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Characterizations of the Degraded Boolean Function
and Cryptanalysis of the SAFER Family

Wentan Yi and Shaozhen Chen

Abstract—This paper investigates the degradation properties
of Boolean functions from the aspects of the distributions of
differences and linear masks, and shows two characterizations
of the degraded Boolean function. One is that there exists a
linear space of the input differences, where the differentials
with the zero output difference have probability 1; Another
one is that the input linear masks of the nonzero-correlation
linear approximations are included in a linear space. Those two
linear spaces are orthogonal spaces. Moreover, the degradation
properties are showed about the exponentiation type S-box of the
SAFER block ciphers, which are applied to reduce the compute
complexity in the zero-correlation linear attacks on 5-round
SAFER SK/128, 4(5)-round SAFER+/128(256) and 5(6)-round
SAFER++/128(256). In the attacks, some of the linear properties
of PHT employed as the linear layer by the SAFER block ciphers
are investigated and some zero-correlation approximations for
SAFER SK, SAFER+, and SAFER++ are identified, when only
the least one or two significant bits are considered. The results
show that more rounds of some of the SAFER block ciphers can
be attacked, by considering the degradation properties and the
zero-correlation linear relations.

Index Terms—Cryptography, Block cipher, Degradation prop-
erty, Zero-correlation linear cryptanalysis, SAFER

I. INTRODUCTION

S -box (Substitution box) is a basic component of symmetric
cryptography algorithms and hash functions. It provides

”confusion” and in most cases is the only nonlinear part of
the algorithms. S-boxes have been studied widely and some
criteria including differential uniformity, non-linearity, alge-
braic degree, correlation immunity, and the strict avalanche
criterion, etc, have been considered, and they are classified
according to many criterions such as affine equivalence. The
strict avalanche criterion was introduced by Webster and
Tavares [1], which is an important properties for an S-box
to resist differential cryptanalysis[2] and also the important
concepts in designing cryptographic functions [3] and hashing
functions[4]. An S-box is said to satisfy the strict avalanche
criterion if and only if each of its output bits changes with
a probability of one half whenever a single input bit is
complemented. On the contrary, an S-box is said to have
the degradation properties, if and only if one or some of its
output bits never change whenever one or some input bits
are complemented. It is obvious that if an S-box has the
degradation properties, it must not satisfy the strict avalanche
criterion. Form the aspect of cryptanalysis, the degradation
properties can help us to find some non-random phenomenons,
and then obtain some collision massage or some information
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of the key in the analysis of hash functions and symmetric
cryptography algorithms.

SAFER (Secure And Fast Encryption Routine) block cipher
family consists of SAFER K, SAFER SK, SAFER+ and
SAFER++. Among them, SAFER K [5] is the first member of
the family, SAFER SK [6] is a modified version of SAFER K,
SAFER+ [7] is an AES candidate and SAFER++ [8] is used
in the custom algorithm of Bluetooth for key derivation and
authentication. The S-boxes derived from exponentiation and
discrete logarithm functions, the linear layer employing PHT
(Pseudo-Hadamard-like mixing transforms) and the methods
to perform key-mixing with two-commutative operations are
three key features shared by the encryption algorithms of
the SAFER block cipher family. Up to now, the security
of the SAFER block ciphers has attracted lots of attentions,
and there have been several cryptanalytic results for SAFER
SK, SAFER+ and SAFER++ by using different approaches,
such as non-homomorphic linear cryptanalysis[9][10], integral
attack[11][12], boomerang attack[13], impossible differential
cryptanalysis[14][15][16][17]. Main cryptanalytic results of
the SAFER block ciphers are listed in Table 1.

In this paper, we mainly investigate the degradation proper-
ties of Boolean function from the aspects of the distributions
of the differences and linear masks. Two characterizations
are showed, which can be used to distinguish whether a
Boolean function has degradation properties. Moreover, some
degradation properties of the exponentiation type S-box of the
SAFER block ciphers are discovered. In addition, the degra-
dation properties of the S-boxes and some linear properties
of PHT employed as the linear layer are applied to the zero-
correlation linear attacks on the SAFER block cipher family.
The contributions are two-fold in detail.

1. We show two characterizations of the degraded Boolean
function from the aspect of differential and linear. If f is
a Boolean function with the degradation properties, then
there exists linear spaces V , W , for any difference α ∈ V ,
Prx(f(x)⊕f(x⊕α) = 0) = 1, and if Corx(β ·x⊕f(x)) 6= 0,
then β ∈ W . For a simple example, for a Boolean function
with n-bit variable, if there exist a n-bit value α with weight
1, the outputs of x and x ⊕ α are the same, or under the
nonzero-correlation condition, there exists a bit-position of the
input masks always keeping 0, then the Boolean function has
the degradation properties. We study the distributions of the
input differences and the input linear masks and show the
exponentiation type S-box has some degradation properties,
that is, the 7-th bit of the outputs can be obtained by the 2-th
to 8-th bits of the inputs, and the XORed values of the 8-th
bit of the outputs and the first bit of inputs can be obtained
by the 2-th to 8-th bits of the inputs.
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TABLE I: Summary of the attacks on the SAFER family

Cipher Rounds Attack Date Complexity Time Complexity Source

SAFER SK/128 2.75 ID 239CPs 264Enc [14]
SAFER SK/128 3.75 ID 245CPs 240Enc [16]
SAFER SK/128 4 ID 261.5CPs 280Enc [17]
SAFER SK/128 4.75 LNH 264KPs 290Enc [10]
SAFER SK/128 5 ZC 264KPs 2113.3Enc This Paper

SAFER+/128 2.75 ID 264CPs 258Enc [14]
SAFER+/128 3.25 LNH 2101KPs 2137Enc [10]
SAFER+/128 3.75 ID 278CPs 273Enc [16]
SAFER+/128 4 ID 2122.4KPs 2121Enc [17]
SAFER+/128 4 ZC 2128KPs 2125Enc This Paper

SAFER+/256 3.75 ID 278CPs 273Enc [16]
SAFER+/256 4 ID 2124.4KPs 2216Enc [17]
SAFER+/256 5 ZC 2128KPs 2191Enc This Paper

SAFER++/128 2.75 ID 264CPs 259Enc [14]
SAFER++/128 3.25 LHN 281KPs 2101Enc [10]
SAFER++/128 3.75 ID 223CPs 284Enc [15]
SAFER++/128 3.75 ID 278KPs 264Enc [16]
SAFER++/128 4 Integral 264CPs 2120Enc [11]
SAFER++/128 4.25 Integral −−CPs −−Enc [12]
SAFER++/128 4.5 Multiset 248CPs 2100Enc [13]
SAFER++/128 5 ID 2124CPs 2118Enc [17]
SAFER++/128 5.5 Boomerang 2108CPs 2108Enc [13]
SAFER++/128 5 ZC 2128KPs 2124.7Enc This Paper

SAFER++/256 3.75 LNH 281KPs 2176Enc [10]
SAFER++/256 3.75 ID 278KPs 272Enc [16]
SAFER++/256 4 Integral 264CPs 2152Enc [11]
SAFER++/256 4.75 Integral −−KPs −−Enc [12]
SAFER++/256 5.5 ID 2124CPs 2246Enc [17]
SAFER++/256 6 ZC 2128KPs 2191Enc This Paper

LHN: Non-homomorphic Linear Attack; ID: Impossible Differential Attack; ZC: Zero-correlation Linear Cryptanalysis;
ACC: Adaptive Chosen Ciphertext; CPs: Chosen Plaintexts; KPs: Known Plaintexts; Enc: Encryption.

