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Abstract. We introduce a new cryptographic primitive: Proofs of Space-
Time (PoSTs) and construct a practical protocol for implementing these
proofs. A PoST allows a prover to convince a verifier that she spent a
“spacetime” resource (storing data—space—over a period of time). For-
mally, we define the PoST resource as a linear tradeoff between CPU
work and space-time (under reasonable cost assumptions, a rational user
will prefer to use the lower-cost space-time resource over CPU work).

Compared to a proof-of-work, a PoST requires less energy use, as the “dif-
ficulty” can be increased by extending the time period over which data
is stored without increasing computation costs. Our definition is very
similar to “Proofs of Space” [ePrint 2013/796, 2013/805] but, unlike the
previous definitions, takes into account amortization attacks and stor-
age duration. Moreover, our protocol uses a very different (and simpler)
technique, making use of the fact that we explicitly allow a space-time
tradeoff.

1 Introduction

A major problem in designing secure decentralized protocols for the internet is a
lack of identity verification. It is often easy for an attacker to create many “fake”
identities that cannot be distinguished from the real thing. Several strategies
have been suggested for defending against such attacks (often referred to as
“sybil attacks”); one of the most popular is to force users of the system to spend
resources in order to participate. Creating multiple identities would require an
attacker to spend a correspondingly larger amount of resources, making this
attack much more expensive.

Any bounded resource can be used as the “payment”; one of the more com-
mon is computing resources, since they do not require any additional infras-
tructure beyond that already needed to access the Internet. In order to ensure
that users actually do spend the appropriate resource payment, the users must
employ a “proof of work”.

Proofs of work have been used for reducing spam [7], for defending against
denial-of-service attacks [15] and fairly recently, as the underlying mechanism
for implementing a decentralized bulletin-board—this is the technical heart of
the Bitcoin protocol [11].
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While effective, proofs-of-work have a significant drawback; they require en-
ergy in direct proportion to the resource used (i.e., the amount of electricity
required to run the CPU during the proof of work generally depends linearly
on the amount of work being performed). This is especially problematic in the
context of the Bitcoin protocol, since the security of the system relies on all
honest parties constantly performing proofs of work. In addition to having an
environmental impact, this also sets a lower bound on transaction fees (since
rational parties would only participate in the protocol if their reward exceeds
their energy cost). Recently, two (very similar) proposals for Proofs of Space
(PoS) have been published [8,2], motivated in large part by the need to replace
proofs-of-work as a basis for crypto-currencies. Indeed, Park et al. [12] designed
an alternative crypto-currency that is based on Proofs of Space.

A PoS is a two-phase protocol1: it consists of an initialization phase and
(sometime later) an execution phase. In an (N0, N1, T )-PoS the prover shows
that she either (1) had access to at least N0 storage between the initialization
and execution phases and at least N1 space during the execution phase, or (2)
used more than T time during the execution phase.

At first glance, this definition might seem sufficient as a replacement for
proof-of-work. However, in contrast to work, space can be reused. This creates
two problems when using the PoS definition as a “resource payment” scheme:

1. Amortization: A prover with access to max (N0, N1) space can, without
violating the formal PoS security guarantee, generate an arbitrary number
of different (N0, N1, T )-PoS proofs while using the same amount of resources
as an honest prover generating a single proof.

2. Postponement: The cost of storage is proportional to the product of the
storage space and the time it is used (e.g., in most cloud storage services,
it costs the same to store 10TB for two months or 20TB for one month).
Under the PoS definition, a prover can pay an arbitrarily small amount by
discarding almost all stored data after the initialization phase and rerunning
the initialization in the execution phase (the prover only needs to store the
communication from the verifier in the initialization phase). More generally, a
rational prover will prefer to use computation over storage whenever the cost
of storing the data between the phases is greater than the cost of rerunning
the initialization; when this occurs the PoS basically devolves into a standard
proof-of-work in terms of energy usage.
Even if we ignore energy use, a postponement attack is a problem if the PoS
is used in a protocol where the prover must generate many proofs, but only
some will be verified: the dishonest prover will not have to expend resources
on the unverified proofs in this case.

