given
oneway function from ) to {0, 1}€ using an efficient injective map (which is usually the bit representation of
y € ), and then apply a strong extractor on it. Let Ext : {0,1}* x {0,1}% — {0, 1}™ be a strong extractor as
defined at Definition 3.

Definition 3 Function Ext : {0,1}* x {0,1}¢ — {0,1}™ is (¢, €)-strong extractor if for any t-source X (over
{0,1}%), we have A[(S,Ext(X, S)), (S, U] < ¢ where S < {0,1}% and U,, + {0,1}™ are drawn uniformly
and independently of X.

The new oneway function is defined as ¥U : X x {0,1}% — {0,1}™ x {0,1}" is defined as ¥V (z, s) =
(Ext(¢)(z), s),s). According to LHL [HILL93], if Hoo(z) > m + 2log(1/¢), then the output of 1)V is at most
e-far from the uniform distribution over {0, 1}m+d. However, in order to maintain its onewayness, we need an
extra property of the strong extractor — Target Collision Resistance (TCR), i.e. given = and s, it is computationally
infeasible to find =’ such that z # 2’ and Ext(z, s) = Ext(z’, s). We focus on this in the next subsection and then
we return to our construction.
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3.5.1 TCR Strong Extractors from Regular UOWHFs.

We first formally define the TCR property for a randomly indexed strong extractor in Definition 4.

Definition 4 Ler Ext : {0, 1}Z()‘) x {0, 1}d(’\) — {0, 1}m(A) be a strong extractor. We say Ext is target collision
resistant if for all PPT adversary A, the following probability:

x4 A(1M);s < {0,132V 2« A(s) :

P
! z,2 € {0,1}*M Az £ 2/ AExt(z, s) = Ext(2, s)

= negl(\).

A stronger notion, collision resistant extractors, was introduced by Dodis [Dod05]. Collision resistant extractors
were applied to construct perfectly oneway probabilistic hash functions proposed [CMR98] in 2005. The construc-
tion of such collision resistant extractors relies on a variant of leftover hash lemma proved by Dodis and Smith
[DS05] that we recap, for completeness, in Lemma 1.

Lemma 1 ([DS05)) Lez f : {0,1}" — {0,1}™ be an arbitrary function. Let H = {H;|i € T} be a pairwise
independent hash function family with key space Z, domain {0,1}" and range {0, 1}N. If X is a t-source over
{0,1}" witht > m + 2log(1/€) + 1, then we have

A[(1, f(H1 (X)), (I, f(UN))] < €

where I < T and Uy <+ {0, 1}N are drawn uniformly and independently of X.

Our observation is that in the same way that [Dod05] employ regular collision resistant hash functions (CRHF)
to derive collision resistant strong extractors, we can use regular universal oneway hash function (UOWHF), to
obtain TCR strong extractor. The notion of UOWHF was initially proposed by Naor and Yung [NY89] where they
showed that UOWHFs can be constructed by composing oneway permutations with (weakly) pairwise independent
hash functions. Since then, many constructions of UOWHFs have been proposed, assuming the existence of regular
oneway functions [SY90] or any oneway functions [Rom90, HHR " 10].> We recall the definition of UOWHEF as
Definition 5.

Definition 5 A family of functions Fy = {FZ :{0,1}9™ 5 {0,112W |vi € {o, 1})‘} is a family of universal
oneway hash functions if it satisfies:

« Efficiency: Giveni € {0,1}" and z € {0,1}*, F;() can be evaluated in time poly(£1(\), \).

o Compressing: la2(\) < 1(\).

o Target Collision Resistance: For all PPT A, the following is negligible in \:

Priz + A(1Y);i < {0,112 < A : 2,2 € {0,137 N Az £ 2/ A Fi(z) = Fi(2)).

We would like to use Ha, = {H(qp)(x) = az + b|Va # 0,a,b € GF(2")} as the family of pairwise inde-
pendent permutations and a regular UOWHF family F), to construct our TCR strong extractors. Define E() =
(Fi(+),i), where F; € Fy. Our TCR strong extractor is constructed as Ext(z, (i,s)) = F; o Hy(x). Note that
regularity of the UOWHFs is important to ensure that the output distribution of such strong extractors is close to
the uniform distribution, as F;(Uy, (r)) = Up,(x). On the other hand, some UOWHF constructions give regular
UOWHFs by default (i.e., the UOWHFs constructed by the oneway permutation based approach [NY89]).

2We note that, on the contrary, CR strong extractors cannot be built from arbitrary oneway functions, since Simon [Sim98] gave a
black-box separation between CRHFs and oneway functions.
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Theorem 3 Let £()\), m(\) be polynomials. Let Hy.qn) = {HS :{0,1}*N 5 {0,1}*W |vs € {o, 1}2'12(’\)} be

a pairwise independent permutation family. Assume that Fy = {FZ- : {0, 1}%\) — {0, l}m(k) Vi € {0, l}k} isa
regular UOWHF family. Then,
Extr(z, (i, 5)) = (Fi(Hs(x)), 1)

is a (t,€)-TCR strong extractor from {0, 1}*™ x {0, 132N 10 {0, 13N for any constant t > m(X) + A +
2log(1/e) + 1.

Proof: See Appendix B.2. u

3.5.2 Dense Oneway Functions and Dense Puzzles from Complexity Assumptions.

Armed with the TCR strong extractor from the previous section we return now to our construction. The key to
the construction will be a “dense” oneway function: a oneway function is e-dense oneway if its output distribution
is at most e-far from U, for some m € Z*. We now present a transformation of a one-way function to a dense
one-way function via the application of a TCR-strong extractor. The TCR property will ensure that any attempt
to invert the dense one-way function will result to an inversion of the underlying one-way function. Formally we
prove the following.

Theorem 4 Let A1, \o € Z be the security parameters. Let 1y, : Xy, — Y, be an arbitrary oneway function,
and define Hy, = Hu (Y, (X)) for random variable X drawn uniformly from X,,. Assume there exists an

efficient injective map Cy, : Yx, — {0, 1}4()\2). If
EX'C)\2 (.ZL', (81,82)) : {O7 1}6()‘2) X {0’ 1})\24-2-4()\2) — {0, 1}H,\1—210g(1/e)—1

is a (Hy,,€)-TCR strong extractor, 1/}/[\]1 o (@581, 82) = (Extr, (Cn, (¥n, (%)), (81, 52)), 52) is an e-dense oneway
function with range {0, 1}**O)H I =21060/)=1 1y domain Xy, x {0, 1} 2H242),

Proof: See Appendix B.3. o

The above result paves the way for constructing dense puzzles from complexity assumptions. Essentially, given
a function with moderately hard characteristics making it suitable for a puzzle, it is possible to transform it to a
dense puzzle by applying a suitably hard TCR extractor (“suitable” here means that breaking the TCR property
should be harder than solving the puzzle). We now illustrate this methodology by applying it to the discrete
logarithm problem. More generally this methodology transforms any puzzle in the sense of Definition 1 to a dense
puzzle (assuming again a suitably hard TCR extractor).

3.5.3 The DLP Based Puzzle and Calibrating Its Hardness.

Consider the discrete logarithm problem (DLP) as the candidate oneway function for our puzzle. Let G = (G)
be some (multiplicative) cyclic group where the DLP is hard, and G is a generator with order p, which is a \;-bit
prime. The oneway function g : Z, — G is defined as 1)g(x) = G*. It is shown by Shoup [Sho97] that any
probabilistic algorithm takes €2(,/p) steps to solve the DLP over generic groups. Analogously, [GJKY13] shows
any probabilistic algorithm must take at least \/2pe steps to solve DLP with probability € in the generic group
model. To build a puzzle, we would like to calibrate the hardness of the DLP by revealing the most significant

bits of the pre-image. For example, for a puzzle with hardness factorh < L’\12_ L], we pick z € {0,1}" and

y€{0,1} L1 =1D72] ypiformly at random, and set the puzzle as (Exty, (Vg (z+2"-y), (s1,52)), 52, ). We assume
the calibrated DLP is still moderately hard with respect to the min-entropy of z. Note that similar assumption was
used by Gennaro to construct a more efficient pseudo-random generator [Gen00]. It is easy to see that this assuption
holds for DLP in generic groups, i.e. given g (z + 2" - y) and y, the best generic algorithm must take at least
V2ht1le steps to solve DLP with probability e. We note that this problem is closely related to leakage-resilient
cryptography [AM11, ADVW13], but due to space limitation we omit the detailed discussion here.
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Define PS, = {0, 1}7,\/2+1og4 A 88, = {0, l}log4 * and HSx = [log* A + log? A + 1,log” A]. For the given A, select a
4
pre-defined Exty : {0,1}" x {0,1}** = {0,1}*"'°8 *_ Set the DLP ¢ : Z, — G over the pre-defined elliptic curve,

where p is A-bit prime such that there exists an efficient injective map ¢ : G — {0, 1}A. (We will omit this map ¢ in the rest
of the description for notation simplicity.)

* Sample(1*, h): Return puz « {0, 1}7’\/2+1°g4 A

* SampleSol(1*, h):

— Pick random s1 < {0,1}*, s5 < {0,1}**, 2« {0,1}" and y « {0,1}*/%.

- Return puz = (Exty(¢¥g(x + 2" - y), (51, 52)), 52,%) and soln = z.
* Solve(1*, h, puz):
— Parse puz to (z, s1, s2,y); set soln = L and initialize an empty set X.
- Forctr = {1,...,2"}:
o Randomly pick z «+ {0, 1}h \ X, and add x to X.
o Set soln = x if z = Exty(va(x + 2" - y), (51, 52)).