2. The degradation properties can be applied to the zero-
correlation linear attacks on 5-round SAFER SK/128 and 4(5)-
round SAFER+/128(256), 5(6)-round SAFER++/128(256). We
identify zero-correlation linear approximations for the SAFER
block ciphers. As PHT employs the modular 256 addition as
basic operation, which makes it difficult for us to understand
the mask propagation under the nonzero-correlation condition.
Fortunately, if the least significant bit is considered, the PHT
can be converted to a 0,1 bit-chosen matrix with the XOR op-
eration. In addition, the principle under the nonzero-correlation
condition is used, that is, the most significant nonzero mask
bits for the input and the output of modular addition are
the same. Zero-correlation linear approximations for 2.75-
round SAFER SK and SAFER+, and 3.75-round SAFER++
are constructed. Some of our attacks are the best attack in
terms of the number of rounds.

Organization of our paper: In Sec.2, we give some pre-
liminaries. Sec.3 shows two characterizations of the degraded
Boolean function, and some degradation properties of the
exponentiation type S-box are presented. Sec.4 demonstrates
key recovery attacks on SAFER SK, SAFER+ and SAFER++
by means of the zero-correlation linear cryptanalysis. Finally,
we summarize our work in Sec.5.

II. PRELIMINARIES

An S-box with n-bit input and output can be represented
by a vectorial Boolean function F : Fn2 7→ Fn2 , and

F = (f1, f2, ..., fn),

where fi is a n-bit Boolean function, i = 1, 2, ..., n.
Consider a function F : Fn2 7→ Fm2 and let the input of the

function be x ∈ Fn2 . A differential is given by a pair (δ,∆)
of an input difference δ and an output difference ∆ and its
probability is defined as

Pr[δ F−→ ∆] = 2−n|{x ∈ Fn2 |F (x)⊕ F (x⊕ δ) = ∆}|.

A linear approximation with the input mask α and the output
mask β is the following function:

β · F (x)⊕ α · x

and its correlation is defined as follows

Corx
(
β · F (x), α · x

)
= 2Prx

(
β · F (x)⊕ α · x = 0

)
− 1.

The link between the differential probabilities and the corre-
lations of linear approximations of vectorial Boolean functions
was presented by Chabaud and Vaudenay [18].

Theorem 1: [18] Let F : Fn2 7→ Fm2 be a Boolean function
and (δ,∆) ∈ Fn2 × Fm2 , we have

Pr[δ F→ ∆] = 2−m
∑

u∈Fn
2 ,v∈Fm

2

(−1)u·δ⊕v·∆Cor2x(v·F (x)⊕u·x).

For a Boolean function f : Fn2 → F2, by the theorem, we
can obtain that ∑

u∈Fn
2

Cor2x(f(x)⊕ u · x) = 1.

III. TWO CHARACTERIZATIONS OF THE DEGRADATION
BOOLEAN FUNCTION

We show two characterizations of the degraded Boolean
function from the aspect of differential and linear. Firstly, we
will introduce the definition of the degradation property of
Boolean function.

Definition 1: For a Boolean function f with n-bit variable,
if there exists a n × m (m < n) matrix D with the rank
Rank(D) = m and a Boolean function g : Fm2 → F2,

f(x) = g(x ·D) = g(y),

then, f is a (n − m)-degradation Boolean function, where
y = x ·D and for Boolean function g, there exists no Boolean
function h and m×m′ (m′ < m) matrix D′,

g(y) = h(y ·D′) = h(z).

For a balance Boolean function f with n-bit variables, we
have the following result.

Theorem 2: For two integrals n,m with m < n, the three
conditions are equivalent.
(1) There exists a linear space V of n-bit values with the

dimension DimV = n−m, for any n-bit value α ∈ V ,

Prx
(
f(x)⊕ f(x⊕ α) = 0

)
= 1;

(2) There exists a linear space W of n-bit values with the
dimension DimW = m, for any n-bit value β, if

Corx
(
f(x), β · x

)
6= 0,

then, we have β ∈W ;
(3) Boolean function f has the (n−m)-degradation property.

Proof of Theorem 2. It suffices to prove that (1) ⇒ (2),
(2)⇒ (1), (1)⇒ (3) and (3)⇒ (1).

(1)⇒ (2). Let the space W be an orthogonal linear space
of V , that is,

W = {β ∈ Fn2 | β · α = 0, for any α ∈ V },
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then, we know
DimW = n−m.

By the definition, the correlation of linear approximation
f(x)⊕ β · x is nonzero, if and only if

Prx(f(x)⊕ β · x = 0) 6= 1/2,

and for any α ∈ V , we have

Prx(f(x)⊕ β · x = 0) = Prx(f(x⊕ α)⊕ β · (x⊕ α) = 0)

= Prx(f(x)⊕ β · x = β · α),

then, the nonzero correlation leads to

β · α = 0,

for all α ∈ V , that is,
β ∈W.

(2) ⇒ (1). Let the space V be an orthogonal linear space
of the space W , and for any α ∈ V , denote

Pα = Prx
(
f(x)⊕ f(x⊕ α)

)
.

By (2), we know that if the linear approximation

β · x⊕ f(x)

has correlation zero, then β ∈W . By Theorem 1, we have

Pα = 2−1
∑

ξ∈Fn
2 ,γ∈F2

−1(ξ·α) Cor2x
(
ξ · x⊕ λ · f(x)

)
= 2−1

∑
ξ∈W

Cor2x
(
ξ · x⊕ f(x)

)
+ 1/2

= 1,

which means
f(x) = f(x⊕ α),

for any x ∈ Fn2 and α ∈ V .
(1) ⇒ (3). We know that V is a subspace of Fn2 . Then,

we can find x1, x2, ..., x2m−1 and denote V0 = 0 ⊕ V and
Vi = xi ⊕ V , for i = 1, 2, ..., 2m − 1, satisfying

V0 ∩ V1 ∩ V2, ...,∩V2m−1 = ∅,

and
V0 ∪ V1 ∪ V2, ...,∪V2m−1 = Fn2 .