Although the protocols of [8,2] are not completely undermined by these at-
tacks, they are more than just a definitional problem. In particular, in the sug-
gested PoS protocols based on graph pebbling, the work performed by the honest
prover in the initialization phase is proportional to the work required to access

1 We use the formal definitions of [8], which are more general than those in [2]
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the graph (i.e., O(N0)). This strongly bounds the time that can be allowed be-
tween the initialization and execution phases—if we want rational provers to use
space resources rather than CPU work. In the Spacecoin protocol, for example,
the authors suggest running the proofs every minute or so [12] (though they do
not explicitly consider the postponement attack, or whether a rational prover
would prefer to use CPU work over storage).

With regards to the amortization question, intuitively it seems that using
independent random oracles for different PoSs would imply that amortization is
impossible (even in the protocols of [8,2]). However, it is not clear that a formal
proof of this fact is trivial (in particular, the standard information-theoretic argu-
ment that a random oracle is “incompressible” isn’t sufficient, since the prover
has access to the same oracle during both phases; moreover, though counter-
intuitive, it is possible to use space that is filled with incompressible data as
a “catalyst” to help compute some functions with less space than otherwise
required [5]).

1.1 Our Contributions

In this paper, we define a new proof-of-resource-payment scheme: a “Proof of
Spacetime” (PoST), that we believe is better suited as a scalable energy-efficient
replacement for proof-of-work. Our definition is similar to a Proof of Space, but
addresses both the amortization and the postponement attacks.

In a PoST, we consider two different “spendable” resources: one is CPU
work (i.e., as in previous proofs-of-work), and the second is “spacetime”: filling
a specified amount of storage for a specified period of time (during which it
cannot be used for anything else); we believe spacetime is the “correct” space-
based analog to work (which is a measure of CPU power over time). Like work,
spacetime is directly convertible to cost.

Rather than require the prover to show exactly which resource was spent
in the execution phase, we allow the prover to choose arbitrarily the division
between the two, as long as the total amount of resources spent is enough.

That is, the prover convinces a verifier that she either spent a certain amount
of CPU work, or reserved a certain amount of storage space for some specified
period of time or spent some linear combination of the two. However, by set-
ting parameters correctly, we can ensure that rational provers will prefer to use
spacetime over work; when this is the case we say that a PoST is a Rational
Proof of Storage.

We construct a PoST based on incompressible proofs-of-work (IPoW); a vari-
ant of proofs-of-work for which we can lower-bound the storage required for
the proof itself. We give a candidate construction based on the standard “hash
preimage” PoW. In comparison with [8], we think of the time between the ini-
tialization and proof phases as weeks rather than minutes (this could enable, for
example, a crypto-currency in which the “miners” could be completely powered
off for weeks at a time). Moreover, our protocols and proofs use a very different
technique than the Proofs of Space protocols, and we believe they are simpler
to implement.
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Our constructions (and proofs) are in the random oracle model (like most
previous work on memory-hard functions and proofs of space). The soundness
proof for IPoW construction requires a non-standard assumption about the ad-
versary (we use an assumption in the spirit of that made by [8]). As do [8], we
conjecture that our construction is sound even without the extra assumption.

1.2 Related Work

Memory-Bound Functions One of the inspirations for our protocol is the memory-
bound function defined by Dwork, Goldberg and Naor [6]. The goal in designing
a memory-bound function is to make the performance bottleneck for function
evaluation the memory latency rather than CPU speed. The DGN design uses a
“pointer-chasing” technique in a random table to prove that an adversary who
computes the function must touch many entries. Our protocol is based on a
similar idea. However, since our security goals are different (e.g., we do not need
to ensure the protocol actually uses a large amount of space, but do need to
enforce a tradeoff between space and work) our protocol (and proof techniques)
are different.

Memory-Hard Functions Loosely speaking, a memory-hard function is a func-
tion that requires a large amount of memory to evaluate [13,1]. One of the main
motivations for constructing such functions is to construct proofs-of-work that
are “ASIC-resistant” (based on the assumption that the large memory require-
ment would make such chips prohibitively expensive). Note that the proposed
memory-hard functions are still proofs-of-work ; the prover must constantly uti-
lize her CPU in order to produce additional proofs. PoSTs, on the other hand,
allow the prover to “rest” (e.g., by turning off her computer) while still expend-
ing space-time (since expending this resource only requires that storage be filled
with data for a period of time).