— Return soln.

* Verify(1*, h, puz, soln): Parse puz to (2, s1, 2, y). Return true if and only if z = Exty ()¢(soln + 2" - 4)), (51, 52)).

Figure 4: The Dense Puzzle System From DLP.

On the other hand, due to the out-layer extractor, we cannot directly adopt any known (generic) DLP algo-
rithms, such as [GTY07, GPR13]. Instead, our puzzle solver just exhaustively searches for a valid solution. There
is a subtle caveat, namely the expected running time of solving a puzzle with hardness factorh, i.e. = < {0, 1}h is
designed to be 2", whereas the TCR property of UOWHF is only guaranteed against PPT adversaries with respect
to A (the security parameter of the UOWHF). To address this issue, we introduce an additional assumption, that is
the expected running time of any adversary .4 (in number of steps) can break the TCR property of the underlying
UOWHF with non-negligible probability on < {0,1}" is w(2"/2), (i.e. breaking TCR is expected to happen
after the birthday paradox bound). The dense puzzle system from DLP (combining with TCR strong extractors) is
depicted in Figure 4.

Theorem 5 Let \ € Z* be the security parameter and h € [log4 A +log? A + 1,log® A] be the hardness factor.
Let Ext : {0,1}* x {0,1}3* {0, 1}>‘+1°g4 A be a TCR strong extractor such that the expected running time of
any adversary A that breaks its TCR property with non-negligible probability on = < {0, l}h is w(2"?). Assume
Y : Zy — G is a hard DLP in generic groups such that the best generic algorithm must take at least \/2h+1e
steps to solve it with probability €. The puzzle system PuzSys = (Sample, SampleSol, Solve, Verify) described in
Figure 4 is correct, complete with Solve’s running time 2", efficiently samplable, statistically indistinguishable,
and g-hard, where g(T) = T'/° for any constant ¢ > 2. In addition, for any k that is 0(21°g3)‘), PuzSys is
(id(+), k)-amortization resistant, where id(+) is the identity function.

Proof: See Appendix B.4. O

Remark. For notation simplicity, we let the puzzle space “independent” of the hardness factor h, therefore we
have to limit » within a small interval to ensure (i) ¥ (z 4 2" - y) has enough entropy and (ii) it is infeasible to
break the TCR property of the underlying UOWHF within 2/2 steps. In practice, for any desired h, we can always

pick a suitable Exty : {0,1}* x {0,1}** — {0, 1})‘+h_l°g2 AL
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3.6 Instantiation of the Dense Puzzle Based PoWork.

We describe an instantiation of our PoWorK protocol as described in Figure 1 built upon the Schnorr identification
scheme [Sch89] and the dense puzzle system instantiation in the RO model® (see Section 3.4). For completeness,
we provide a description of the Schnorr protocol in Appendix A.2. We denote our instantiation by IT*. We fix
a security parameter \ and a hardness factor h € [log2 A, A/4]. The challenge and puzzle spaces are all set to
CS) = CS = PSy = {0,1}*. We choose a random prime ¢ s.t. 2* < ¢q. We select the parameters and the
statement of the Schnorr protocol to be (¢, g,z = g*). We pick a hash function H) : {0,1}* — {0,1}*. The
group operator ¢ is the bitwise XOR operation. The PoWorK protocol IT* consists of the two following stages:

1. Protocol execution: The two modes of IT* are:

* PoK mode. /st move: P(w) selects a random p in Z, and sends a to V. 2nd move: V sends a challenge
¢ selected uniformly at random to P. 3rd move: P chooses random s < {0,1}* and y « {0, 1}’\/ 2. it
computes t = (LSB) /2(H(s,y)),y) and ¢ = c © t. It sends (¢, 7, s,t) to V, where 7 = p + cw.

* PoW mode. /st move: P runs (a, ¢, ) < Simyp(x,¢) and sends @ = ¢g” to V. 2nd move: V sends a
random challenge ¢ to P. 3rd move: P computes t = ¢~ @ ¢ and runs Solve(1*, h, t); if the puzzle
solver outputs a value s, then P sends (¢, 7, s, t) to )V, otherwise it aborts the protocol.

2. Verification: The verifier checks that (1) ¢ = ¢ @ t; (2) g" = ax®; (3) parses t as (t1,t2), where t1,ty €
{0,1}*/2 and checks that LSBy,(t1) = LSBy,(H (s, t2)).

We observe that since (a) the RO puzzle instantiation is correct and complete and (b) all spaces are set to
{0, 1}*, IT* achieves completeness. Moreover, the puzzle sampling distribution is close to uniform {0, 1}*, which
is also the challenge distribution in IT*. Therefore, assumptions (A), (B) in Figure 2 hold. In addition, the running
time of the puzzle solver is 2/t2logA > glog® A+2log A \yhich strongly dominates the linear time complexity of
performing & operations or sampling uniformly at random, i.e. assumption (C) in Figure 2 also holds. Thus, by
Theorems 2 and 1, we have that IT* is \“m-sound, for any v > 2. The (statistical) indistinguishability of IT* is
achieved by the perfect ZK simulation of the Schnorr protocol and the assumptions (A), (B).

4 Applications

Below we present some practical and theoretical applications of our PoWorK. When using PoWorK in practice
we must ensure that the verifier cannot distinguish between the two types of provers based on their response time.
In Section 2.2 we argued that for our indistinguishability proofs, P(w) (i.e. the prover who knows the witness)
should perform some idle steps so that his running time will be lower bounded by the time that one would need
to solve the puzzle. However, enforcing a real user to wait is not ideal. Luckily though, the time needed for a
prover who solves a puzzle (i.e., does not know the witness) depends on his total computational power and on
whether the puzzle is parallelizable or not. Provers who own specialized hardware (e.g., based on ASICs) or that
have access to powerful computer clusters (in case that a puzzle is parallelizable) might be able to solve the puzzle
very fast — paying of course the relevant computation cost. Thus, when applying PoWorKin practice, the time
that takes a prover to respond a challenge is not a distinguishing factor: the prover might have as well solved the
puzzle in constant time by fully parallelizing its computation. However, we do care that the prover has paid the
corresponding computational cost and he is not able to amortize a previous solution of a puzzle to solve a new one.

4.1 Email Spam Application

Using proofs of work to reduce the amount of spam email was suggested back in 1992 by Dwork and Naor [DN92].
Their idea can be summarized in the following:

3The construction using the DLP based puzzle system is similar. We chose to employ the RO instantiation for simplicity in presentation.
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“If I don’t know you and you want to send me a message, then you must prove that you spent, say, ten seconds
of CPU time, just for me and just for this message” [DN92].

In their proposal there exists some special software* that operates on behalf of the receiver and checks whether the
sender has properly computed the proof of work or the sender is an approved (by the receiver) contact. The reason
that this approach helps to reduce spam is mainly economic: in order for spammers to send high volumes of emails
they would have to invest in powerful computational resources which makes spamming non cost-effective.

A disadvantage of the method described above is that the list of the approved contacts (i.e. email addresses) of
the receiver has to be given to this special software/mail server in order to check whether the sender belongs in this
list or not - in which case she will have to perform additional computation. This violates the privacy of the receiver
who needs to reveal which of her contacts she considers to be approved and thus allows them to send emails “for
free”. Adopting our PoWorK protocol would give a privacy preserving solution to the spam problem: given the
indistinguishability feature of PoWorK, the software/verifier does not need to know the approved list of contacts,
in fact it does not even need to know whether the incoming email is from an approved contact or a non-approved
user who successfully fulfilled the computational work.

Non-interactive PoWorKs. Sending an email should not require any extra communication between the sender
and the mail server. Our 3-move PoWorK is public-coin, thus can be turned into non-interactive by applying the
Fiat-Shamir transformation [FS86]. Namely, the prover, instead of receiving a challenge from the verifier, hashes
the first move message a together with the context of the email and the email address of the receiver into ¢, and
provides the verifier with the whole proof, 7, which includes (a, ¢, r) and the context of the email, in one round.

Multi-witness hard relation. In order for a user to approve a list of contacts she will have to provide each one
of them with a unique witness for the same statement (in order to ensure indistinguishability). Let R, be a multi-
witness hard relation with a trapdoor for a language {x | Jw : (x,w) € R}. A relation is said to be hard if
for (z,w) € R, a PPT adversary given z can only output w’ s.t. (z,w’) € R, with negligible probability. A
multi-witness hard relation with a trapdoor is described by the following algorithms: (a) a trapdoor generation
algorithm sets a pair of a statement x and associated trapdoor ¢: (x,t) <GenT(R), (b) an efficient algorithm
GenW that on input x € £ and a trapdoor ¢ outputs a witness w such that (z,w) € R, and, (c) a verification

algorithm 1/0 < Ver(R., z, w) outputs 1 if (x,w) € R, and 0 otherwise .

PoWorK based spam reducing system. Consider a PoWorK scheme as presented in Figure 1 for a security
parameter A, a puzzle system PuzSys and a multi-witness hard relation with a trapdoor R, as described above. A
spam reducing system SRS consists of the following algorithms:

. MailServerSetup(l)‘): the mail server S,,,; on input the security parameter, A, selects the hardness of the
puzzle system h € HS).

* ReceiverSetup(1*, h): user R (i.e. the receiver) runs (z,t) <~ GenT(R, and sends z and her email address
adr to the mail server (potentially signed together). The trapdoor ¢ is secretly stored by R.