By (1), we know that for any y, z ∈ Vi

f(y) = f(z) = f(xi).

Let the space D be an orthogonal linear space of V , and
d1, d2, ..., dm ∈ D be m linear independent n-bit values.
Denote the m× n matrix

D̄ = {d1, d2, ..., dm},

then for any α ∈ V ,
a · D̄ = 0.

Let g be a Boolean function from Fm2 to F2, and let

yi = xi · D̄,

and
f(xi) = g(yi),

then for any x ∈ Fn2 , there exists a subspace Vi, x ∈ Vi, and

f(x) = f(xi) = g(yi).

(3) ⇒ (1). The function f has a (n − m)-degradation
property, there exist a n × m (m < n) matrix D with
Rank(D) = m and a Boolean function g,

f(x) = g(x ·D) = g(y).

Rewrite the matrix D = (d1, ..., dm), and let

V = {a ∈ Fn2 | a · di = 0, i = 1, 2, ...,m},

then, we know that the space V is an orthogonal linear space
of D with

DimV = n−m.

It can be obtained that for any α ∈ V , we have that

f(x)⊕ f(x⊕ a) = g(x ·D)⊕ g(x ·D ⊕ a ·D)

= g(x ·D)⊕ g(x ·D)

= 0.

This, as we have proved, certainly implies the condition (1).
Thus, we have proved the theorem.

The two characterizations showed by Theorem 2 can distin-
guish whether a Boolean function has degradation properties.
The following theorem can be seen as a spacial case.

Theorem 3: For two integrals n,m and m < n, the
following three conditions are equivalent.

(I) There exist m integrals 1 ≤ i1 < i2 < ... < im ≤ n, for
all n-bit value α satisfying the conditions that:

αi =

{
0, when i = i1, i2, ..., im;
0 or 1, other cases .

we have

Prx
(
f(x)⊕ f(x⊕ α) = 0

)
= 1.

(II) For a n-bit value β, if

Corx
(
f(x), β · x

)
6= 0,

then there exists n − m integrals 1 ≤ j1 < j2 < ... <
jn−m ≤ n,

βj = 0, when j = j1, j2, ..., jn−m;

(III) Let di be n-bit values with i = 1, 2, ...n, and d1 =
(1, 0, ..., 0), d2 = (0, 1, 0, ..., 0),..., dn = (0, 0, ..., 0, 1),
then there exist m integrals 1 ≤ r1 < r2 < ... < rm ≤ n
and a Boolean function g,

f(x) = g(x ·D) = g(y),

where D = (dr1 , dr2 , ..., drm) and y = x ·D.

Proof of Theorem 3. As (I)⇒ (III) and (III)⇒ (I) are easy
to be proved, we need give prove (I)⇒ (II) and (II)⇒ (I).

(I) ⇒ (II). By the definition of the correlation, the corre-
lation of linear approximation f(x)⊕ β · x is nonzero, if and
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only if
Prx
(
f(x)⊕ β · x = 0

)
6= 1/2,

and for any value α of (I), we have

Prx
(
f(x)⊕ β · x = 0

)
= Prx

(
f(x⊕ α)⊕ β · (x⊕ α) = 0

)
= Prx

(
f(x)⊕ β · x = β · α

)
,

then, the nonzero correlation condition leads to

β · α = 0,

that is,

βi =

{
0 or 1, when i = i1, i2, ..., im;
0, other cases .

(II)⇒ (I). For the sake of simplicity, we assume m = n−1
and β1 = 0. We claim that the function f(x) is not affected
by x1, that is

f(0, x2, x3, ..., xn) = f(1, x2, x3, ..., xn),

for any (x2, x3, ..., xn) ∈ Fn−1
2 .

By (2), we know that for all (β2, ..., βn) ∈ Fn−1
2 , the linear

approximation

(1, β2, ..., βn) · (x1, x2, ..., xn)⊕ f(x)

has correlation zero.
Let α = (1, 0, ..., 0) and Pα = Prx

(
f(x) ⊕ f(x ⊕ α)

)
, by

Theorem 1, we have

Pα = 2−1
∑

ξ∈Fn
2 ,γ∈F2

−1(ξ·α) Cor2x
(
ξ · x⊕ λ · f(x)

)
= 2−1

∑
ξ∈Fn

2

Cor2x
(
ξ · x⊕ f(x)

)
+ 1/2

= 1,

which means

f(0, x2, x3, ..., xn) = f(1, x2, x3, ..., xn),

for any (x2, x3, ..., xn) ∈ Fn−1
2 . Thus, the theorem has been

proved.
For a byte x, define S by

S(x) = (45x mod 257) mod 256;

As 257 is prime and 45 is a primitive element modulo 257,
then the vectorial Boolean function S is an invertible function
of a byte, which can be denoted

S = (S1, S2, ...., S8),

where Si : F 8
2 → F2 is a balance function, i = 1, 2, ..., 8.

Proposition 1: Let S be the vectorial Boolean function
defined above, then for the Boolean function S7, we have

Prx
(
S7(x)⊕ S7(x⊕ 80x) = 0

)
= 1;

and for the Boolean function S8,

Prx
(
S8(x)⊕ S8(x⊕ 80x) = 1

)
= 1.

where 0x is the hexadecimal notation;

Proposition 2: For the linear approximations β · x⊕S7(x)
and γ · x⊕ S8(x), if

Corx
(
S7(x), β · x

)
6= 0, and Corx

(
S8(x), γ · x

)
6= 0,

then, β1 = 0 and γ1 = 1.
By either Proposition 1 or Proposition 2, we can deduce the

following results from Theorem 3.
Theorem 4: Let S be the vectorial Boolean function defined

above, then for the Boolean functions S7, S8, there exist two
Boolean functions

S′7 : F 7
2 → F2, S′8 : F 7

2 → F2,

we have
S7(x) = S′7(x2, x3, ..., x8),

and
S8(x) = S′8(x2, x3, ..., x8)⊕ x1.

IV. ZERO-CORRELATION LINEAR CRYPTANALYSIS OF
SAFER FAMILY

A. Notations

� : modulo substraction;
� : modulo addition;
MT : the transposition of matrix M ;
X‖Y : the concatenation of X and Y ;
z[i] : the i-th byte of z, and ′1′ is the most significant byte;
z[i] : the i-th bit of z, and ′1′ is the most significant bit;
Ki : the i-th subkeys with the upper(lower)key K1

i (K2
i );

Ii : the input of the upper key layer of the i-th round;
Xi : the input of the nolinear layer of the i-th round;
Yi : the input of the lower key layer of the i-th round;
Zi : the input of the linear layer of the i-th round;
P,C : the plaintext and the ciphertext.