Proofs of Storage/Retrievability In a proof-of-storage/retrievability a prover con-
vinces a verifier that she is correctly storing a file previously provided by the
verifier [9,4,3,10,14]. The main motivation behind these protocols is verifiable
cloud storage; they are not suitable for use in a PoST protocol due to high
communication requirements (the verifier must send the entire file to the server
in the first phase), and because they are not publicly verifiable. That is, if the
prover colludes with the owner of the file, she could use a very small amount of
storage space and still be able to prove that she can retrieve a large amount of
pseudorandom data.

2 Proofs of Spacetime

A PoST deals in two types of resources: one is processing power and the other
is storage. All our constructions are in the random oracle model—we model
processing power by counting the number of queries to the random oracle.
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Modeling storage is a bit trickier. Our purpose is to allow an energy-efficient
proof-of-resource-consumption for rational parties, where we assume that the
prover is rewarded for each successful proof (this is, roughly speaking, the case
in Bitcoin). Thus, simply proving that you used a lot of space in a computation
is insufficient; otherwise it would be rational to perform computations without
pause (reusing the same space). Instead, we measure spacetime—a unit of space
“reserved” for a unit of time (and unusable for anything else during that time).
To model this, we separate the computation into two phases; we think of the
first phase as occurring at time t = 0 and the second at time t = 1 (after a unit
of time has passed). After executing the first phase, the prover outputs a state
σ ∈ {0, 1}∗ to be transferred to the second phase; this is the only information
that can be passed between phases. The size of the state |σ| (in bits) measures
the space used by the prover over the time period between phases;

Informally, the soundness guarantee of a PoST is that the total number of re-
source units used by the adversary is lower bounded by some specified value—the
adversary can decide how to divide them between processing units and spacetime
units.

We give the formal definition of a PoST in subsection 2.2, in subsection 2.4
we present a simple construction of a PoST, and in subsection 2.5 we prove its
security.

2.1 Units and Notation

Our basic units of measurement are CPU throughput, Space and Time. These
can correspond to arbitrary real-world units (e.g., 230 hash computations per
minute, one Gigabyte and one minute, respectively). We define the rest of our
units in terms of the basics:

– Work: CPU×time; A unit of CPU effort expended (e.g., 230 hash computa-
tions).

– Spacetime: space×time; A space unit that is “reserved” for a unit of time
(and unusable for anything else during that time).

In our definitions, and in particular when talking about the behavior of ratio-
nal adversaries, we would like to measure the total cost incurred by the prover,
regardless of the type of resource expended. To do this, we need to specify the
conversion ratio between work and spacetime:

Real-world Cost We define γ to be the work-per-spacetime cost ratio in terms of
real-world prices. That is, in the real-world one spacetime unit costs as much as
γ work units (the value of γ may change over time, and depends on the relative
real-world costs of storage space and processing power).

We define the corresponding cost function, the real-world cost of a PoST to
be a normalized cost in work units: a PoST that uses |σ| spacetime units and x
work units has real-world cost c = γ|σ|+ x.
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2.2 Defining a PoST Scheme

A PoST scheme consists of two phases, each of which is an interactive protocol
between a prover P and a verifier V .2 Both parties have access to a random
oracle H.

Initialization Phase Both parties receive as input an id string id ∈ {0, 1}k.
At the conclusion of this phase, both the prover and the verifier output state
strings (σP ∈ {0, 1}∗ and σV ∈ {0, 1}∗, respectively):

(σP , σV )←
〈
PH(id), V H(id)

〉
.

Execution Phase Both parties receive the id and their corresponding state
from the initialization phase. At the end of this phase, the verifier either
accepts or rejects (outV ∈ {0, 1}, where 1 is interpreted as “accept”). The
prover has no output:

(·, outV )←
〈
PH(id, σP ), V H(id, σV )

〉
.

The execution phase can be repeated multiple times without rerunning the
initialization phase.

PoST Parameters A PoST has two main “tunable” parameters: a Space-time
Tradeoff Bound, γ∗ and an Honest PoST Cost, w.

Space-time Tradeoff Bound We define γ∗ to be the work/spacetime tradeoff
bound for a PoST proof. This is a lower bound on the conversion ratio between
work and spacetime required to generate a proof (i.e., a (dishonest) prover cannot
trade 1 spacetime unit for less than γ∗ work units).

The Space-time tradeoff bound is a parameter that can be tweaked in the
protocol construction. We will set γ∗ > γ, to ensure that it is cheaper to use
storage than CPU Work whenever possible.