* ApproveContact (t,x): in order for R to approve a sender S, it will run w < GenW(¢,z) and will give
w € Rp(x) to the sender (unique witnesses allow for revocation as discussed below). From now on, S can
use w to send emails to K.

* SendEMail(w, h, x): a sender S with input the public parameters v, statement « € £ and with a private input
w € Rp(x)U{L}, prepares a PoWorK proof 7 = (a, c,r). If S is an approved contact of R, then she will
use the witness w to perform the PoK side of PoWorK, while if R is not an approved contact (i.e. w = 1)

“This special software could for example run on the receiver’s mail server or be an independent program running on the receiver’s side.

SExamples of multi-witness hard relations with trapdoors are (a) the DL representation problem [Bra94, BF99] over prime order groups,
(b) the representation problem in composite modular groups [ACJTO0] which has constant size parameters in the number of adversarial
parties.
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she will have to execute the PoW side. To compute 7 non-interactively she will fix ¢ to be H (a, m), where
a is the first message of PoWorK, m stands for the body of the email®, and H is a hash function. The rest of
PoWorK is computed as before.

» ApproveEMail(h, x,7): is run by the mail server S,,,; who verifies 7 and outputs 0/1. If proof is 7 valid,
then S,,,,;; forwards the enclosed email to R.

Note that our proposal, similar to [DN92, DGNO3], requires to implement additional protocols between the sender
and the recipient (i.e. a change in the internet mail standards would be required).

Security. Although a formal definition and description of properties of an email system is out of the scope of
this paper, we do define and prove spam resistance and privacy. Briefly, spam resistance guarantees that the mail
server will allow an email message to reach the recipient if and only if a valid proof (of work or knowledge) has
been attached. At the same time for a non-approved contact the number of valid proofs of work prepared should
not affect the time required to prepare a new one (similar to puzzle amortization property). Privacy implies that
the mail server cannot distinguish whether the sender of a message is an approved contact of the recipient or not.
More formally:

Definition 6 Let SRS be a spam reducing system built upon a PoWorK (P,V) for a language L € NP and a
puzzle system PuzSys = (Sample, Solve, Verify). We define spam resistance and privacy of SRS as follows:

(i). (o,k)-Spam Resistance: We say that SRS is (o, k)-spam resistant if there exists a PPT witness-extraction
algorithm K, such that for every hardness factor h € HS ), auxiliary tape z € {0,1}" and every adversary
A, if for non-negligible functions o (+), aa(+):

(t,x) < ReceiverSetup(1*, h); V1 < i < k : puz; < Sample(1*, h);
{7Ti = (al-, ci,ri)}ie[k} «— A(Z, 1/\, h,L) :

pr | (V1 <i<k: ApproveEMail(h,x,m;) = 1)A = a1 (N,
AVi# j € k] m #m)A

/\(StepsA(z7 1M h,z) < o Zle Stepssoe (17, A, puzi)))

then
Pr[KA(z,1* h,z) € Re(z)] = aa(N) .

(ii). Privacy: We say that SRS is private, if for every hardness factor h € HS,, auxiliary tape z € {0,1}" and every
adversarial mail server A, it holds that:

Pr (t,x) < ReceiverSetup(1*, h); w < ApproveContact(t,z); |
7 SendEMail(w, h,x) : A(z,h,x,7) =1

B (t,x) < ReceiverSetup(1*, h); B
Pr [ 7 < SendEMail(1, h,z) : A(z,h,z,m)=1 || negl(\) .

We state the following theorem for a private spam reducing email system:

Theorem 6 Let SRS be a spam reducing system built upon dense puzzle-based PoWorK (P, V) for a g-hard and
(7, k)-amortization resistant dense puzzle system PuzSys = (Sample, Solve, Verify), where k is polynomial in
A, T is an increasing function and g is a subadditive function. Let H be a hash function with output domain
equal to challenge sampling space CSy modeled as a random oracle. Assume that the worst-case running time
of Solve(1%,-,-) is o(|CS,|) and that (/7o g(Solve(1*,-,-)) is superpolynomial in \. Then, the email system
described above is private and (/T © g, k)-spam resistant.

%We can assume that the email body also contains a time-stamp (or that the time-stamp is added later by the mail server) and also
includes (ads, adr) which are the sender/receiver email addresses
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Intuitively the privacy holds because of the indistinguishability of PoWorK (we can use the adversary of SRS
privacy to build an adversary that breaks the indistinguishability of PoWorK). The (/7 © g, k)-spam resistance
property briefly holds because of the soundness of PoWorK and the amortization resistance of the underlying
PuzSys. We provide a proof sketch of Theorem 6 in Appendix D.

Extensions. We finally discuss some interesting extensions of our spam reducing application:

Revocation. We could possibly use standard anonymous revocation schemes [CL0O2, LPY 12] on top of our email
construction. The idea is similar to group signatures authorization: whenever a receiver approves a user (i.e. adds
the user to the group of approved contacts) she also provides her with a membership credential. The receiver
has to periodically update a public list of revoked (or unrevoked) users and, whenever a sender wishes to send an
email, she will also have to include a proof of non-revocation together with 7 (which can be done anonymously to
preserve the privacy against the mail server).

Preventing witness sharing (transferability). Another possible extension would be to guarantee that a user/receiver
is not sharing her witness with more users. A possible way to address this problem is to use the techniques that
were proposed by Kiayias and Tang [KT13] and construct a leakage-deterring cryptographic function F that on
input a user’s witness it outputs some private information associated with it. Whenever a user obtains a witness,
this is associated with some private information of the user (e.g.. a credit card number). F is constructed in such a
way that when it receives w as input, outputs the information associated to it. Thus, when a malicious user shares
his unique witness, anyone who receives it can find the user’s private information.

Performing useful work. It would be very appealing if the computational power consumed by a PoW user to
solve a puzzle, was actually used towards some sort of useful work. A possible idea would be to use a volunteer
computing service ' as a work provider, WP, that generates the puzzles to be solved. Then, one could use our
Lapidot-Shamir based PoWorK that requests that the PoK prover solves a puzzle selected by the verifier (refer to
Appendix C). The verifier can pick a random puzzle from the work provider, WP, and once the prover has the
solution can submit it back to WP. Assuming that the verifier and the work provider are not colluding, the privacy
of the prover is maintained.

4.2 3-move Straight-line Concurrent Simulatable Arguments of Knowledge

In the following, we present a theoretical application of PoWorKs. Namely, we show that any PoWorK protocol that
satisfies a couple of reasonable assumptions, implies straight-line concurrent (AP°Y(°8A))_simulatable arguments
of knowledge. To prove it, we use the results of Pass [Pas03, Pas04] who has shown that protocols satisfying
straight-line simulatability are also straight-line concurrent simulatable. Given this proof, we conclude that our 3-
move dense puzzle based PoWorK construction, when instantiated with an appropriate puzzle system, is a 3-move
straight-line concurrent AP°Y (12 A)_ statistically simulatable argument of knowledge.

The concurrent self-composition Lemma in [Pas04] states that protocols which are straight-line strongly T'(\)-
simulatable (resp. perfectly simulatable) are also straight-line concurrent strongly T'(\)-simulatable (resp. per-
fectly simulatable). In the Lemma below, we also consider the case of statistical 7'(\)-simulatability. For defini-
tions of straight-line simulatability and straight-line concurrency, we refer the reader to Appendix E.

Lemma 2 (Concurrent Self-Composition [Pas04]) Let T'(\) be a class of functions closed under composition
with any polynomial, and let (P, V) be an interactive argument of knowledge with efficient provers®. If (P, V) is
straight-line strongly (resp. statistically) (resp. perfectly) T (\)-simulatable, then it is also straight-line concurrent
strongly (resp. statistically) (resp. perfectly) T'(\)-simulatable.

In the following theorem, we apply Lemma 2 to prove that any 3-move PoWorK is straight-line concurrent sta-
tistically AP°Y(°g ) _simulatable argument of knowledge, when two additional time complexity assumptions hold.

"Like the the Berkeley BOINC system http://boinc.berkeley.edu/ that contributes to scientific research.
81.e., PPT provers that satisfy completeness.
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These assumptions are plausible and can be easily met by our dense puzzle based construction when built upon
both of our puzzle instantiations, for an appropriate choice of hardness factor.

Theorem 7 Let L be a language in N'P and let PuzSys be a puzzle system. Let (P,V) be a 3-move f-sound
PoWorK for L and PuzSys with statistical indistinguishability such that for every hardness factor h € HS), it
holds that:

(i). Pr[puz < Sample(1*, h) : f(Stepssope (17, b, puz)) < A°8A] = negl(N).

(ii). The worst-case running time of Solve(1*, h, -) is APl (108X) 4 P is a polynomial time algorithm that makes
oracle calls to Solve(1*, h, -).

log \)

Then, (P, V) is a 3-move straight-line concurrent statisticallly \P°Y ( -simulatable argument of knowledge.

Proof:(sketch) First, we show that (P,)) is a 3-move straight-line statistically Apely(log ) _gimulatable argument
of knowledge. Namely, that (P, V) satisifies the following properties:

Completeness. Follows directly from the completeness of (P, V).

Argument of Knowledge. Consider the PPT witness-extraction algorithm K as in the f-soundness of (P, V).
Assume that for some z € £ {0, 1}*°¥™ 1y € {0,1}*, 2 € {0, 1}* and hardness factor h € 1S there exists a
PPT prover P* and a non-negligible function s(-) s.t

Prioutputy < (P*(y) <> V)(z, z, h) : outputy = accept] > s(\).