B. Description of SAFER Block Cipher Family

The paper focuses on SAFER SK, SAFER+ and SAFER++
and we main give the description of SAFER SK. SAFER SK
is a block cipher that operates on 64-bit blocks considered as 8
bytes. It consists of a round function iterated r times followed
by a final output transformation. After the finial round, an
additional key-addition similar to the upper key layer is added.
Recommended values of r are 6 for SAFER SK-64 and 10 for
SAFER SK-128. The i-th round function is built from four
basic operations, see Fig.1.

1. Upper Key Layer: Bytes 1, 4, 5, 8 of the round input
are XORed with the corresponding bytes of subkey K1

i . Bytes
2, 3, 6, 7 of the round input are added bytewise (modulo 256)
with the corresponding bytes of subkey K1

i .
2. Nonlinear Layer: For a byte x, define X and L by

X(x) = (45x mod 257) mod 256; L(x) = Log45x mod 256;

with the special case that L(0) = 128.
X is an invertible function of a byte, and L is defined to

be its inverse. The X transformation is applied to bytes 1, 4,
5, 8, while the L transformation is applied to bytes 2, 3, 6, 7
with the output of the upper key layer.
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Fig. 1: The round function of SAFER SK

3. Lower Key Layer: Bytes 1, 4, 5, 8 of the output of
the nonlinear layer are added bytewise (modulo 256) with
the corresponding bytes of subkey K2

i , while bytes 2, 3, 6,
7 of the output of the nonlinear layer are XORed with the
corresponding bytes of subkey K2

i

4. Linear Layer: The linear layer denotes a network of
twelve 2-PHT boxes, where the latter is defined as

2− PHT(a; b) = (2a� b; a� b),

where addition is modulo 256. Denoting the input to a PHT
layer by Y = (y1, y2, y3, y4, y5, y6, y7, y8) and its output by
Z = (z1, z2, z3, z4, z5, z6, z7, z8), where yi, zi ∈ F 8

2 , 1 ≤ i ≤
8, this transformation can be described by Z = Y T ·M , where
M is called the PHT matrix:

M =



8 4 4 2 4 2 2 1
4 2 4 2 2 1 2 1
4 2 2 1 4 2 2 1
2 1 2 1 2 1 2 1
4 4 2 2 2 2 1 1
2 2 2 2 1 1 1 1
2 2 1 1 2 2 1 1
1 1 1 1 1 1 1 1


The final output transformation after r rounds is an appli-

cation of the upper key layer with the output of the r-th round
and the subkey K1

r . Decryption involves the application of the
inverse of each round with reverse order for the subkeys.

For the key schedules of SAFER SK/128, the master key
K = (k1, k2, ..., k16) is split into two parts, the first part
including k1, k2, ..., k8 and ksp1 is used in the upper key layer
and the final key addition, while the second part including
k9, k10, ..., k16 and ksp2 is used in the lower key layer. ksp1

and ksp2 are computed in the following:

ksp1 =

8⊕
i=1

ki; ksp2 =

16⊕
i=9

ki;

The relations between first 6 round subkey bytes and the
master key bytes for SAFER SK/128 are shown in Table 2.

SAFER+ and SAFER++ operate on 128-bit blocks consid-
ered as 16 bytes. SAFER+ uses four PHT layers composed of
four 2-PHT layers with a particular fixed permutation between
2-PHT layers, while the linear layer of SAFER++ constructed
with a permutation and two 4-PHT. The linear layers can be
expressed by the matrices M+ and M + +, which are shown
in Appendix A.

TABLE II: Key schedules for the first 6-round SAFER SK/128.

K1
1 k9 k10 k11 k12 k13 k14 k15 k16

K2
1 k2 k3 k4 k5 k6 k7 k8 ksp1

K1
2 k11 k12 k13 k14 k15 k16 ksp2 k9

K2
2 k4 k5 k6 k7 k8 ksp1 k1 k2

K1
3 k13 k14 k15 k16 ksp2 k9 k10 k11

K2
3 k6 k7 k8 ksp1 k1 k2 k3 k4

K1
4 k15 k16 ksp2 k9 k10 k11 k12 k13

K2
4 k8 ksp1 k1 k2 k3 k4 k5 k6

K1
5 ksp2 k9 k10 k11 k12 k13 k14 k15

K2
5 k1 k2 k3 k4 k5 k6 k7 k8

K1
6 k10 k11 k12 k13 k14 k15 k16 ksp2

The key size for SAFER+ can be 128 bits, 192 bits and
256 bits, and 128 and 256 bits are allowed for SAFER++.
For SAFER+/128 or SAFER++/128, 16 master key bytes
together with ksp1 will be used, where ksp1 is computed in
the following:

ksp1 =

16⊕
i=1

ki;

The 256 bit master keys for SAFER+/256 or SAFER++/256
is K = (k1, k2, ..., k32). ksp1 and ksp2 are computed as

ksp1 =

16⊕
i=1

ki, ksp2 =

32⊕
i=17

ki;

The relations of the subkeys for SAFER+(++)/128 and
SAFER+(++)/256 can be found in[8][19].

C. Basic ideas of zero-correlation linear cryptanalysis

In this subsection, we briefly recall the basic concepts of
zero-correlation linear cryptanalysis. Zero-correlation linear
cryptanalysis is one of the recent cryptanalytic methods intro-
duced by Bogdanov and Rijmen[20], which is based on linear
approximations with zero correlation, which is different from
the traditional linear cryptanalysis where linear characteristics
with high correlations are used.

Let (α → β) be a zero-correlation linear distinguisher
for the first r − 1 rounds of an r-round n bit block cipher
E(·,K). After partial decryption of the last round, the linear
distinguisher to be evaluated becomes:

α · P ⊕ β · E−1
r (C,K),

where E−1
r (·) represents a partial decryption of the last round

for the k bits of K and C that influence the value of the linear
distinguisher. Then, if the guessed K is right, the correlation
of the linear approximations must be zero, while the guessed
K is wrong, the probability of the correlation of the linear
approximations being zero is

Pr =
1√
2π

2
4−n
2 ,

which is extremely low probability, when the block size n is
a big number.
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D. Zero-correlation Linear Approximations of SAFER Family

To construct the zero-correlation linear approximations, one
adopts the miss-in-the-middle techniques just like to find
impossible differential. Any linear approximations with nonze-
ro correlation is concatenated to any linear approximations
with nonzero correlation in the inverse direction, where the
intermediate masks states contradict with each other. For the
properties of the propagation of linear masks over basic block
cipher operations, we have the following lammas.