PoST Cost Function We also define a corresponding cost function, the PoST
Cost : c(|σ|, x) = γ∗|σ| + x for a PoST execution that uses x work units and
|σ| spacetime units. This will be used to bound the real-world cost of a proof
execution, but is defined entirely in terms of the protocol parameters (so it can
be used in a self-contained definition).

Honest PoST Cost We denote w the expected PoST Cost incurred by the honest
prover in a proof execution (i.e., it includes both the storage cost and the work
expended in the execution phase). Note that this is an upper-bound on the
real-world cost incurred by the honest prover (since γ∗ > γ).

2 Although the definition allows general interaction, in our construction the first phase
is non-interactive (the prover sends a single message) and the second consists of a
single round.
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Note that the Honest PoST Cost measures only the cost in the execution
phase. However, the cost of the initialization phase must be at least w, other-
wise the adversary can generate a proof more cheaply than an honest prover
by deleting all data after initialization, then rerunning the initialization just
before the proof phase. In this case, the adversary does not store any data be-
tween phases, so does not pay any space-time cost. We formalize this below as
a postponement attack.

Definition 1 (PoST). A protocol (P, V ) as defined above is a (γ∗, w)-PoST
with ε soundness if it satisfies the properties of completeness and ε-soundness
defined below.

Completeness

Definition 2 (PoST Completeness). We say that a PoST is (perfectly) com-

plete if for every id ∈ {0, 1}poly(k) and every oracle H,

Pr
[
outV = 1 : (σP , σV )←

〈
PH(id), V H(id)

〉
, (·, outV )←

〈
PH(id, σP ), V H(id, σV )

〉]
= 1 .

Note that the probability is exactly 1 and hence the completeness is perfect.

Soundness Our security definition can capture imperfect security, where a
cheating adversary may have an advantage over an honest party with the same
resources. We do this by introducing a “soundness parameter” ε ∈ (0, 1], where
ε = 1 means perfect soundness.

We define a security game with two phases; each phase has a corresponding
adversary. We denote the adversary A = (A1,A2), where A1 and A2 correspond
to the first and the second phases of the game. A1 and A2 can coordinate ar-
bitrarily before the beginning of the game, but cannot communicate during the
game itself (or between phases).

Definition 3 ((γ∗, w)-PoST ε-Security Game). Each phase of the security
game corresponds to a PoST phase:

1. Initialization. A1 chooses a set of ids {id1, . . . , idn} where idi ∈ {0, 1}∗. It
then interacts in parallel with n independent (honest) verifiers executing the
initialization phase of the PoST protocol, where verifier i is given idi as
input. Let σA be the output of A1 after this interaction and (σV1 , . . . , σVn)
be the outputs of the verifiers.

2. Execution. The adversary A2(id1, . . . , idn, σA) interacts with n independent
verifiers executing the execution phase of the PoST protocol, where verifier i
is given (idi, σVi

) as input.3

The adversary “wins” the game if n′ ∈ {1, . . . , n} of the verifiers output 1
and one of the following holds

3 Each of the verifiers runs a copy of the honest verifier code with independent random
coins; A2, however, can correlate its sessions with the verifiers.
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1. Space-Time attack: A2’s PoST cost was less than ε ·w · n′ (i.e., it made less
than ε · w · n′ − γ∗|σA | oracle calls to H).

2. Postponement attack: A1 made less than ε · w · n′ oracle calls to H.

Intuitively, these conditions capture two different cheating strategies:

1. The first condition corresponds to a prover who can convince a verifier to
accept despite the total of work and storage in the execution phase being less
than an ε fraction of the total cost needed by an honest party to convince n′

verifiers. This means the adversary can beat the allowed space-time trade-off.
2. The second condition corresponds to a prover who can convince a verifier de-

spite doing less than an ε fraction of the required work in the initialization
phase. This makes a “postponement attack” possible: since the initializa-
tion phase requires very little computational effort, the prover can “throw
out” the stored data from the initialization phase and rerun the phase to
regenerate any needed data during the execution phase.

The use of n ids rather than just one prevents an amortization attack, wherein
the adversary reuses the same space for different proofs.

Definition 4 (PoST ε-Soundness). We say that a PoST is sound if no ad-
versary can win the ε-security game with more than negligible probability (in the
security parameter).