Since the PPT prover P* runs in o ()\log )‘) time and by assumption (i) of the statement of the theorem, we have that
for some negiligble function o(-)

Pr[puz + Sample(1*, h); outputy « (P*(y) <> V)(z, 2, h) : (outputy = accept)
A\ Stepsp- ((P*(y) ¢+ V)(2,2,h)) < f(Stepssone(1*, 1, puz))] = s(X) = 6(N).

Since s(A) —d(A) is a non-negligible function, by the f-soundness of (P, V), the algorithm /C, given oracle access
to P*, returns a witness for x with some non-negligible probability.

Straight-line \P°Y(°g ) _statistical simulatability. Let V* be an arbitrary verifier. We construct a simulator S
that runs in \Po(logA) time, such that the distributions

{viewy» + (P(w) + V*)(x,zjh)}gJeE’ wERL (2),2€{0,11* heHS) and
{viewy + (S < V*)(z, z, h)}xeﬁ,ze{O,l}*,heHS)\

are statistically indistinguishable. Namely, S encompasses the prover P and the puzzle solving algorithm Solve
and emulates the PoOW mode of (P, V). By assumption (ii) in the statement of the theorem, P runs in polynomial
time and makes oracle calls to Solve with worst case complexity AP°¥(1°8 ) Since the complexity class AP (108)
is closed under polynomial composition, the running time of S is bounded by p(\) - Apoly(log ) — \poly(log A),
where p(+) is some polynomial. By the construction of S, the distributions

{viewys + (S V*>($’Z’h)}xeﬁ,ze{o,l}*,he’HS,\ and
. AR * _ *
{mewy* — <735°'Ve(1 he) s Y )z, 2z, h) Sl (01} hEHS, = D}ﬁow

are identical. Thus, the straight-line AP°¥(1°8 %) _statistical simulatability follows from the statistical indistiguisha-
bility of (P, V).

By applying the concurrent self-composition Lemma 2, we conclude that (P,V) is a 3-move straight-line
concurrent statisticallly APV (198 })_simulatable argument of knowledge for language L.
O
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Remark. As shown in Sec. 3.5, dense puzzles can be constructed by combining UOWHFs and any oneway
functions. Moreover, one can build UOWHFs from any oneway functions [Rom90, HHR " 10]. Therefore, assume
there exists an oneway function against all sub-exponential running time adversaries, we have a 3-move concurrent
argument of knowledge. As a result, we can improve the round complexity of the Pass’s original concurrent ZK
protocol with similar assumptions.
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A Building Blocks

A.1 3-move Special-sound HVZK (SS-HVZK) protocols

SS-HVZK protocols are a class of interactive proofs between a prover, P, and a verifier, V', who have a common
input = and P proves in zero-knowledge that he knows a witness w such that (z, w) € R, where R is a witness
relation for lagnuage £ € NP. In a 3-move public coin SS-HVZK protocol IT = (P1yy, P2y, Veryy), (i) the prover
first runs (a, ) < Plp(w,z) and sends the first message a to the verifier; (ii) the verifier picks a challenge ¢
uniformly at random from some challenge space CSy and sends the challenge c to the prover; (iii) the prover then
runs r < P2p(¢, ¢) and sends the second message r to the verifier. The verifier accepts the proof if and only if
Verrr(z,a,c,r) = 1.

We say that the protocol satisfies the computational (resp. statistical) honest-verifier zero knowledge (HVZK)
property, if there exists a polynomial-time simulator Simp, which on input x € £ outputs an accepting transcript
of the form (a, ¢, r) which distribution is computationally (resp. statistically) indistinguishable from an actual
transcript generated by the interaction of the prover and the honest verifier. A stronger property named special
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HVZK (sHVZK) requires that there exists a simulator that produces indistinguishable transscripts on input z € £
and a (possibly maliciously sampled) challenge c. When we allow the simulator to obtain an auxiliary input, we
say that the protocol satisifies the auxiliary input (S)HVZK property. It is straightforward that statistical (s)HVZK
is also statistical auxiliary input (s)HVZK.

Finally, we say that a 3-move public coin HVZK protocol is special-sound if there exists a polynomial-time
knowledge extractor Ky that on input x and any pair of accepting transcripts, (a,c,r), (a,c’,r") for x where
¢ # ¢, can output a witness w such that (x,w) € Rp.

A.2 The Schnorr Identification Scheme

An example of a 3-move SS-sHVZK protocol that we will use in our constructions, is the Schnorr identification
scheme [Sch89]. This scheme is essentially a proof of knowledge of a discrete logarithm. Let G be a group of
prime order g with generator g, and let Z, denote the field of integers modulo g. Schnorr’s identification scheme
works as follows:

Prover(q, g,z = g*) Verifier(q, g, x)
t& 7, a=g a
q» g E—
&z
<L ¢ q
?
— T Cc
r =1+ cw mod ¢ r, g =ar

B The Dense Puzzle Based PoWorK construction

B.1 Proof of Theorem 2

Proof: Correctness and efficient samplability. The correctness and efficient samplability is straightforward.

Completeness. We now show the completeness, namely the probability that Pr[puz < {0,1}"; L < Solve(1*, h, puz)]
is negligible in \. We can view each H (-, y) oracle query as an independent random variable A; € {0,1}, with
E[A;] = p = 27", where A; = 1 if and only if LSBy(H (z},y)) = LSBp(2). Let u denote the expected value of

2h,+2logA 2h+210g)\ 2h+210g/\

A= ijl Aj, sowehave = E[Y Aj] = ijl E[A;] = p-2h+2logA — 92log X — A2 Hence,

letd =1-— % by the generalized Chernoff bound, the probability Solve outputs | for a given puz is

j=1

—82u _<1—14A2)2,A2

PrlA<1]=PrlA<(1-9d)ul<e 2 =e = negl(\) .

Statistically indistinguishability. To show A[D; 5, D)\ 1] = negl()), we first need to show that for all A and
h € HS,, the distribution of sampled puzzle, P(\, h) = {puz|(puz,soln) <— SampleSol(1*, /) } is statistically
close to a uniform distribution over the PSy = {0,1}*. Recall that puz consists of H(z,y) and y, where x,y
are chosen independently and uniformly at random. Analogous to the leftover hash lemma (LHL) [HILL93], we
can show that A[P(\, h), U,] < 27M4+1 as follows. We define the collision probability as CP(H (z,y),y) =
Pr[(H(z,v),y),(H(z',y"),y’)], where (z,1) is independent of and identically distributed to (z,y), i.e. Uy X
U, /2. Since O is a random oracle, we have

CP(H(z,y),y) = CP(y)-(CP(z)+Pr[H(z,y) = H(z',y)|lz = 2])
< 2—)\/2 . (2—)\ + 2—)\/2) _ (1 + 2—)\/2) . 2—)\ )

Meanwhile, we have

(I(H(z,y),y) = Upje x Uy pall2)> = CP(H(z,y),y) — CP(Uy g x Uy )
S (1 + 2—)\/2) . 2—>\ _ 2—)\ — 2—3)\/2 .
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Therefore,

1
A[P(A\h), Uy = §||(H(l’7y),y) — Uy x Uyl
M2 |(H (2, y), ) — Uy 2 x Uy a2

é 2)\/2—1 LA /273)\/2 — 2—>\/4+1 .

Secondly, due to that fact that O is a random oracle, the distribution of puz and soln are independent. Moreover, the
Solve is probabilistic algorithm that tests the uniform randomly selected solution candidates, and thus it is obvious
that Solve( 12, h, puz)) outputs a random soln from the solution set of puz, which is identically distributed to the
solution soln in (puz,soln) <— SampleSol(1*, k). Therefore, we have the distance A[D; x p, Dp 2 1] = negl()\) as
claimed.

IN

g-hardness. First of all, although the adversary’s auxiliary input is z € {0,1}" can be arbitrarily long, the
adversary is only able to read O(g(2"21°8})) < O(2*/4) content of z under its running time limitation. Since
y + {0, 1}’\/ 2, the probability that the read content of z contains a H (*,y) oracle query is at most p,, = gi—g =
negl(A). In the rest case, we assume that each random oracle query takes 1 unit steps. Due to the property of

random oracle, we expect 2*~" solutions in the solution space {0, 1})‘ for any given puzzle instance puz. The

probability the adversary cannot find a solution within 2("+2108V)/¢ trials is
( 2ol ) 1 (h+2log A)/ 2y, 4
_ \o(ht2log)/c _ 2(h+2logA)/e _ 9—(1-2)h+Zlog A
b= 2 > (1 2h—(h+2log/\)/c) z1-2 .

92(h+2logA)/c

Since ¢ > 2 and h > log? \, we have the probability the adversary A can find a solution is

w + (1 = pw)(1 —pr) = negl(A).

(id(-), k)-amortization resistance. Let A be an adversary that runs in O (k2("*+21°82)/¢) steps and is given a set of
k sampled puzzles puzy,...,puz;, = (21,Y1),. .., (2k, yr). By the construction of the algorithm SampleSol, we
have that the probability that all k values yy, . .., yx are distinct is

pa=1-1—-2M o (1= (k=1)2"M) > (1 —k27V2)r > 1 - 22722 >
>1—(2V82.27M2 =127 M4 =1 —negl(\).