Lemma 1: [20] For a linear map h(x) = M ·x, where M is
a value-chosen matrix with XOR operation. We have C(βT ·
h(x), αT ·x) = 1, if α = MT ·β, and C(βT ·h(x), αT ·x) = 0,
if α 6= MT · β.

Lemma 2: [20] Let (α, β) be an approximation over an
invertible function φ, Then C(βT · h(x), αT · x) 6= 0 only
if α = β = 0 or both α and β are nonzero.

For the modular addition of two n-bit inputs x and y, the
output z can be computed as:

z = (x+ y) mod 2n.

It can be verified that(
(x+y) mod 2n

)
⊕
(
(x′+y) mod 2n

)
=
(
(x′⊕x)+y

)
mod 2n,

can not always be the truth. It means modular addition is not a
linear operation for XOR. However, if only the lest significant
bit is taken into consideration, the modular addition can be
treated as a linear operation.

Lemma 3: [21] Denote by Z (Z ′) the modular addition
(subtraction) operations, for any linear approximations

α · x⊕ β · y ⊕ γ · Z(Z ′),

if the correlation is non-zero, then, the most significant non-
zero mask bits for α, β and γ must be the same. Specifically,
if γ = 1 and the correlation is non-zero , then α = β = 1.

We show a 2.75-round zero-correlation linear approxima-
tion for SAFER SK and SAFER+, and a 3.75-round zero-
correlation linear approximation for SAFER++.

Theorem 5: For SAFER SK, suppose that the out-
put mask of the nonlinear layer in the i-th round is
(0, 0, 0, 02x, 0, 0, 0, 0), and the output mask of the upper key
layer in the (i + 3)-th round is (01x, 0, 0, 0, 0, 0, 0, 0), the
correlation of such 2.75-round linear approximation is zero.

Proof of Theorem 5. We just need to show the process to
construct the linear approximations adopting the miss-in-the-
middle techniques, see Fig. 2.

Along the encryption direction: We consider the lin-
ear trail with nonzero correlation. Given the input mask
(0, 0, 0, 02x, 0, 0, 0, 0) for the lower key layer Yi of the i-th
round, the input mask for the nonlinear layer Xi+1 of the
(i+1)-th round must have the form (a1, a2, a3, a4, a5, a6, 0, 0),
where a1, a2, a3, a4, a5, a6 ∈ F 8

2 are unknown values, because
Yi[4]8 and Xi+1[7, 8] are two independence variables.

Along the decryption direction: Given the output mask
(01x, 0, 0, 0, 0, 0, 0, 0) for the upper key layer of the (i + 3)-
th round, by the 0,1 bit-chosen matrix with XOR opera-
tion converted from PHT, the input mask of the PHT is
(0, 0, 0, 0, 0, 0, 0, 01x). Then by Theorem 3 and Lemma 3,

Fig. 2: 2.75-round Distinguisher of SAFER SK

the input mask of the linear layer Zi+1 of the i + 1-th
round must have the form (b1, b2, b3, b4, b5, b6, b7, b8), where
b1, b2, b3, b4, b5, b6, b7, b8 are unknown nonzero values.

0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1
0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 1 1 1 1 1 1 1


(Bit-chosen Matrix of the PHT (M) )

Contradiction: For the 7-th and 8-th S-boxes in the non-
linear layer of the (i+ 1)-th round, the input masks are zero,
but the output masks are nonzero, which is a contradiction.
Thus, the linear hull is a zero-correlation linear hull.

Theorem 6: For SAFER SK+, suppose that the out-
put mask of the nonlinear layer in the i-th round is
(0, 0, 0, 0, 0, 0, 0, 0; 02x, 0, 0, 0, 0, 0, 0, 0, ) and the output mask
of the upper key layer in the (i + 3)-th round is
(0, 0, 01x, 01x, 0, 0, 01x, 01x; 0, 0, 0, 0, 01x, 0, 0, 0), the corre-
lation of such 2.75-round linear approximation is zero.

Theorem 7: For SAFER SK++, suppose that the out-
put mask of the nonlinear layer in the i-th round
is (02x, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, ), and the output
mask of the upper key layer in the (i + 4)-th round is
(01x, 01x, 01x, 0, 0, 0, 0, 0; 0, 0, 01x, 01x, 0, 0, 0, 0), the corre-
lation of such 3.75-round linear approximation is zero.

The proofs of Theorem 6 and Theorem 7 are similar to the
proof of Theorem 5. The processing of the construction of the
linear approximations are showed in Appendix B.

E. Zero-correlation Linear Cryptanalysis of SAFER Family

In this section, we show our attack on 5-round
SAFER SK/128 and 4(5)-round SAFER+/128(256), 5(6)-
round SAFER++/128(256). The zero-correlation linear ap-
proximations and the degradation properties of the S-boxes
are used. We extend some rounds forward and backward of
the linear approximations, the general attack procedure is to
partially encrypt each plaintext and to partially decrypt the
corresponding ciphertext with a guess of subkey bits. In the
attacks, the partial-sum techniques are used to reduce the
compute complexity.
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Fig. 3: Attacks on 5-round SAFER SK/128.

1) Key Recovery Attacks on SAFER SK : In this subsection,
we will attack 5-round SAFER SK/128 based on 2.75-round
zero-correlation linear approximations. We mount the 2.75-
round zero-correlation linear approximations from round 1.5
to round 4.25, and extend 1.5 rounds forward and 0.75 rounds
backward respectively, see Fig.3.

Attack Process. The key recovery attacks on 5-round
SAFER SK/128 are proceeded with the partial-sum technique
as follows.

1. Collect all the 264 plaintext-ciphertext pairs (P,C).
Allocate 8-bit counters N1[y1] for 2104 possible values of

y1 = P [1, 2, 3, 4, 5, 6, 7, 8]‖C[1, 4, 5, 8]‖M1,

and initialize them to zero, where M1 is a 8-bit value with

M1 = C[6] � C[7] � C[2] � C[3].

For every (P,C) pair, extract the value of y1 and increase
the corresponding counter N1[y1].

2. Allocate 8-bit counters N2[y2] for 259 possible values of

y2 = P [1, 3, 4, 7, 8]‖Y1[2][3−8]‖Y1[5][3−8]‖Y1[6][3−8]‖X5[1][8],

and initialize them to zero. Guess k1
6[1, 4, 5, 8] and k1

6[6] �
k1

6[7] � k1
6[2] � k1

6[3] � k2
5[1], that is, k10, k13, k14, k

sp2 and
k15 � k16 � k12 � k13 � k1, and partially decrypt y1 to get
the value of y2, then update the corresponding counter by
N2[y2]+ = N1[y1].