Comparison with the PoS definition As we remarked in the introduction, an
(N0, N1, T )-PoS does not give any security guarantees with respect to the PoST
definition (even if we ignore amortization), since it does not address postpone-
ment attacks at all. In the other direction, even a perfectly-sound (γ∗, w)-PoST
can’t guarantee a (x, x, w − γ∗ · x)-PoS, for any x ∈ (0, w) (in particular, our
construction allows an adversary to easily trade space for work with a linear
ratio). Thus, the parameters are not truly comparable.

One can think of the two definitions as being targeted at different “regimes”:
a PoS forces the prover to use a lot of space, but is not well suited to long periods
between the initialization and execution phases, while the PoST definition does
allow long periods of elapsed time (with a suitably hard initialization step), but
relies on the rationality of the adversary to enforce use of storage rather than
work.

2.3 Constructing a PoST: High-Level Overview

Our proof of spacetime has each prover generate the data they must store on
their own. To ensure that this data is cheaper to store than to generate (and
to allow public verifiability), we require the stored data to be a proof-of-work.
We construct our protocol using the abstract notion of an incompressible-proof-
of-work (IPoW); this is a proof-of-work (PoW) that is non-compressible in the
sense that storing n different IPoWs requires n times the space compared to
storing one IPoW (we define them more formally below; see section 2.4).
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As long as the cost of storing an IPoW proof is less than the cost of re-
computing it, the prover will prefer to store it. However, this solution is very
inefficient: it requires the prover to send its entire storage to the verifier. In order
to verify the proof with low communication, instead of one large proof of work,
we generate a table containing T entries; each entry in the table is a proof of
work that can be independently verified.

Why the Näıve Construction Fails At first glance, it would seem that there is
an easy solution for verifying that the prover stored a large fraction of the table:

1. In the initialization phase: the prover commits to the table contents (using
a merkle tree whose leaves are the table entries)

2. In the execution phase: the verifier sends a random set of indices to the
prover, who must then respond with the corresponding table entries and
commitment openings (merkle paths to the root of the tree).

Unfortunately, this doesn’t work: the prover can discard the entire table and
reconstruct only those entries requested by the verifier during the execution
phase.

Instead of challenging the prover on random table entries, we use a trick from
Dwork et al.’s memory-bound function construction [6]: the challenge provided
by the verifier defines multiple sets of entries. The prover must search through
the table to find a set of entries that satisfies a “probing criterion”. Intuitively
we set the difficulty of the probing criterion, to ensure the prover must read a
large fraction of the table in order to find a satisfying set; thus, the prover must
either have stored or recomputed a large fraction of the table.

In a little more detail: for a challenge ch, every nonce nonce selected by
the prover will define the set of k entries H(nonce||ch||1), . . . ,H(nonce||ch||k),
where the output of the random oracle is interpreted as a pointer to the table.
We use the random oracle for the probing criterion too; setting p∗ = O(k/T ) to
be the probability of success, for each set of entries (X1, . . . , Xk) the prover must
compute H(X1, . . . , Xk), interpret the output of the oracle as a real fraction in
[0, 1) and check if it is less than p∗.

Intuitively, the only thing the prover can do is try many different nonces until
one succeeds (in expectation 1/p∗ = Ω(T/k) attempts), but because the entries
defined by each nonce are random and independent, with high probability the
attempts will cover most of the table. Essentially, by setting p∗ low enough, we
force the prover to read the most of the table, even though the final output
consists of only k entries and their Merkle paths to the root of the tree used to
commit the table (k can be polylogarithmic in the table size).

2.4 Constructing a PoST: Formal Description

Formally, we describe the protocol in the presence of several random oracles,
denoted by Hi ; for i 6= j, Hi and Hj are independent random oracles. This is
just for convenience of notation, we can implement them all using a single oracle
by assigning a unique prefix to the oracle queries (e.g., Hi (x) = H(i||x)).
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Incompressible Proofs of Work The standard definitions of PoWs do not
rule out an adversary that can store a small amount of data and can use it
to regenerate an entire table of proofs with very low computational overhead.
Thus, to ensure the adversary must indeed store the entire table we need a more
restrictive definition:

An Incompressible Proof of Work (IPoW) can be described as a protocol
between a verifier V and a prover P :

1. The prover P is given a challenge ch as input, and outputs a “proof” π:

2. The verifier receives (ch, π) and outputs 1 (accept) or 0 (reject).

For simplicity, we denote IPoW (ch) the output of the honest prover on chal-
lenge ch (this is a random variable that depends on the random oracle and the
prover’s coins).

