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ABSTRACT
We identify two attacks on the Network Time Protocol (NTP)’s
cryptographically-authenticated broadcast mode. First, we
present a replay attack that allows an on-path attacker to
indefinitely stick a broadcast client to a specific time. Sec-
ond, we present a denial-of-service (DoS) attack that al-
lows an off-path attacker to prevent a broadcast client from
ever updating its system clock; to do this, the attacker
sends the client a single malformed broadcast packet per
query interval. Our DoS attack also applies to all other
NTP modes that are ‘ephemeral’ or ‘preemptable’ (includ-
ing manycast, pool, etc). We then use network measure-
ments to give evidence that NTP’s broadcast and other
ephemeral/preemptable modes are being used in the wild.
We conclude by discussing why NTP’s current implemen-
tation of symmetric-key cryptographic authentication does
not provide security in broadcast mode, and make some rec-
ommendations to improve the current state of affairs.

1. INTRODUCTION
The Network Time Protocol (NTP) [10], one of the Inter-

net’s oldest protocols, is used to set time on Internet clocks.
Time places a crucial and often-ignored role in the security
and correctness of computing applications, and especially in
cryptographic protocols. As we discussed in [8], an attacker
that manipulates time using NTP can seriously undermine
the security of key Internet protocols and applications, in-
cluding TLS certificates [6,11,14], DNSSEC, routing security
with the RPKI, authentication with Kerberos, caching, and
bitcoin [3]. NTP operates in several modes including (1)
client/server, (2) symmetric active/passive, and (3) broad-
cast/multicast. Our earlier work [8] considered attacks on
NTP’s client/server mode. In this companion paper, we
consider the security of NTP’s broadcast mode.

We use network measurements to find that NTP’s broad-
cast mode, which is intended for an environment with a few
servers and potentially a large client population, is used by
thousands of NTP clients in the wild (Section 5). Next, we
show that while symmetric-key cryptographic authentica-
tion of NTP broadcast traffic is recommended by the NTP
specification [10] and required by the open-source NTP ref-
erence implementation ntpd, it does not provide sufficient
protection against attacks on broadcast mode. We consider
both (1) on-path attacks, where the attacker occupies a priv-
ileged position on the path between NTP client and one
of its servers, and (2) off-path attacks, where the attacker
can be anywhere on the network and does not observe the
traffic between client and any of its servers. We present

an on-path replay attack on authenticated broadcast mode
(CVE-2015-7973) that causes the NTP client to get stuck at
a particular time (Section 3), and a new off-path denial-of-
service attack on authenticated broadcast mode (CVE-2015-
7979) that also applies to all of NTP’s “preemptable” and
“ephemeral” modes of operation (Section 4). We conclude
by discussing the inherent challenges of cryptographically
authenticating NTP’s broadcast mode, and provide several
recommendations for the way forward (Section 6).

2. NTP’S BROADCAST MODE
NTP clients and servers are not configured to operate in

broadcast mode by default on most operating systems. How-
ever, there is a configuration option that allows for this mode
of operation.

Broadcast servers. An NTP broadcast server can be pre-
configured to periodically send ‘persistent ’ broadcast-association
server packets (NTP mode 5 packets) to the clients on the
broadcast network. By persistent, we mean the server mobi-
lizes the broadcast association upon initialization, and never
demobilizes the association [10]. Figure 1 presents a sample
NTP mode 5 broadcast packet.

Broadcast clients. An NTP client can be preconfig-
ured to accept NTP mode 5 packets.1 When a broadcast
client receives its first NTP mode 5 packet, the client must
first calculate the propagation delay by exchanging a volley
of client/server mode packets with the broadcast server—
where the client sends the server an NTP mode 3 query and
the server responds with an NTP mode 4 response.2 After
this, the client reverts to broadcast client mode, and creates
an ephemeral association with the server upon receipt of fur-
ther mode 5 broadcast packets. An ephemeral association
is mobilized upon arrival of a packet and exists until error
or timeout [10].