3. Allocate a counter N3[y3] for 251 possible values of

y3 = P [3, 4, 7, 8]‖Y1[2][3−8]‖Y1[5][3−8]‖Y1[6][3−8]‖X5[1][8],

and initialize them to zero. Guess k1
1[1], that is, k9, compute

Y1[5][3−8] = Y1[5][3−8] � Y1[1][3−8],

and partially decrypt y2 to get the value of y3, then update the
corresponding counter by N3[y3]+ = N2[y2].

4. Allocate a counter N4[y4] for 244 possible values of

y4 = P [3, 7, 8]‖Y1[2][3−8]‖Y1[5][2−8]‖Y1[6][3−8]‖X5[1][8],

and initialize them to zero. Guess k1
1[4], that is, k12, compute

Y1[5][2−8] = (Y1[5][3−8]‖0) � Y1[4][2−8],

and partially decrypt y3 to get the value of y4, then update the
corresponding counter by N4[y4]+ = N3[y3].

5. Allocate a counter N5[y5] for 236 possible values of

y5 = P [3, 7]‖Y1[2][3−8]‖Y1[5][2−8]‖Y1[6][3−8]‖X5[1][8],

and initialize them to zero. Guess k1
1[8], that is, k16, compute

Y1[5][2−8] = Y1[5][2−8] � Y1[8][2−8],

and partially decrypt y4 to get the value of y5, then update the
corresponding counter by N5[y5]+ = N4[y4].

6. Allocate a counter N6[y6] for 230 possible values of

y6 = P [3, 7]‖Y1[5][2−8]‖Y1[6][3−8]‖X5[1][8],

and initialize them to zero. Guess k2
1[2][3−8], that is, (k3)[3−8],

and get k1
1[2](k10) from the keys guessed before, and compute

Y1[5][2−8] = Y1[5][2−8] � (Y1[2][3−8]‖0),

and partially decrypt y5 to get the value of y6, then update the
corresponding counter by N6[y6]+ = N5[y5].

7. Allocate a counter N7[y7] for 224 possible values of

y7 = P [3, 7]‖Y1[5][2−8]‖X5[1][8],

and initialize them to zero. Guess k2
1[6][3−8], that is, (k7)[3−8],

and get k1
1[6] (k14) from the keys guessed before, compute

Y1[5][2−8] = Y1[5][2−8] � (Y1[6][3−8]‖0),

and partially decrypt y6 to get the value of y7, then update the
corresponding counter by N7[y7]+ = N6[y6].

8. Allocate a counter N8[y8] for 216 possible values of

y8 = P [7]‖Y1[5][2−8]‖X5[1][8],

and initialize them to zero. Guess k1
1[3] and k2

1[3][2−8], that is,
k11 and (k4)[2−8], compute

Y1[5][2−8] = Y1[5][2−8] � Y1[3][2−8],

and partially decrypt y7 to get the value of y8, then update the
corresponding counter by N8[y8]+ = N7[y7].

9. Allocate a counter N9[y9] for 28 possible values of

y9 = Y1[5][2−8]‖X5[1][8],

and initialize them to zero. Guess k2
1[7][3−8], that is, (k8)[2−8],

and get k1
1[7](k15) from the keys guessed before and the key

schedules, compute

Y1[5][2−8] = Y1[5][2−8] � Y1[7][2−8],

and partially decrypt y8 to get the value of y9, then update the
corresponding counter by N9[y9]+ = N8[y8].

10. Allocate a counter N10[y10] for 2 possible values of

y10 = X5[1][8],

and initialize them to zero. Guess (8k2
1[1]� 2k2

1[4]� 4k2
1[5]�

k2
1[8]⊕ k4

2)[2−8], that is, (8k2 � 2k5 � 4k6 � ksp1⊕ k14)[2−8],
compute

X5[1][8] = X5[1][8] � Y2[4][7],

and partially decrypt y9 to get the value of y10, then update
the corresponding counter by N10[y10]+ = N9[y9].
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Fig. 4: Attacks on 4-round SAFER+/128.

11. After Step 10, 118 key bits have been guessed. If
N10[0] 6= 263, then, discard the guessed keys and guess another
subkey until we get the correct subkey. We do exhaustive
search for all keys conforming to this possible key candidate.

Complexity of the Attack. There are 118-bit key value
guessed during the encryption phase, according to the wrong-
key randomization hypothesis, the probability that a wrong
subkey candidate can pass the test in Step 11 is approximately

1

2
√
π

2
4−64

2 ≈ 2−31.3,

thus about 296×2−31.3 = 264.7 subkey candidates will be left.
(1) Step 1 and Step 2 require 264 and 264 × 240 = 2104

memory accesses;
(2) Step 3-7 requires 2107+2108+2108+2108+2108 ≈ 2110.3

memory accesses;
(3) Step 8-10 requires 2115 + 2115 + 2115 ≈ 2116.6 memory

accesses;
(4) Step 11 requires 232 × 264.7 = 296.7 5-round SAFER

SK encryption. Because, there are 32 bit keys being not
guessed during the encryption phase.

If we assume that processing each memory accesses is
equivalent to 1/2 round encryption, then, the total time
complexity is about 2116.6 × 1/2 × 1/5 ≈ 2113.3 5-round
encryptions. In total, The data complexity of this attack is
264 known plaintexts, the time complexity is about 2113.3 5-
round encryptions. The memory complexity is primarily owing
to storing the vectors N1, thus, the memory requirement are
2102 bytes for counters.

2) Key Recovery Attacks on SAFER+ : In this subsection,
we will show our attacks on 4-round SAFER+/128 and 5-
round SAFER+/256. For the attack on 4-round SAFER+/128,
we mount the 2.75-round zero-correlation linear approxima-
tions from round 0.5 to round 3.25, and extend 0.5 round
forward and 0.75 round backward, see Fig.4.

Attack Process. The key recovery attacks on 4-round
SAFER+/128 are proceeded with the partial-sum technique
as follows.

1. Collect all the 2128 plaintext-ciphertext pairs (P,C).
Allocate 8-bit counters N1[y1] for 2112 possible values of

y1 = P [9]‖C[1, 4, 5, 8, 9, 12, 13, 16]‖M1‖M2‖M3‖M4‖M5,

and initialize them to zero, where M1,M2,M3,M4,M5 are

TABLE III: Partial decryption of the attack on 4-round
SAFER+/128.