Complexity and Completeness Let q#P denote the number of oracle calls made by
P in the protocol (this is a random variable that depends on ch and the random
coins of P ).

Definition 5 ((w′,m)-IPoW). A protocol is a (w′,m)-IPoW if:

1. E[q#P ] ≤ w′ (the prover’s expected work is bounded by w′) and

2. |π| ≤ m (the prover’s storage is bounded by m).

Definition 6 (IPoW Completeness). An IPoW protocol is complete if, for
every challenge ch, the probability that the verifier rejects is negligible in the
security parameter (the probability is over the coins of the prover and the random
oracle).

Compressibility Game For an IPoW protocol to be considered sound, it must
prevent an adversary from amortizing work and/or storage across many proofs.
(Note that we do not necessarily require generating a single proof to be hard
with overwhelming probability.) We capture the adversary’s goal by defining the
(ε, n)-compressibility game:

1. A1 has no input (however, it has access to the random oracle). At the end
of this phase it outputs a string σ.

2. A2 is given σ as input, and outputs a set of n distinct challenges C = {chi}ni=1

and n proofs (π1, . . . , πn), one for each challenge in C.
3. The verifier V ∗ outputs

∧n
i=1 V (chi, πi).

Let q#i denote the number of oracle calls made by Ai. The adversary wins the
game if V ∗ = 1 and either:

1. Amortization Attack: q#1 + q#2 < ε · w′ · n or

2. Compression Attack: |σ| · w
′

m + q#2 < ε · w′ · n.
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The first win condition corresponds to a CPU amortization attack, in which the
adversary can answer n challenges while doing less than εw′ work per challenge
(this captures the standard notion of “proof of work”). The second condition
corresponds to a compression attack, where an adversary can pay less than εw′

normalized cost per challenge, compared to a näıve trade-off ratio of w′/m oracle-
queries-per-storage-bit (since a näıve prover can always exchange the m bits of
the proof with w′ oracle queries to reconstruct it).

Definition 7 (IPoW (ε, n)-Soundness). We say a (w′,m)-IPoW is (ε, n)-
sound if there exists a constant c such that for every adversary A = (A1,A2)
that makes at most kc queries to the oracle (in total), the probability that A wins
the (ε, n)-compressibility game is negligible in k (the security parameter).

Intuitively, ε says how much of an advantage an adversary has over an honest
user: to “simulate” an honest user with x resources, an adversary requires at
least εx resources. In a (1, n)-sound IPoW, the adversary has no advantage over
the honest user.

The formal PoST protocol description appears as Protocol 1. To construct
it, we require a ( 2

3 ,
1
2T · n

′)-sound (w′,m) IPoW. Our soundness proof requires

that the amount of work per IPoW verification is at most 1
10
n′

n ·w
′. We construct

such a hash-based IPoW scheme in section 3.
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Protocol 1 Table-PoST (for γ∗ = w′/m)

Public Parameters: k - security parameter, T - table size and IPoW (ch) is a (w′,m)-
IPoW with ( 2

3
, 1
2
T · n′) soundness. Denote p∗ = k/2T

Storing Phase: (Performed by the prover P )
Inputs: id ∈ {0, 1}∗.
1. Generate an array G of size T as follows:

For each 0 ≤ i < T , set G[i]
def
= IPoW (id||i)

2. Generate a commitment com on G using a Merkle tree (i.e., construct a Merkle
tree whose leaves are labeled with the entries of G, and each internal node’s label
is the output of the random oracle on the concatenation of its children’s labels;
com is the root label).

3. Publish the string id and the commitment com.

Proof Phase: (Performed by the prover P )
Upon receiving a challenge ch from the verifier V :

1: for all j ∈ {1, . . . , k} do
2: count← 0
3: repeat
4: count← count+ 1 // Increment counter
5: Set noncej ← count
6: for all t ∈ {1, . . . , k} do
7: Compute ij,t = H1 (noncej ||ch||j||t) mod T
8: end for
9: Let πdecommit(j) be the Merkle paths from the table entries
{G[ij,1], . . . , G[ij,k]}.

10: Compute pathprobe← H2 (ij,1||G[ij,1]|| · · · ||ij,k||G[ij,k]||πdecommit(j))
11: until pathprobe < p∗ // happens with prob. p∗

12: end for
13: Output to V the list (nonce1, . . . , noncek) and{

πdecommit(1), . . . , πdecommit(k)

}
.