Assume that k values y1, . . ., yx are distinct. As in the proof of g-hardness, since A runs in O(k2(h+2 log A)/ €)=
O(2W/8t+h+2log /ey — §(27M4), for every i € [k], the probability that A reads an oracle query H (-, y;) from the
auxiliary tape is p; < 2~*/4. By the union bound, the probability that A reads any oracle query H (y1) .o H( yk)
from the auxiliary tape is p,, < Hle pi < k27N <278 97N < 978 — negl(N).

Let q1, ..., qx be the number of oracle queries H (-, y1), ..., H(-,yx) that A makes. By the restriction on the
running time of A, we have that Z?Zl g < k2(ht2logN)/e By an averaging argument, there is an i* € [k] such
that A makes at most 2("21082)/¢ oracle queries H (-, ys+). Due to the property of random oracle, we expect 2*~"
solutions in the solution space {0, 1})‘ for puz;.. As previously, the probability that A cannot find a solution of
puz;. within 272108 )/¢ trials is more than 1 — 9-(1=Dh+318A  Since ¢ > 2 and h > log? \, the probability
that A can find a solution for all puz,, ..., puz, is negl()). O

B.2 Proof of Theorem 3

Proof: Let Fi(-) := (Fy(-),4). If Hoo(z) = t > m(\) + A + 2log(1/e) + 1, by Lemma 1, we have A[(s, F} o
Hy(x)), (s, Fi(Uyg(n)))] < €. In addition, 7 is drawn uniformly from {0, 1}*, and F; is a regular function; hence

Fi(Ugny) = Upy(n), and thus FioH, (z) is statistically indistinguishable from U, ) x U . Therefore, weconclude
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that Exty(z, (i,s)) = (F; o Hg(x),1) is a (t, €)-strong extractor. In terms of the TCR property, we show that if
there exists an adversary .4 who can break the TCR of Ext), then we can build an adversary 3 who can break the
TCR of F) as follows. B is playing the UOWHF TCR game, meanwhile B interacts with .4 as the challenger in the
strong extractor TCR game. Up on A outputs = € {0, 1}6(’\), then B randomly picks s € {0, 1}”(” and outputs
&= Hy(z) € {0,1}*™ toits challenger. Up on receiving i € {0, 1} from its challenger, 13 sends (i, s) to A. Up
on A outputs 2’ € {0,1}*™, B outputs #/ := H,(a') € {0,1}*™. Since H,(-) is a permutation, = # 2’ implies
Hs(x) # Hgs(a2'"). Clearly, B’s probability of breaking UOWHF TCR property is exactly equal to .A’s probability
of breaking strong extractor TCR property. O

B.3 Proof of Theorem 4

Proof: The e-density of 1/1)?17 A, follows directly from the underlying (H}, , €)-strong extractors, and by Theorem 3,
A[(EXt)\Q (C)\l (wAl (.%')), (817 32))7 52)7 (UH)\172lOg(1/6)717 52)] Se

We now show wgfl 1, 1s oneway by reduction. Namely, if there exists an adversary A who can break the onewayness
of ¢>\Ul, », then we can construct an adversary 3 who can either break the onewayness of 1, or break the TCR of
Exty,. During the reduction, B plays the 1), onewayness game with the environment C; and the Exty, TCR game
with the environment Cy simultaneously. B receives y = 1, (z) for some z € X\, from C1, and then B outputs
¢\, (y) to Co. Upon receiving (s, s5) € {0,112 x {0, 1}”0‘2) from the environment C, B sends A the image
U 5, (@, (51,52)) = (Extag (O, (1), (51, 52)), 52). A will then output (2, (s}, 55)) € Xy, x {0,1}*“?2) and B
halts if (s1, s2) # (8], s), as A fails. Otherwise, if ¥y, (') = y, B sends 2’ to the environment C1; else BB sends
Cx (¥, (2)) to the environment Cs. Since (), is injective, 1y, (2') = y implies (y, (¥, (2)) = (), (v); hence, if
A wins, B can win either one of her games. o

B.4 Proof of Theorem 5

Proof: Correctness and efficient samplability. Correctness and efficient samplability is straightforward.

Statistically indistinguishability. We now show that the puzzle system is statistically indistinguishable. Recall
that puz consists of Exty (vq(z +2"-y), (51, 52)), 52, y, where s1, s, y are chosen independently and uniformly at
random. Hence (s1, sg, ) is identically distributed to U X Ugy X U /5. Since Hoo(z) = h > log* A +log? A\ +1
and v is a bijective function, by Theorem 4, the puz = (Exty(¢a(z + 2" - y), (s1,52)), s2,y) is at most
e = 27 (108 A=1)/2 — neg|(\) far from U, 1ogt A X Uax X Uy jo, where (s1, s2) < {0, 1}** and y + {0, 1}’\/2 are
drawn uniformly random and independent to z. On the other hand, as shown in the paragraph below, the puzzle
system is complete. Notice that the solver is probabilistic, so Solve(1*, h, puz)) outputs a random soln from the
solution set of puz, which is identically distributed to the solution soln in (puz,soln) «— SampleSol(1*, 1). There-
fore, A[Dg x p, Dp an] = negl(X) as claimed.

Completeness. Since the puzzle instance is statistically indistinguishable from uniform random, with probability
2 . .

at most e = 27108 A=1)/2 — neg|()\) a puzzle puz < {0,1}" is unsolvable; otherwise, the Solve can be used to

distinguish the puzzle instance from uniform random. It is easy to see that the solver’s running time is 2".

g-hardness. In terms of g-hardness, the adversary is able to read at most 0(21055 ) content of its auxiliary tape z
within its running time, whereas (s1, s2) < {0,1}** and y « {0, 1}’\/ 2. therefore, the probability that z contains
a Exty(vYa(x* + 2" - y), (s1,52)) query for some z* is negligible in \. In the rest case, recall that we assume
breaking the TCR property of strong extractor is always harder than solving the generic DLP. The best generic
algorithm must take at least v/2"+1e steps to solve a hard generic DLP with probability e. Therefore, given 2//¢,
c > 2, the adversary can successfully solve the generic DLP with probability at most € = 9-(1-Dh-1 negl(\).
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(7, k)-amortization resistance. Define the set of k£ sampled puzzles as puzy,...,puz;, = (z1,¥1),- -, (Zk, Yk)-
By the construction of the algorithm SampleSol, we have that the probability that all ¥, . . ., y are distinct is

pa=1-1—=2"V2) .. 1= (k=1)27M) > 1 —k2 V) > 1 - k2. 272 = 1 — negl()).

Assume that k values yq, . ..,y are distinct. As shown in [Yunl5], the probability that an adversary A can
solve the k puzzles with less than ©(V'k - 2) group operations is negligible. Hence, there exists a constant o > 0
such that, with 1 — negl(\) probability, we have Steps 4(z, 1%, h, {puz;}5_) > a - (k- 2")V/2. Let 7(z) = .
Whenc > 2,k = O(210g3)‘) and h > log* A, we have for sufficiently large A € N:

k
T( Zg(StepSSolve(1>\7 ha puzi))) =k- 2h/c <a- (k : 2h)1/2 :
i=1
Therefore, the probability Steps 4(z, 1%, h, {puz; }}_;) < 7( Zle g(Stepssope (11, h, puz;))) is negl()). O

C The Lapidot-Shamir Based PoWorK Construction

In this section, we describe our second PoWorK construction which is less efficient than the dense-puzzle based
construction but can be constructed from any arbitrary puzzle system’. We stress that this construction is not
black-box on the puzzle verification algorithm and does not retain the public-coin aspect (since the verifier will
be sending an actual puzzle in the second move) without any additional assumption about the puzzle system. In
Section C.1, we provide a detailed description of the Lapidot-Shamir (LS) protocol and the properties it satifies. In
Section C.2, we present a 3-move protocol that compiles any 3-move special sound and computationally auxiliary
input special HVZK (sHVZK) protocol (like the LS protocol) into a PoWorK that, as we prove in Section C.3,
is O(g)-sound and computationally indistinguishable, where g is the hardness scaling function of the underlying

puzzle system.

C.1 The Lapidot-Shamir SS -sHVZK protocol

We recap the 3-move Lapidot-Shamir (LS) special sound computational auxiliary input sHVZK protocol [L.S90]
in this section. The LS protocol is an SS-sHVZK protocol (see Appendix A.1) for Hamiltonian Cycle, and thus it
can support any NP language. In the LS protocol, the prover only needs to know the size of the statement in order
to produce the first move, while the actual statement is only needed for the third move. This property is crucial
for our construction. In the following description, we run £(\) instances of the original LS protocol in a parallel.
Denote P1; g, P21 g, Very g as the first move prover, third move prover and the verification algorithm respectively.
The common input of the prover and verifier is a graph G with IV vertices, represented by its adjacency matrix. In
addition, the prover takes a Hamiltonian cycle of GG (denoted as (') as its private input.

* Plpg(N): Forie {1,2,...,¢(\)}, do:

— Pick a random cycle R; with IV vertices.

— Commit to every element of the adjacency matrix of R;, denoted as Com(R;), using a statistically
binding commitment scheme.

* Plys — Verps: Com(Ry), ..., Com(Ry )
o £N)
* P2ypg <« Verpsic=cy--- Con) < {O, 1}

* P2;5(G,c): Fori € {1,2,...,¢(\)}, do:

The authors are grateful to an anonymous reviewer for suggesting the possibility of using this approach for constructing PoWorKs.
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— If ¢; = 0, then define z; as the openings of the entire committed adjacency matrix, Com(R;).

— IF ¢; = 1, then define z; as (7, d; ), where 7; is a permutation from the vertices of R; to the vertices of
G and d; is the openings of all adjacency matrix elements of R; that correspond to non-edges of G.