Step Guess Keys Computed States
3 k12 y4 = C[4, 5, 8, 12, 13, 16]‖M1‖M2‖M3‖M4‖M5‖Y1[9][7]

4 k13 y5 = C[5, 8, 12, 13, 16]‖M1‖M2‖M3‖M4‖M5‖Y1[9][7]

5 k16 y6 = C[8, 12, 13, 16]‖M1‖M2‖M3‖M4‖M5‖Y1[9][7]

6 ksp1 y7 = C[12, 13, 16]‖M1‖M2‖M3‖M4‖M5‖Y1[9][7]

7 k3 y8 = C[13, 16]‖M1‖M2‖M3‖M4‖M5‖Y1[9][7]

8 k4 y7 = C[16]‖M1‖M2‖M3‖M4‖M5‖Y1[9][7]

9 k7 y8 = M1‖M2‖M3‖M4‖M5‖Y1[9][7]

10 K(1) y9 = M2‖M3‖M4‖M5‖Y1[9][7] ⊕X4[3][8]

11 K(2) y10 = M3‖M4‖M5‖Y1[9][7] ⊕X4[3][8] ⊕X4[4][8]

12 K(3) y11 = M4‖M5‖Y1[9][7] ⊕X4[3][8] ⊕X4[4][8] ⊕X4[7][8]

13 K(4) y12 = M5‖Y1[9][7] ⊕ (X4[3] ⊕X4[4] ⊕X4[7] ⊕X4[8])[8]

14 K(5) y13 = Y1[9][7] ⊕ (X4[3] ⊕X4[4] ⊕X4[7] ⊕X4[8] ⊕X4[8])[8]

8-bit values with

M1 = C[3] � 2C[2] � 2C[6] � C[7] � C[10]

� C[11] � 4C[14] � 4C[15];

M2 = 4C[2] � C[3] � 4C[6] � C[7] � 2C[10]

� C[11] � 4C[14] � 8C[15];

M3 = C[3] � 8C[2] � C[6] � C[7] � 2C[10]

� 2C[11] � 2C[14] � C[15];

M4 = 16C[2] � C[3] � 2C[6] � C[7] � 4C[10]

� 2C[11] � 2C[14] � 2C[15];

M5 = 2C[3] � C[2] � 8C[6] � C[7] � 2C[10]

� C[11] � 2C[14] � C[15];

For every (P,C) pair, extract the value of y1 and increase
the corresponding counter N1[y1].

2. Allocate 8-bit counters N2[y2] for 297 possible values of

y2 = C[4, 5, 8, 9, 12, 13, 16]‖M1‖M2‖M3‖M4‖M5‖Y1[1][7],

and initialize them to zero. Guess k9
1[1], that is, k9 and

compute

M1 = M1 � (C[1]⊕ k9);M2 = M2 � 2(C[1]⊕ k9);

M3 = M3 � 4(C[1]⊕ k9);M4 = M4 � 8(C[1]⊕ k9);

M5 = M5 � (C[1]⊕ k9),

and partially decrypt y1 to get the value of y2, then update the
corresponding counter by N2[y2]+ = N1[y1].

The following steps in the partial decryption phase are
similar to Step 2. We use Table III to show the details of each
step of the partial decryption, and in the table, we denote

K(1) = −2k10�k11�2k14�k15�k1�k2�4k5�4k6⊕k10;

K(2) = 4k10 �k11 �4k14 �k15 �2k1 �k2 �4k5 �8k6 �k11;

K(3) = −8k10�k11�k14�k15�2k1�2k2�2k5�k6⊕k14;

K(4) = 16k10�k11�2k14�k15�4k1�2k2�2k5�2k6�k15;

K(5) = −k10 �2k11 �8k14 �k15 �2k1 �k2 �2k5 �k6 �k3.

15. After Step 14, 104 key bits have been guessed. If
N13[0] 6= 2127, then, discard the guessed keys and guess an-
other subkey until we get the correct subkey. We do exhaustive
search for all keys conforming to this possible key candidate.
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TABLE IV: Partial decryption of the attack on 5-round
SAFER++/128.

Step Guess Keys Computed States
3 k11 y3 = C[4, 5, 9, 12, 13, 16]‖M1‖M2‖M3‖M4‖M5‖Y1[1][7]

4 k14 y4 = C[5, 9, 12, 13, 16]‖M1‖M2‖M3‖M4‖M5‖Y1[1][7]

5 k15 y5 = C[9, 12, 13, 16]‖M1‖M2‖M3‖M4‖M5‖Y1[1][7]

6 k2 y6 = C[12, 13, 16]‖M1‖M2‖M3‖M4‖M5‖Y1[1][7]

7 k5 y7 = C[13, 16]‖M1‖M2‖M3‖M4‖M5‖Y1[1][7]

8 k6 y8 = C[16]‖M1‖M2‖M3‖M4‖M5‖Y1[1][7]

9 k9 y9 = M1‖M2‖M3‖M4‖M5‖Y1[1][7]

10 K(1) y10 = M2‖M3‖M4‖M5‖Y1[1][7] ⊕X5[1][8]

11 K(2) y11 = M3‖M4‖M5‖Y1[1][7] ⊕X5[1][8] ⊕X5[2][8]

12 K(3) y12 = M4‖M5‖Y1[1][7] ⊕X5[1][8] ⊕X5[2][8] ⊕X5[3][8]

13 K(4) y13 = M5‖Y1[1][7] ⊕ (X5[1] ⊕X5[2] ⊕X5[3] ⊕X5[11])[8]

14 K(5) y14 = Y1[1][7] ⊕ (X5[1] ⊕X5[2] ⊕X5[3] ⊕X5[11] ⊕X5[12])[8]

Complexity of the Attack. In this attack, there are 104
bit key values guessed during the encryption phase, about
2104 × 2−31.3 = 278.7 subkey candidates will be left. Step
1 requires 2128 memory accesses; Step 2 requires 2112×28 =
2120 memory accesses; Step 3-14 requires 11 × 2113 ≈
2116.3 memory accesses; Step 15 requires 224 × 278.7 4-
round SAFER+ encryption. The total time complexity is about
2128 × 1/2 × 1/4 = 2125 4-round encryptions. The data
complexity of this attack is 2128 known plaintexts, the time
complexity is about 2125 4-round encryptions. The memory
complexity is primarily owing to storing the vectors N1, thus,
the memory requirement are 2110 bytes for counters.

For the attack on 5-round SAFER+/256, we mount the
2.75-round zero-correlation linear approximations from round
1.5 to round 4.25, and extend 1.5 rounds forward and 0.75
rounds backward. We proceed similar steps to attack 5-round
SAFER+/256. The data complexity of the attack is 2128 known
plaintexts. The total time complexity is 2191 encryptions and
the memory complexity is about 2230 bytes, which is showed
in Appendix C(A).

3) Key Recovery Attacks on SAFER++ : In this subsec-
tion, we will show our attacks on 5-round SAFER++/128
and 6-round SAFER++/256. For the attack on 5-round
SAFER++/128, We mount the 3.75 rounds zero-correlation
linear approximations from round 0.5 to round 4.25, and
extend 0.5 round forward and 0.75 round backward, see Fig.5.
Attack Process. The key recovery attacks on 5 round of
SAFER++/128 are proceeded with the partial-sum technique
as follows.