Proof Phase: (Performed by the verifier V )
Generate a random challenge ch and send it to the prover. Wait to receive the list
(nonce1, . . . , noncek) and

{
πdecommit(1), . . . , πdecommit(k)

}
.

1: for all j ∈ {1, . . . , k} do
2: for all t ∈ {1, . . . , k} do
3: Compute ij,t = H1 (noncej ||ch||j||t) mod T
4: Verify using πdecommit(j) that G[ij,t] has a valid commitment opening.
5: Verify that G[ij,t] is a valid IPoW for the challenge id||ij,t.
6: end for
7: Compute pathprobe← H2 (ij,1||G[ij,1]|| · · · ||ij,k||G[ij,k]||πdecommit(j))
8: Verify that pathprobe < p∗

9: end for
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2.5 Security Proof Sketch

Theorem 1 (Informal). If the challenge ch is chosen with high min-entropy,
Protocol 1 is a sound PoST protocol

Proof. For simplicity of the proof, we assume that ε = 1/2 Recall that Defini-
tion 3 offers the adversary two ways to win in the security game; we treat each
case separately.

1. We analyze the first case (spacetime attack) by reducing from the incom-
pressibility of IPoW; if there exists an adversary that can win with less
work+space than expected, we can use this adversary to win the IPoW
compression game. The idea is to use the adversary as a subroutine in a pro-
gram that can reconstruct a large fraction of the table. To compress, we run
the adversary’s initialization phase. To decompress, we run the adversary’s
execution phase, simulating the oracle H2 (·). Each path probe query (query
to H2 (·)) should correspond to a set of k table entries and their commit-
ment openings; we can use this query to “reconstruct” those table entries.
(we can ignore path probe queries that don’t have the right format—those
are “useless”, since they are independent of anything the verifier queries).
Since the prover must output k good nonces and the oracle queries to H2 (·)
are independent for each nonce, with high probability it will have to make
Ω(1/p∗) path probe queries. Moreover, since the table indices are chosen i.i.d.
for each different nonce and challenge, if the adversary has previously asked
about less than 1/2 of the table entries, with high probability at least 1/4
of the indices in each path probe query will be new. Thus, each path-probe
query will add at least 1/4k new table entries. By setting p∗ = Ω(k/T ), we
can ensure that with high probability at least half the table entries will be
reconstructed.
The total space we need to store is just the output of the adversary’s ini-
tialization phase. Moreover, the number of work oracle queries we make
while reconstructing the table is exactly the number of queries made by the
adversary’s execution phase. By our assumption about the adversary’s win-
ning strategy, the normalized total (of space+queries) is less than the total
needed to honestly reconstruct 1/2 of the entries. Thus, we “win” the IPoW
compression game. (This argument is formalized in Lemma 2.)

2. Suppose there exists an adversary that wins with non-negligible probability
under the second condition (postponement attack). In this case, the adver-
sary cannot have solved more than half of the table entries’ proofs of work.
Therefore, when given a new random challenge it will either have to find a
path that exists entirely in the half of the table it did solve, or break the
Merkle commitment. Note that searching for a path of length k that falls
entirely in one half of the table is equivalent to flipping k coins until they all
return 1—the choice of nonce determines the entire path (given the challenge
and existing table entries), and the random oracle ensures that each index in
the path is chosen randomly and independently of the previous links. Thus,
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the adversary would require a number of random oracle queries exponen-
tial in k to succeed (with high probability) (This argument is formalized in
Lemma 1.)

2.6 Security Proof

For simplicity of the proof, we assume that ε = 1/2. Recall that Definition 3
offers the adversary two ways to win in the security game; we treat each case
separately.

First, assume that the adversary is deterministic (this is w.l.o.g. since the
adversary is computationally unbounded). Let A = (A1,A2) be an adversary
in the PoST security game (defined in Definition 3) that wins the game with
probability pwin (the probability is over the choice of challenge and the random
oracles). Denote pwin1 the probability that A wins the game and A1 makes less
than ε · w · n oracle calls to H (i.e., wins under the first condition).