° PZLS — VerLg: 215y ZE(N)-
» Verps (G, {Com(Ri)}ie[g()\)] ,C, {zi}iew(}\)]): return 1 if and only if for every i € {1,2,...,4(\)}:

— if ¢; = 0, all the openings of the commitments verify and the openings of Com(R;) form indeed a
random cycle.

— if ¢; = 1, the openings of all adjacency matrix elements of R; that correspond to non-edges of G are 0
(i.e. R; is a subgraph of GG up to permutation).

Properties of the LS protocol.

« Special soundness: Given two accepting transcripts with ¢ # ¢/, there exists a knowledge extractor that can
output a Hamiltonian cycle of G. Indeed, if ¢ # ¢/, then 3i € [¢(\)] s.t. ¢; # ¢}. Therefore, from the i-th
instance, we obtain (i) the random cycle R; when ¢; = 0 and (ii) the permutation that maps R; to the actual
Hamiltonian cycle C' of G when ¢} = 1.

* Auxiliary input SHVZK: There exists a simulator Simpg = (Simlyg,Sim2g) s.t. for any challenge c,
Simyg can simulate a transcript that is computationally indistinguishable from the real one. Observe that the
LS protocol achieves this property, for any auxiliary input because in each execution, the prover sends a fresh
commitment key in the first move. Therefore, the verifier has negligible probability of gaining significant
information about the table of messages and corresponding commitments by reading a polynomial size part
of the auxiliary input. Finally, the SHVZK is computational, as an unbounded algorithm may break the
hiding property of the statistically binding scheme.

* First move independence: The selection of R and the commitments to the elements of its adjacency matrix
are performed independently of G and C'. We emphasize that Sim1;g can simulate the first move without
knowing the statement as well, namely it commits to a random cycle if ¢; = 0; commits to a zero adjacency
matrix if ¢; = 1.

C.2 The Lapidot-Shamir Based Compiler.

The compiler is designed with black-box access to any 3-move special sound auxiliary input sHVZK protocol
IT for some language £ € N'P. W.lo.g., the challenge sampling distribution of II is uniform in the challenge
space. The properties of the LS protocol imply that there exists such a protocol for every language in N'P. Let
P1y, P2, Verr, and Simyy be the first move prover, third move prover, verification algorithms, and simulator of T,
respectively. The challenge space of (P, V), I and the LS protocol coincide and are set as {0, 1}**") where £(-, -)
is function that depends on A and the hardness factor h, so that the size of the challenge space is superpolynomial
in A\

Let Sim g be the simulator of the aforementioned LS protocol. Here, we need to exploit the feature that Simpg
can simulate the first move without knowing the statement, i.e. it commits to either a random cycle or a zero matrix
depending on the challenge bit. Hence, we denote Simy g = (Sim1yg, Sim2yg) such that (a, st) <— Sim1l7s(c, N)
and r < Sim275(G, ¢, st), where G is the statement of size N, c is the challenge and st is the simulator’s state.
For fixed security parameter A and hardness factor A, h, we define the language

Lxn = {t € PSy | Is € HS) : Verify(1*, h, t, s) = true} .

We reduce L), to the Hamiltonian Cycle via the generic deterministic algorithms G and C that will encode a
statement (puzzle) ¢ and a witness (solution) s € Rgm(t) to a graph G; and a hamiltonian cycle H; of Gy
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respectively. Note that the size of G, N) 3 depends only on A, h, which enables the application of the first move
of LS protocol before receiving the puzzle statement at the second move of our construction.
The protocol (P, V) can be executed in either of the two following modes:

1. Proof of Knowledge (PoK) mode. P has a witness w € R () as private input. In order to prove knowledge
of w to V, in the first move, P follows the first move of II and simulates the first move of the LS protocol by
providing Sim1;,g with a random challenge c¢. The verifier responds with a challenge ¢ and a sampled puzzle
puz. Then, P executes the third move of I by running P2y with the challenge ¢ = ¢ ® ¢ and simulates the
third move of the LS protocol.

2. Proof of Work (PoW) mode. P has no private input and convinces } by “working” for at least some
expected amount of time. To achieve this, P simulates an execution of II with a sampled challenge ¢ and
follows the first move of the LS protocol. Then, it receives (¢, puz) from )V as before and runs the puzzle
solver to obtain a solution soln of puz, which encodes as a cycle Csqjn 0f the graph Gp,,. Finally, it proves
the knowledge of soln via reduction to the third move of the LS protocol with challenge ¢ = ¢! @ ¢.

As in the previous construction, the verification mechanism, must be the same for both modes. Namely, the
verifier computes the encoding G, of the challenge puzzle puz and checks that: (i) the relation ¢ = ¢ @ c holds,
(ii) the II-protocol’s transcript is accepting and (iii) the LS protocol’s transcript for statement G, is accepting.
The protocol (P, V) is presented in detail in Figure 5.

Statement: 2 € £ {0, 1}P°YX),
Prover’s private input: w € R, (x).

P : o pick ¢ & {0,1} N,
e (a,st) « Simlps(c, Ny n);
° (a,¢n) — P].H(.’E,'UJ);

P —V:a,a.
V:epick e & {0, 1},
e puz + Sample(1*, h);

P« V: ¢, puz.
P.ec=cDc;
° Gpuz — g(l)\a h> PUZ);

o 7 < P2r(¢r, ¢z, w);
o 1 < Sim21,5(Gpyz, ¢, St);

P —=V:ce,rr.

Verification:
l.e¢=é¢de

2. Vern(z,a,¢,7) = 1.

3. Verps(1*,G(1*, h,puz),a,c,r) = 1.

Statement: = € £ {0, 1}*°YW,
Prover’s private input: —

P : e pick ¢ & {0, 1}E(>"h);
o (a,0rs) + Plps(Nan);
e (a,¢,7) « Simp(é);

P —V:a,a.
V : e pick ¢ & {0, 1}5()"’1);
e puz + Sample(1*, h);
P < V: ¢, puz.
P:ec=¢"1pe
e soln < Solve(1*, h, puz);
o Gpuy G(1*, h, puz);

o Cooin < C(17, h,s0In);
or +— P2rg (¢LS7 C, Gpuza Csoln);

P —V:ieé,r,f.

Verification:
l.é¢=¢de

2. Verp(z,a,é,7) = 1.

3. VerLS(lhv g(l)\a h7 pUZ), a, ¢, T) =1

(a) Knowing the witness (PoK)

(b) Doing work (PoW)

Figure 5: The LS PoWorK construction for fixed security parameter A and hardness factor h € HS), given a
3-move-SS-sHVZK protocol II for language £, an LS protocol and a puzzle system PuzSys; the challenge space
of (P, V), IT and the LS protocol coincide and are set as {0, 1}€()"h); o11, @15 and st are states of the prover of 11,
the prover of the LS protocol and the simulator of the LS protocol, respectively.
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C.3 Security of the Lapidot-Shamir PoWorK Construction

We denote by C'" : Hamiltonian Cycle — SS) the inverse of the cycle encoding algorithm C that decodes
an encoded witness (solution of a puzzle-statement). The algorithm C'"V is deterministic and runs in polynomial
time. In addition, we denote by K1 s the PPT witness extractor of the LS protocol. Like in Section 3 (Figure 2
Assumption (C)), we assume that the running time of Solve dominates the running time of all algorithms associated
with the construction.

Theorem 8 Let L be a language in NP and let 1 = (P1yy, P2yy, Veryy) be a special sound 3-move computational
auxiliary input sHVZK protocol for L, where the challenge sampling distribution is uniform. Let PuzSys =
(Sample, Solve, Verify) be a puzzle system that satisfies g-hardness for some function g. Define (P,V) as the
protocol described in Figure 5 when built upon 11 and PuzSys. Assume that there exists a constant k < 1 and a
negligible function €(-) s.t. for every hardness factor h € HS:

Pr[puz < Sample(1*, h) : & - g(Stepssope (17, b, puz)) >
>2- StepsChSampler(lAv h) + StepsICLs (tr)wh?tr/)\,h) + StepsC'”V(1A7 h)] >1- 6()‘)’
where C'™ is the inverse of the cycle encoding algorithm C and K1,g is the witness extractor for the LS protocol

on input two protocol transcripts try p, try . Then, (P, V) is an ((1—&)/2) - g-sound PoWorK for £ and PuzSys
with computational indistinguishability.

Proof:

e Completeness. By the completeness of PuzSys, we have that with overwhelming probabiltiy, soln, as computed
in the PoW mode of (P, V), is a solution of the sampled puz, i.e. soln € R, , (puz). This implies that with
overwhelming probability, the reduction of £, ;, to the Hamiltonian Cycle maps (puz, soln) to a graph Gy, that
has Cso|, as hamiltonian cycle. Moreover, the completeness of the LS and IT protocols implies that the simulated
transcripts in both PoK and PoW mode of (P,)) must be accepting with overwhelming probability. Therefore,
verification will be accepting with overwhelming probability for any honest execution of (P, V).

° ((1 —K)/ 2) - g-Soundness. First, we make use of the special soundness PPT extractor Ky of 1I to construct a

PPT knowledge extractor K that on input (x,y, z) and given oracle access to an arbitrary prover P, executes the
following steps:

1. K samples (honestly) a puzzle, puz and two challenges, ¢, ¢o.

2. Using standard rewinding, K(x, y, z) interacts with P (y) by submitting the challenges (¢, puz), (¢o, puz). It
receives two protocol transcripts from P, ((a, a), (¢1, puz), (¢1, ¢1,71,71)) and ((a, a), (é2, puz), (c2, €2, 12, T2)).