1. Collect all the 2128 plaintext-ciphertext pairs (P,C).
Allocate 8-bit counters N1[y1] for 2112 possible values of

y1 = P [1]‖C[1, 4, 5, 8, 9, 12, 13, 16]‖M1‖M2‖M3‖M4‖M5,

and initialize them to zero, where M1,M2,M3,M4,M5 are
8-bit values with

M1 = C[6] � C[7]; M2 = C[10] � C[11] � C[14];

M3 = C[3] � C[14] � C[15]; M4 = C[6] � C[7] � C[15];

M5 = −C[7] � 4C[10] � 4C[11] � C[14].

For every (P,C) pair, extract the value of y1 and increment
the corresponding counter N1[y1].

Fig. 5: Attacks on 5-round SAFER++/128.

2. Allocate 8-bit counters N2[y2] for 297 possible values of

y2 = C[1, 4, 5, 9, 12, 13, 16]‖M1‖M2‖M3‖M4‖M5‖Y1[1][7],

and initialize them to zero. Guess k1
1[1], that is, k1 and

compute

M1 = M1 � 4(C[8]⊕ k1),M4 = M4 � 4(C[8]⊕ k1),

M4 = M5 � (C[8]⊕ k1),

and partially decrypt y1 to get the value of y2, then update the
corresponding counter by N2[y2]+ = N1[y1].

The following steps in the partial decryption phase are
similar to Step 2. Thus, to be consistent, we use Table IV
to show the details of each step of the partial decryption, and
in the table, we denote

K(1) = k14 � k15 � k16 � 4ksp1 � k1 � k4 � k19;

K(2) = k1 � k2 � k3 � 4k4 � k6 � k8 ⊕ k11;

K(3) = k12 � k13 � k5 � k6 � k7 � 4k8 ⊕ k12;

K(4) = k14 � k15 � k16 � 4ksp1 � k7 � k8 ⊕ k3;

K(5) = −k10�k13�k16�k
sp1�4k1�4k2�4k3�16k4�k6�k4.

15. After Step 14, 104 key bits have been guessed. If
N13[0] 6= 2127, then, discard the guessed keys and guess an-
other subkey until we get the correct subkey. We do exhaustive
search for all keys conforming to this possible key candidate.

Complexity of the Attack. In this attack,there are 104-
bit key value guessed during the encryption phase, about
2104 × 2−31.3 = 278.7 subkey candidates will be left. Step
1 requires 2128 memory accesses; Step 2 requires 2112×28 =
2120 memory accesses; Step 3-14 requires about 11× 2113 ≈
2116.3 memory accesses; Step 15 requires 224× 278.7 5-round
SAFER++ encryption.

The total time complexity is about 2128×1/2×1/5 = 2124.7

5-round encryptions. The data complexity of this attack is 2128

known plaintexts, the time complexity is about 2124.7 5-round
encryptions. The memory complexity is primarily owing to
storing the vectors N1, thus, the memory requirement are 2110

bytes for counters.
For the attack on 6-round SAFER++/256, we mount the

3.75-round zero-correlation linear approximations from round
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1.5 to round 5.25, and extend 1.5 rounds forward and 0.75
rounds backward. We proceed similar steps to attack 6-round
SAFER+/256. The data complexity of the attack is 2128 known
plaintexts. The total time complexity is 2191 encryptions and
the memory complexity is about 2228 bytes, which is showed
in Appendix C(B).

V. CONCLUSION

In this paper, we mainly investigate the degradation proper-
ties of Boolean function from the aspects of the distributions
of the differences and linear masks. Two characterizations
have been shown and some degradation properties of the
exponentiation type S-box of the SAFER block ciphers are
discovered. Moreover, those observations are applied to eval-
uate the security of the SAFER block cipher family by means
of zero-correlation linear cryptanalysis. Key recovery attacks
on 5-round SAFER SK/128, 4(5) round of SAFER+/128(256),
5(6)-round SAFER++/128(256) have been presented. Some
of our attacks are the best attacks in term of the number of
rounds.

APPENDIX A

A. The matrix M+ of SAFER+



2 2 1 1 16 8 2 1 4 2 4 2 1 1 4 4
1 1 1 1 8 4 2 1 2 1 4 2 1 1 2 2
1 1 4 4 2 1 4 2 4 2 16 8 2 2 1 1
1 1 2 2 2 1 2 1 4 2 8 4 1 1 1 1
4 4 2 1 4 2 4 2 16 8 1 1 1 1 2 2
2 2 2 1 2 1 4 2 8 4 1 1 1 1 1 1
1 1 4 2 4 2 16 8 2 1 2 2 4 4 1 1
1 1 2 1 4 2 8 4 2 1 1 1 2 2 1 1
2 1 16 8 1 1 2 2 1 1 4 4 4 2 4 2
2 1 8 4 1 1 1 1 1 1 2 2 4 2 2 1
4 2 4 2 4 4 1 1 2 2 1 1 16 8 2 1
2 1 4 2 2 2 1 1 1 1 1 1 8 4 2 1
4 2 2 2 1 1 4 4 1 1 4 2 2 1 16 8
4 2 1 1 1 1 2 2 1 1 2 1 2 1 8 4
16 8 1 1 2 2 1 1 4 4 2 1 4 2 4 2
8 4 1 1 1 1 1 1 2 2 2 1 2 1 4 1


B. The matrix M + + of SAFER++



1 2 1 1 1 1 1 1 4 2 2 2 1 1 2 1
2 1 1 1 1 1 2 1 1 1 1 1 2 4 2 2
2 2 4 2 2 1 1 1 1 2 1 1 1 1 1 1
1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1
4 2 2 1 1 1 2 1 1 1 1 1 1 2 1 1
1 1 2 1 2 1 1 1 2 4 2 2 1 1 1 1
1 1 1 1 1 2 1 1 2 2 4 2 2 1 1 1
1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1
1 1 2 1 4 2 2 2 1 2 2 1 1 1 1 1
1 1 1 1 2 4 2 2 1 1 1 1 2 1 1 1
1 2 1 1 1 1 1 1 2 1 1 1 2 2 4 2
2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1
1 1 1 1 1 2 1 1 1 1 2 1 4 2 2 2
2 4 2 2 1 1 1 1 2 1 1 1 1 1 2 1
1 1 1 1 2 2 4 2 1 1 1 1 1 2 1 1
1 1 2 1 2 1 1 1 1 2 1 1 1 1 1 1



C. Round functions of SAFER+(Up) and SAFER++(Down)

APPENDIX B

A. A 2.75-round distinguisher of SAFER+
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B. A 3.75-round distinguisher of SAFER++

APPENDIX C

A. Key recovery attack on 5-round SAFER+

B. Key recovery attack on 6-round SAFER++
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