1The configuration option broadcastclient or multicastclient
[address] allows an ntpd client to receive and process mode
5 broadcast packets. Note that a client configured to accept
multicast messages from a particular address also accepts
broadcast messages from ANY address.
2The server and client also run the Autokey security proto-
col, if they are configured to do so. Autokey [5] is public-
key authentication method for NTP, but NTP clients do
not request Autokey associations by default [1], and many
public NTP servers do not support Autokey (e.g., servers in
pool.ntp.org). In fact, a lead developer of the ntpd client
wrote in 2015 [16]: “Nobody should be using autokey. Or
from the other direction, if you are using autokey you should
stop using it.” We therefore do not consider Autokey any
further here.

pool.ntp.org


Authenticating an association. How does an NTP
client validate incoming packets before establishing an asso-
ciation with a server? Most NTP traffic (especially client/server-
mode traffic) is not cryptographically authenticated3 How-
ever, even in the absence of cryptographic authentication,
NTP clients running in client/server mode or symmetric
active/passive mode use a nonce to validate a server’s re-
sponse. The nonce is a field in the NTP packet, called the
origin timestamp; see Figure 1. Upon receipt of an NTP re-
sponse packet, the client checks if the 64-bit transmit times-
tamp field in the most recent query packet it sent the server,
matches the 64-bit origin timestamp field in the incoming
response packet. This is called TEST2 in the NTP specifi-
cations. This non-cryptographic authentication is based on
the premise that the nonce has enough entropy such that
an off-path attacker, who can not see the NTP packets in
transit, cannot guess the nonce. Indeed, as we argued in [8],
we can safely assume that this nonce has about 32 bits of
entropy, and so it is difficult to forge from off path.

Authenticating broadcast. In contrast to the client/server
mode, where the client actively sends a query to the server to
get the response, the broadcast client operates in listen-only
mode. Thus, because the client does not send the server
any queries for broadcast packets, and the origin timestamp
field in the broadcast server packet is always set to null.
So now TEST2 that defends NTP’s client-server mode from
off-path attacks does not apply. Moreover, the most recent
NTP reference implementation (ntpd v4.2.8p4) does NOT
use UDP source port randomization [7], and so an off-path
attacker can easily forge an unauthenticated mode 5 packet.

Also, an NTP client preconfigured to run in broadcast
client mode will accept and process packets from ANY server
that sends it broadcast packets; it is NOT configured to
listen only to one particular broadcast server. So any off-
path attacker can easily send broadcast messages and the
client will accept them. RFC5905 [10, pg 57] says:

Filtering can be employed to limit the access of
NTP clients to known or trusted NTP broadcast
servers. Such filtering will prevent malicious traf-
fic from reaching the NTP clients.

To fill this gap and the lack of nonce check, RFC 5905 [10]
strongly suggests the use of cryptography to authenticate
broadcast packets. Indeed, NTP’s current reference imple-
mentation (ntpd v4.2.8p4) requires symmetric-key cryptog-
raphy, by default, for clients that wish to listen to broadcast
mode packets. NTP’s symmetric cryptographic authentica-
tion appends an MD5 hash keyed with symmetric key k of
the NTP packet contents m as MD5(k||m) [11, pg 264] to
the NTP packet in Figure 1; authenticated NTP packets also
have a 32-bit key ID which is used to identify the symmetric
key that was used to authenticate the message.

In this paper, however, we present two attacks that show
that NTP’s symmetric key cryptography does not provide
sufficient protection for broadcast mode.

3As we discussed in [8], NTP’s symmetric-key cryptography
is not commonly because the symmetric keys must be pre-
configured manually ; this can be quite cumbersome for pub-
lic servers that must accept queries from arbitrary clients.
(NIST, for example, distributes symmetric keys for its pub-
lic servers via US mail or facsimile [2].) Moreover, NTP’s
public-key cryptography (Autokey) is not recommended for
use in the wild, see footnote 2.
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Figure 1: Mode 5 NTP Broadcast Packet.

3. TIMESHIFTING ATTACKS
Should broadcast be robust to replay attacks? Ac-
cording to RFC 5905 [10], NTP’s “on-wire protocol ... resists
replay of a server response packet.” This is supposed to be
accomplished through what is called TEST1 in the protocol
specification: Upon receipt of an NTP response packet, the
NTP client matches the transmit timestamp in the current
packet to that of the last response packet it received; if the
timestamp matches, it marks the packet as duplicate and
drops it. However, we now show that because broadcast
mode does not impose TEST2, then TEST1 cannot provide
sufficient protection against replay attacks, even when NTP
packets are cryptographically authenticated.