3. Tt runs the witness extractor Ky of the protocol IT on input (z, (a, é1,71), (@, ¢2, 72)).
4. It returns the output of K.

Assume that for some z € {0,1}P°YN) o € {0,1}*, 2 € {0,1}*, h € HS,, there exists a prover P* and a
non-negligible function s(-) s.t

Pr[puz + Sample(1*, h); outputy « (P*(y) <> V)(z, 2) : (outputy = accept)
A Stepsp-((P*(y) ¢ V) (2, 2)) < (1~ #)/2) - g(Stepssone (17, h, puz))] = s(A).

We will prove that ((1 —K)/ 2) - g-soundness of (P,V) is satisifed, unless we can use P* to construct an
algorithm )V that breaks the g-hardness of PuzSys.
Let Y C P, be the set of puzzles, such that when the challenge (¢, puz) of V satisfies puz € Y, then

Prloutputy < (P*(y) <> V)(z, 2) : (outputy = accept)
A Stepsp- ((P*(y) ¢+ V)(2,2)) < (1~ £)/2) - g(Stepssne(1*, b, puz))] = s(X)/2.
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By the assumption for P* and a standard counting argument, we have that Pr[puz € Y] > s())/2.

Suppose that we perform rewinding on P*, by fixing the same puzzle puz in the verifier’s challenge. Let
((a,a), (¢1,puz),(c1,¢1,71,71)) and ((a, @), (¢2, puz), (c2, €2, 72, 72)) be the two protocol transcripts. If puz € Y,
then by the splitting Lemma, both transcripts are accepting with at least (s()\)/4)? = s()\)?/16 probability.

The challenge space of (P,V) (i.e. the challenge space of II) has superpolynomial size, so the probability
that the two uniformly sampled challenges ¢;, ¢ are equal is no more than some negligible function §(\). If the
verification for both transcripts is accepting and ¢; # ¢s, then it holds that

(51 =1 D Cl) A (52 =(9 D 62) A (61 75 62) = (Cl 75 Cg) V (51 75 52). ®))

Let D be the event that P*, when rewinded as above, outputs two accepting transcripts and é; # éo, €1 # ¢
occur. Let D be the event that P*, when rewinded as above, outputs two accepting transcripts and ¢; # éo, ¢1 # Co
occur. By the assumption for P* and eq. (5), we have that if puz € Y, then one of the probabilities Pr[D|puz € Y],
Pr[D|puz € Y] must be at least 5(\)2/32 — ()\). We analyze both cases:

L. Pr[D|puz € Y] > 5(A)?/32 — () holds. In this case, we can construct an algorithm )V that breaks the
g-hardness of PuzSys. The input that W receives is (1%, (x, 3, 2), h, puz), where (x, ¥, z) is the auxiliary input and
puz is sampled from Sample(1*, h). Then, W works as follows:

1. Itinvokes P* for statement z, private input y and auxiliary input z.

2. Using standard rewinding, VV interacts with P*(y) with two challenges (¢1, puz), (é2, puz), where ¢4, éo

L(A\h)

are uniformly sampled from {0, 1} . It receives two transcripts, ((a,a), (¢1, puz), (¢1,¢1,71,71)) and

<(av EL), (éQa puz), (C2a C2,T2, f2)>.

3. It runs the witness extractor Kr,g of the LS protocol on input (Gpyz, (a1, ¢1,71), (a2, c2,72)). It receives an
output C from Krg.

4. Tt runs the inverse of the cycle encoding algorithm C, C'™ : Hamiltonian Cycle — SSy on input C' and
receives a value soln.

5. It returns soln.

By definition of Y and D and the special soundness property of the LS protocol, we have that if puz € Y
and D occurs, then JA’s output soln is verified, i.e. Verify(1*, h, puz,soln) = true. By the previous analysis, the
probability that the latter happens is at least

Pr[(puz € Y) A D] = Prlpuz € Y] - Pr[Dlpuz € Y] > (1/2s(\)) - (s(A)?/32 — 6(N)) > s(A)?/64 — 5(N).

By the assumption in the statement of the theorem and the assumption for P*, there is a constant x < 1 s.t. the
probability that Verify(1*, h, puz, soln) = true and the running time of ' in number of steps is bounded by
Stepsyy (, ¥, z, 1, h, puz) <
< 2-Stepsps ((P*(y) < V)(x, 2,1, h)) +2- (StepsSamme(lA, h, puz))+
+ Stepsyc, ( ((Gpuz, a1, ¢1,71), (Gpuz, az, c2,72)) + Stepscunv(lA, h,C) <
< 2((1 = k)/2) - g(Stepssoie (1%, b, puz)) + £ - g(Stepssoe(1*, h, puz))
= g(Stepssone(1*, 1, puz))

is at least s(1\)3/64 — 6(\) — €(\) which is a non-negligible function. Therefore, for auxiliary tape (,y, z) and
hardness factor h, VV breaks the g-hardness of PuzSys, which contradicts to the security of the said puzzle system.
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IL Pr[D|puz € Y] > s()\)?/32 — 6()\) holds. In this case, we have that ¢ # é. By the special soundness
property of 11, when the knowledge extractor X invokes K1 on two accepting transcripts with two different chal-
lenges, it will return a witness for z. Define ¢(\) = s(\)3/64 — §(\). The probability that K extracts a witness is
at least

Pr[D] = Pr[puz € Y] - Pr[D|puz € Y] > ¢()\).

Thus, we conclude that our protocol is (((1 — k) /2) - g)-sound.

e Computational indistinguishability. We will show that (P, V) is computationally indistinguishable, if IT and
the LS protocol achieve HVZK for any auxiliary input z € {0,1}*. To do this, we will make use of a “hybrid”
protocol (P, V) where the prover P follows both underlying protocols, II and LS, of (P, V) and the verifier V
behaves as before. For fixed \, h, the description of (P, V) is as follows:

Statement: = € £ N {0, 1}P°YO,

Prover’s private input: w € R, (z).

First move: P samples a random challenge ¢ and executes (@, ¢11) < Plu(z,w); (a, ¢rs) < Plps(Nyp). It
sends a,a to V.

Second move: ) samples a pair ¢, puz and sends it to P.

Third move: P computes ¢ = ¢@e. Itruns Solve(l)‘, h, puz) and receives a solution soln. Then, it encodes puz and

soln as Gy, and Cs) respectively. Finally, it executes 7 < P2y(¢m, ¢, z,w) and 7 <— P215(é1s, ¢, Gpuz, Csoln)
and sends r, 7 to V.

Verification: as in the (P, V) protocol.

Let V* be a PPT verifier. W.l.o.g., we assume that V* returns a single bit. Let DY be the distribution deter-
mined by the view of V* when interacting with 7P. We will show that the distributions D}ﬁz K D}ﬁzw determined
by the view of V* when interacting with P in the PoK and PoW mode of (P, V*) are computationally indistin-
guishable because (I) D}éz K> D are computationally indistinguishable and (II) DEZW, DY are computationally
indistinguishable.

L DY .. .DV" are computationally indistinguishable. We observe that in the PoK mode of (P, V*) and
(75, V*) the values ¢, a, ¢, puz, ¢, 7 are identically distributed. Therefore, for every statement x € £ and auxiliary
input z € {0,1}",

‘Pr[V*(w,z,c, a,a,é puz, é,r,7) = 1] — Pr[V*(z, 2, ¢, a, a, ¢, puz, ¢, r,7) = 1” =

~ A ~ ~ V* ~ A ~ ~ M *
(¢,a,a,¢,puz,é,r,7)<Dp . (c,a,a,é,puz,é,r,7 )< DV

= Z Prle, a, ¢, puz, ¢, 7

(€4,,pUz,&,7)
. (Pr[(a,st) — Simlzs(c, Nap);r < Sim215(Gpuz, ¢, St); (6)
V*(z,z,¢,a,a,¢ puz, ér,7)=1|ca,é, puz,é r|—
— Pr(a,¢rs) < Plrs(Nan)ir < P2Ls(éLs, ¢, Gpuzs Csoln);
V*(x,z,¢,a,a,¢ puz, é,r,7) =11 ¢, a,é puz,é, f])
By the computational auxiliary input sHVZK property of the LS protocol, we have that for any challenge ¢ and

auxiliary input (z, a, ¢, puz, ¢, 7), the PPT verifier V* cannot distinguish between the actual and the simulated view
of the LS protocol. Therefore, by eq. (6), we have that for some negligible function (-),

‘Pr[V*(:U,z,c, a,a, ¢, puz, é,r,7) = 1] — Pr[V*(z, z, ¢, a, a, ¢, puz, ¢,r,7) = 1” <
(c,aﬁ,é,puz,é,nf)eDEZK (¢,a,d,é,puz,é,r,7)«DV*
< Z Prlc, a, ¢, puz, ¢, 7] - 6(A) = 6(N).

(Qayézpuz’é’i:)
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1. DY ., DV" are computationally indistinguishable. When running, in the PoW mode of (P, V*), the
challenge c¢ for the LS protocol is computed by the group operation of a value ¢ provided by V* and a value ¢
uniformly sampled from {0, 1}6(’\’h). Thus, in the PoW mode of (P, V*), ¢ follows the same (uniform) distribution
that ¢ follows in (P, V*). This implies that the distribution of ¢, a, &, puz, & r in the PoW mode of (P, V*) is
identical with the distribution in (P,V*). We continue as in case I in a “symmetric” way, i.e. we now show
the computational indistinguishability of D}ﬁzw, DV by taking advantage of the computational auxiliary input
sHVZK property of II.

O

D Security of Spam Reducing System

We present a proof sketch of Theorem 6.
Proof:(sketch)
Spam Resistance. We start by constructing a knowledge extractor KC which on input (z, 1*, h, ) and given access
to a prover A, uses the special soundness PPT extractor Kyy of II to extract a witness. Our K works similarly to
the soundness extractor of PoWorK (see proof of Theorem 1), but can now rewind .4 at any point and give it two
different challenges c;, ¢, (as it controls the random oracle), to receive tuples (a;, c;,r;), and (a}, ¢}, r;) on which
it runs Kr7. Note that since Kyy is a PPT algorithm, /C also runs in polynomial time.

Now assume that for some z € {0,1}*, h € HS), there exists an adversary .4 and a non-negligible function
aq () S.t.

(t,x) < ReceiverSetup(1*,h);V1 < i < k : puz; < Sample(1*, h);
{mi = ((as, ¢i, 13) ie) < A(z, 1%, b, ) -
Pr (V1 <i < k: ApproveEMail(h,z,m;) = 1) A (Vi# j € [k] :m # 7)) | = ar(A).

A (StepsA(z, 12, h, x) < \JTOo g( Zle Stepsso|ve(1’\, h, puzi))>
By an averaging argument, there exist a statement = and and public parameters v s.t.

V1 < i < k: puz; < Sample(1*, h);
{mi = ((ay, ¢i,13) Yiep) < Az, 1%, b, ) -
Pr (V1 <i <k: ApproveEMail(h,z,m;) = 1) A (Vi # j € [k] : m; # 7)) > a1(A).

A (StepSA(Z, 1)\7 h7 JJ) < VT © g( E?:l StepSSolve(l)\v h7 puzi)))

Using A we will construct an algorithm )V to break the (7, k)-amortization resistance of PuzSys. We recall
that in the non-interactive variant of our dense puzzle based PoWorK construction the format of a proof 7 is
(a,c,r) = (a,c, (¢, 7, puz,soln)).

W is given as input (z,v),1*, h, {puzy, ..., puz;}, where V1 < i < k : puz; < Sample(1*, h). Then W,
who also controls the random oracle, runs as follows:

1. Invoke A with input (1%, h, z).

2. For every i-th RO query of A ((a);, m;) respond by a challenge ¢; which can be honestly generated by
asking H (thus, ¢; € CSy ). W stores all ¢y, ..., ¢ in a table T" along with the corresponding query of A.
Note that &' > k.

3. Receive A’s output 7y, ..., 7, = (a1, c1, (€1, 71, puzy,solny)), ..., (g, g, (Ck, Tk, puzy, solng)).

4. Look at the first proof 7 of A, locate the corresponding c; in table T" (let r be the row in which found), and
rewind A just before the point it made that query, i.e. at its » — 1 query. With high probability .4 will start
making the same RO queries. For every query from 1 to r — 1 return the same c as before. However, when A
makes its r-th query return ¢, = ¢; @ puz;. For the rest of the queries (from r 4 1 and on) return a random
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challenge as in Step 2 and update table 7" with the fresh values. When A outputs its second set of proofs

7r£2), el 7r,(€2) 10" check that puz, is included in 7r§2) and store the corresponding solution.

5. Proceed until all k£ solutions have been found, i.e. in the i-th rewind the new challenges are cgi), .. c,(;,),

where cl( Q- ¢; @ puz; “Lvr<i: ( ) = c7(~ 2 and all the rest of the challenges cz@l, . ,c,(;,) are honestly

sampled. When A outputs its i-th set of new proofs 7T§i), .. 711(;) check that the corresponding puzzle

included in the proof wgi) is equal to puz, and store its solution soln;.

6. Output solny, ..., solng.

We follow the reasoning of the proof of Theorem 1. For each rewinding i of A, we have that when it received

honestly selected sequences c&iil), . cl(l 11), cfz b, c,(f,fl) (in its 4 — 1-th run) and cgi), T A O ,c,(:,)

’»i—10
in its ¢-th run (where cgz), cy i) = cgz 1), cen 1(:1 ), it outputs accepting transcripts in no more than

(/759 )3 Stepssa1 ., )]
i=1

steps and with probability a1 ()2 /4. Similar to the PoWorK soundness proof, we denote by Equal,, the event that

this happens and Egi_l) = éz@ holds (again for each rewinding ¢). Obviously, either Equal;, or ~Equal; will occur

with at least oy (\)2/8 probability. We distinguish the following cases:

Case I. Vi € [k] : Pr[Equal;] > «;(\)?/8: in this case, as in the soundness proof of Theorem 1, with

probability oy (A\)2/8 — negl()) it holds that:
1. Vi € [k] : Verify(1*, h, puz;, soln;) = true.
2. The running time of V¥V in number of steps is no more than

k

b [0 (3 (Stepssane(1. b, puz,)]

i=1
steps.

Since k is polynomial we have that w.h.p. k£ < (\/7 o g)(Zle(Stepssowe(l’\, h,puz;))). In addition, 7 is an
increasing function and g is a subadditive function, hence we have that

k k

E- [(v7o0) (2 (Stepssane(1%. 1 puz)) | < [(v759) (D (Stepssoue(1*, 1 puz)))] <
i=1 =1
k k
(T © g) ( Z(StepsSolve(l)\v hv puzi))) < T( Z g(StEPSdee(l/\v h? puzi))'
i=1 =1

Therefore, VW breaks the (7, k)-amortization resistance property of PuzSys.

Case II. 3i* € [k] : Pr[=Equal;:] > a1(\)?/8: in this case, we set the knowledge extractor to guess a priori
an ¢ € [k] to rewind A expecting to invoke [y with two different challenges éé = ¢;. We stress that this setting is
black-box and independent of A, thus consistent with the definition of spam resistance. By the soundness property
of II, if K guesses ¢* correctly, then it will return a witness for x. Therefore, K is succesfully returns a witness
with at least ap(\) = a1()\)?/(8k) probability.

10From now on the superscript x() denotes in which rewinding of A we are.
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e Privacy. Let h € HS), z € {0,1}* and an adversary A that breaks SRC privacy with non-negligible advantage
a(\). By an averaging argument, there exist a statement x, a witness w € R, (z) and public parameters v s.t.

‘ Pr[m < SendEMail(w, h,z) : A(z,h,z,7) = 1]—
— Pr[r < SendEMail(L, h,x) : A(z,h,x,7) =1]| > a(A).

Given A we construct an adversary 53 against PoWorK statistical indistinguishability that on input a statement z,
auxiliary input z, h and a PoWorK proof 7 (i.e. the view of B either in PoK mode on witness w or PoW mode),
invokes A on input (z, h, z, ) and returns .A’s output. It is straightforward that 5 distinguishes the mode of the
PoWorK prover with advantage a(\).

E Straight-line Simulation Definitions

Being able to perform straight-line simulation (i.e. simulation without rewinding) is helpful in the concurrent
setting. Pass [Pas03, Pas04] has shown that protocols satisfying straight-line strong 7'(\)-simulatability (where
T'(\) is a class of functions closed under composition with any polynomial) are also concurrent T'(\)-strongly
simulatable. We start by defining straight-line 7°(\)-simulatability.

Definition 7 ([Pas04]) Let T'(\) be a class of functions that is closed under composition with any polynomial.
We say that an interactive argument (P, V) for the language L € NP with witness relation R, is straight-line
strongly T'(\)-simulatable, if for every probabilistic verifier V* with running time bounded by T'()\), there exists a
probabilistic simulator S with running time bounded by T (\) such that the following two ensembles are strongly
T'(\)-indistinguishable:

(i). {viewy < (P(w) <> V*>(x’z)}xe£, wERL(2),2€{0,1}*

(ii). {{(S < V') (@,2)}ser ref01

That is, for every probabilistic algorithm D running in time T'(-) in the length of its first input, all sufficiently
long x € L, all w € Ry (x) and all auxiliary inputs z, 2" € {0, 1}*, it holds that

| Pr[D(x, 2, viewys « (P(w) <> V*)(x,2)) = 1] — Pr[D(z, 7, S(z,2)) = 1]| <

T(|z))

The notion of perfect (resp. statistical) T'(\)-simulatability is defined similarly, by requiring that the two en-
sembles in Definition 7 are identically (resp, statistically close distributed) for every (computationally unbounded)
verifier V*. The notion above could be further restricted to guarantee security under concurrent executions. Pass
in [Pas04] provides the following definition.

Definition 8 ([Pas04]) Let T'(\) be a class of functions that is closed under composition with any polynomial.
We say that an interactive argument (P, V) for the language L € NP with witness relation R, is straight-line
concurrent T'(\)-simulatable, if for every PPT oracle machine A that is not allowed to restart of rewind the oracle it
has access to, and every polynomial p()\), there exists a probabilistic simulator S(i,x) with running time bounded
by T'(X\) such that the following two ensembles are computationally indistinguishable:

(i). {Ap(wl’wl)v“' vP(%(M’wp(A))(z, Tlye-o5Tp(n) } .
2€{0,1}" 1, @p(n) ELAW ERL () } 0

7). As(lvwl)v'" S(A)w )x)) .
(ll) { gp (zaxla ":Up()\))}26{0,1}*,11,...,mp()\)€£
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