a) Deja Vu: Our on-path time-sticking attack (CVE-
2015-7973). Consider a man-in-the-middle (MiTM) at-
tack, where the attacker is positioned between the server and
the victim client, and can intercept and replay a packet and
prevent onward transmission of the original packet, but does
not possess the symmetric key that authenticates broadcast
messages. We show that the protocol does not resist the
following replay attack. The MiTM collects and records a
contiguous sequence of server broadcast packets. (The at-
tacker requires a sufficient number of these packets for the
client to update its clock; this is because NTP requires a
client to obtain between eight to hundreds of messages from
a server before the client’s clock discipline algorithms syn-
chronizes it to the server [10, Sec. 10-12].) He then replays
this sequence of packets, over and over, to the victim client;
the victim accepts the same time over and over, and thus
gets stuck at a particular time. Notice that these are the au-
thenticated packets from the broadcast server, and so they
pass the authentication check on the client. Moreover, by
replaying a sequence of packets, rather than just one packet,
the attacker ensures that the replayed packets pass TEST1.

b) Our off-path time-shifting attack. If the attacker is
one of the clients on the broadcast network, or on an adja-
cent network that also gets the broadcast packets from the



same broadcast server, it then shares the same symmetric
key with the server as the victim client. In this case, the
attacker possesses the same key as the server and therefore
can simply forge authenticated NTP mode 5 packets and
send them to the victim client. The attacker can then send
the victim back/forward in time as discussed in [8], or can
make him stick to a particular time.

Why do these attacks work? These attacks highlight
the following weaknesses in NTP; a) The protocol specifies
and defaults to the use of symmetric key cryptography for
broadcast authentication, where all nodes share the same
key and one/some of them could be malicious or may be
compromised, b) an NTP client is unable to recognize that
it is stuck in a particular time for long periods of time, and c)
in the absence of TEST2, TEST1 doesn’t actually prevent
replay in general—it just prevents replay of the most recent
packet. Our replay attack passes TEST1 because the client
only matches the current transmit timestamp with that of
the last packet.

Experiments: As a proof-of-concept, we set up an ntpd
v4.2.8p3 broadcast client and server using the configuration
options broadcastclient and broadcast IP address range. An-
other machine on the same network behaves as MiTM and
collects 12 mode 5 packets and stores them. The MiTM
then drops the original mode 5 packets to the victim and
replays his previously collected set of mode 5 packets. The
victim accepts the time after getting sufficient samples re-
quired for a server to pass the clock discipline algorithms,
gets into the ‘STEP’ mode4and clears the state variables for
this association. We continue this experiment for ≈ 4 hours
and observe that the victim’s system clock is stuck at the
same time.

Implications of the attack. A MiTM can use a re-
play attack to make the victim client get stuck at a partic-
ular time value forever. Moreover, a compromised machine
on the same or adjacent subnet can or forge authenticated
mode 5 packets and shift time forward or backward on the
victim client. Shift time forward/backward has severe im-
plications on security guarantees provided by various core
Internet protocols, such as DNSSec, BGP, TLS, and authen-
tication services that use Kerberos; see [8] for discussion.

4. DENIAL OF SERVICE ATTACKS
We now present an off-path denial-of-service attack that

generically succeeds on any preemptable or ephemeral as-
sociation that is cryptographically authenticated, including
authenticated broadcast mode.

Preemptable and empheremal associations. NTP’s
broadcast clients use an ephemeral association to listen to
NTP mode 5 from a broadcast server; as discussed in Sec-
tion 2, this association is automatically demobilized upon
error or timeout.

NTP also supports preemptable associations [9], which are
similar to ephemeral associations. Preemptable associations
are mobilized if the ntpd client has the keyword “preempt”
to the line in its configuration file that establishes a as-
sociation with a particular server. Alternatively, the ntpd

4An NTP client enters ‘STEP’ mode whenever it needs to
shift its clock by more than 125ms but less than ≈ 16 min;
our replay attack shifts the client back in time by more than
125ms, causing the client to enter STEP mode.

client may be preconfigured with the manycastclient or pool
[pool address] options; in this case, the client establishes a
preemptable association upon receipt of a server discovery
packet. Preemptable associations are also demobilized upon
error or timeout.

Our off-path DoS attack (CVE-2015-7979). An off-
path attacker can easily cause an error by sending mode 5
with bad cryptographic authentication (e.g., wrong key, mis-
matched key, incorrect message digest, etc.). The attacker
sends one such error-causing packet for every legitimate re-
sponse the client receives from the server, so that the client
immediately tears down its association with the server. This
way, the client never collects enough good NTP response to
allow its clock discipline algorithms to update its local clock,
resulting in a denial-of-service attack on the client.

Experiment. As a proof-of-concept, we set up ntpd
v4.2.8p3 broadcast client and server using the configuration
options broadcastclient and broadcast IP address range re-
spectively. Once the client is synchronized with the broad-
cast server, another machine which behaves as an off-path
attacker sends badly-authenticated mode 5 packet to the
client. The client immediately tears down the association
with the server and clears all the state variables. Next,
the client receives the legitimate packet from the broadcast
server and again mobilizes the association. The attacker
again sends the bad mode 5 packet and the client again tears
down the association. The attacker keeps repeating this and
the client never obtains enough consistent time samples from
the server to allow it to update its system clock.

Implications a) An off-path attacker can deny NTP ser-
vice to the broadcast client even when it uses cryptographic
authentication. b) If the client is preconfigured to a bad
timekeeper or one of the servers’ that the client is config-
ured to is controlled/compromised by the attacker, then us-
ing this DoS attack, the client can pin the client to bad
server that is controlled by him. The attacker can then
send the client back/forward in time which has implications
as mentioned in Section 3.

5. MEASUREMENT RESULTS
We use NTP’s peers command to check for the presence

of broadcast and other ephemeral and preemptable modes
in the wild. As shown in Figure 2, NTP’s peers command
returns a list of all associations used by an NTP client; as-
sociations with a broadcast server are marked with a b or
B, client/server associations are marked with a u, etc.. ‘*’
is used to indicate the association that the client last took
time from, and ‘+’ indicates an association that is a can-
didate for synchronization. While this command provides
a variety of useful information for network measurement,
it’s also a great tool for adversarial network reconnaissance
and DDoS amplification attacks [4]; for this reason, network
operators commonly disable remote peers queries, or config-
ure firewalls or other middleboxes to drop them. Moreover,
while we conjecture broadcast mode is most common when
both the clients and the broadcast server are behind a NAT,
we are unable to scan clients behind a NAT. Therefore,
it’s important to remember that our measurement results
can only provide a lower bound on the number of broad-
cast/ephemeral/preemptable associations in the wild.

Our scan. Thus, we scanned the entire IPv4 address
space using the peers command on 10-11 November 2015,



Figure 2: Sample response to peers query.

and obtained responses from 4,443,118 IPv4 addresses. On
16-21 November 2015 we rescanned only the 4.4M respond-
ing IP addresses with NTP’s peers command, as well the rv
command (which reveals useful information about the NTP
client, including its version, build date, and the operating
system it runs on), and the as command (which has useful
information about each association used by the client). For
this second scan we obtained responses from 3,716,362 IPv4
addresses; we consider only these addresses here.

Results. Of the 3.7M responding IPs, we found that
18,020 (0.4%) IPs have at least one broadcast association,
and 1,767 IPs use multicast associations. (Recall that clients
configured for multicast will also accept broadcast associa-
tions.) Moreover, we see 9,806 IPs that use broadcast asso-
ciations exclusively, of which 7,556 IPs were synchronized to
a broadcast server, while the remaining 2,250 were unsyn-
chronized and thus likely malfunctioning.

As an aside, we were also surprised to find many symmet-
ric associations in the wild; 190,724 (5.1%) of the respond-
ing IPs had at least one symmetric association. Overall, we
found 2,848,238 IPs that have at least one client/server as-
sociations, 77 IPs use multicast exclusively, 67383 IPs use
symmetric associations exclusively, and 9806 use broadcast
exclusively. This is a total of 2,925,504 (78.7%) IPs; for the
rest of the IPs, their association status is “-” which may
mean they are initializing, or using a local clock (e.g., via
GPS) rather than taking time from the Internet using NTP.
Thus, while broadcast is not an especially popular mode of
operation for NTP, we do find thousands of clients in the
wild that rely upon it for time synchronization.

Who are these broadcast clients? Of the 18K IPs
that have at least one broadcast association, 16,552 of them
also responded to NTP’s rv query, and thus reveal informa-
tion about their operating systems, ntpd version, and com-
pile date. Most of these broadcast clients are running on
unix (10,671 IPs) or ‘cisco’ devices (5,135 IPs). Also, out of
16.5K IPs that responded to the rv query, only 326 replied
with the detailed ntpd version and compilation details (the
rest merely say “ntpd version 4”). Of these, the majority
(212 IPs or 65%) of these have been compiled between 2012
and 2015 inclusive. The most popular ntpd version that we
found is 4.2.6p5@1.2349 (23%) which was released in Decem-
ber 2011, closely followed by 4.2.8@1.3265 (20%) which was
released in December 2014, while 4.1.1c-rc1@1.836 (released
in 2001) and 4.2.4p5-a (released in 2008) are 9% each. The
bottom line is that we do find evidence of recently main-
tained NTP implementations that use broadcast mode in
the wild.

6. RECOMMENDATIONS
We have several recommendations to mitigate our attacks.

1) Ephemeral and pre-emptable associations con-
sidered harmful. Our denial-of-service attack from
Section 4 points to a serious problem with the notion of

ephemeral and preemptable associations; namely, that an
off-path attacker can easily forge a packet that can tear down
an association. Even though an ephemeral association can
easily be reestablished, the attacker can quickly tear it down
again before the client has the chance to update its clock.
For this reason, we suggest that NTP does NOT tear down
ephemeral associations upon receipt of a malformed packet;
instead, the malformed packet should just be dropped, while
the association remains in place.

2) Prevent replay in broadcast mode. As oth-
ers have pointed out [12,15], NTP’s broadcast mode should
contain a robust mechanism for preventing replay attacks.
TEST1 is insufficient, since it only checks if the most recent
packet has been replayed. One solution is to require au-
thenticated mode 5 NTP packets to include an increment-
ing counter (e.g., in the extension field). Another idea is
to use the transmit timestamp field in the mode 5 response
packet (Figure 1) as an incrementing counter; to do this, the
broadcast client would need to ensure that the transmit time
is monotonically increasing. Alternatively, the MAC com-
puted on the broadcast packet could become a hash chain;
that is, the MAC on packet pi should be computed over the
contents of packet pi concatenated with the MAC on packet
pi−1.

3) Monitor to detect time-sticking. In the absence of
replay protection, monitoring could be used as a “band-aid”
solution against time-sticking attacks. That is, NTP clients
could monitor their own clocks to see if they are stuck at
the same timestamp for a considerable amount of time; if
so, they could log an error or alert to warn an admin.

4) Only the broadcast server should be able to sign
broadcast packets. As others have pointed out [12,15],
the broadcast servers’ symmetric key should NOT be dis-
tributed to all its client; as we noted in Section 3, this allows
clients to trivially forge packets from the server. Instead, the
only entity that should be able to sign broadcast (mode 5)
packets is the broadcast server itself.

7. CONCLUSION
Our analysis highlights the difficulty of designing robust

cryptographic authentication for NTP’s broadcast mode.
One might be tempted to dismiss broadcast mode altogether,
by arguing that broadcast mode is a legacy from the past
that is largely unused today. Our measurements, however,
indicate that this is not the case; while broadcast mode is
not especially popular, we do find thousands of NTP clients
in the wild that have broadcast associations. Thus, we be-
lieve that the community should take another careful look
at authentication for NTP’s broadcast mode.

One approach, taken by a new Internet draft for the “Net-
work Time Security protocol (NTS)”, achieves recommen-
dations (2) and (4) above through a modified version of
TESLA [13]. TESLA uses public-key cryptography to en-
sure that a server is the only entity that can authenticate
broadcast messages, but that the authenticators themselves
can be computed and validated using fast symmetric cryp-
tography. To do this, however, TESLA requires loose time
synchronization between the broadcast server and its client.
Thus, using TESLA in the context of NTP creates a circular
dependency on time. NTS suggests avoiding this circular
dependency by using an authenticated unicast association
to achieve the loose synchronization between the server and



each of its clients. This, however, once again requires pair-
wise associations between server and each client, and may
defeat the purpose of using the broadcast mode in the first
place. Finding a cryptographic solution that can authenti-
cate NTP’s broadcast mode, without a unicast association
or a circular dependency on time, remains an interesting
open problem.
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