Lemma 1. If there exists an adversary A that wins with probability pwin in
the PoST 1

2 -security game using a postponement attack, then there exists an
adversary for the IPoW scheme that can win the ( 2

3 ,
1
2Tn

′)-compressibility game
with probability pwin − η(k) (where η(·) is a negligible function).

Proof. We construct an adversary that runs A once, and wins (except with negli-

gible probability) wheneverA wins. The IPoW adversary,A(IPoW ) = (A(IPoW )
1 ,A(IPow)

2 ),
works as follows:

1. A(IPoW )
1 runs A1, internally simulating the Merkle tree oracle (and recording

all the queries).
2. When A1 sends com1, . . . , comn, supposedly the root of the Merkle trees,

A(IPoW )
1 can reconstruct the complete trees by checking the recorded queries

to see the preimage of each tree node.

3. A(IPoW )
1 then runs the IPoW verifier on each of the leaves.

4. A(IPoW )
2 outputs the valid IPoW leaves (note that for the amortization at-

tack, the communication between A(IPoW )
1 and A(IPoW )

2 is irrelevant).

Denote S the set of valid IPoW entries in the committed tables (i.e., the ones

reconstructed by A(IPoW )
1 ). The list of table entries generated by A2 in a winning

response to the challenge must be contained in S (except with negligible proba-
bility in the length of the Merkle oracle), otherwise either the IPoW verification
would fail or the Merkle commitment verification would fail (in contradiction to
the response being a “winning” response). We claim that this implies, in almost
every instance in which A wins the PoST security game, that |S| > 9

10Tn
′.

To see why, assume in contradiction that |S| ≤ 9
10Tn

′. Then for any set of n′

tables, there must be at least one table that does not have 9
10T valid entries. In

particular, since n′ verifiers accepted, there must be at least one accepting PoST
whose corresponding table had less than 9

10T . Let S′ be the entries belonging
to that table. The probability (over the choice of the random oracle) that for
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a given nonce all k entries H1 (nonce||ch||1), . . . ,H1 (nonce||ch||k) are in S′ is
(|S′|/T )k ≤ 2−k. Let Succnonce be the event that this test succeeded for nonce.
Since entries of the random oracle are independent, the events Succnonce for
different nonces are independent. Hence, the the probability that an adversary
can succeed with less than 2k/k oracle queries to H1 is bounded by a negligible
function in n′ ≥ k (using the Chernoff bound).

Since A won the security game with a postponement attack, A1 made q#A1
≤

1
2wn

′ = 1
2w
′Tn′ queries to the work oracle H , hence A(IPoW ) made

q#A(IPoW ) = q#A1
+ q#verTn ≤

1

2
w′ · T · n′ + q#ver · T · n

queries to the oracle (where q#ver is the number of oracle queries required to verify

a single IPoW). When the amount of work per IPoW verification is q#ver ≤ 1
10
n′

n ,

this means A(IPoW ) output 9
10Tn

′ valid IPoWs, while using only 2
3 · (

9
10Tn

′)
work queries, contradicting the 2

3 soundness of the IPoW.

Lemma 2. If there exists an adversary A that wins with probability pwin in
the PoST 1

2 -security game using a spacetime attack, then there exists an adver-
sary for the IPoW scheme that can win the ( 2

3 ,
1
2Tn

′)-compression game with
probability pwin − η(k) (where η(·) is a negligible function).

Proof. We construct an adversary that runs A once, and wins (except with negli-

gible probability) wheneverA wins. The IPoW adversary,A(IPoW ) = (A(IPoW )
1 ,A(IPow)

2 ),
works as follows:

1. A(IPoW )
1 runs A1. For every Merkle oracle query corresponding to an invalid

IPoW, A(IPoW )
1 intercepts the oracle call and replaces the answer with a

random string (this will cause it to be invalid with high probability). If

asked again, it answers consistently. (A(IPoW )
1 can ask the IPoW verification

oracle, since in the space-time attack we don’t care about the number of

queries made by A(IPoW )
1 ).

2. A(IPoW )
2 runs A2, internally simulating H2 (and recording all the queries to

the oracles).

3. For each path-probe query (to H2 ) made by A2, A(IPoW )
2 parses the query

as a set of k table entries and their commitment openings, and verifies the

commitment openings. Note that A(IPoW )
1 ensured that any validly opened

entries are also valid IPoWs.
4. A(IPoW )

2 outputs the set of valid IPoWs collected during the execution of
A2.

Since A wins the PoST security game with a space-time attack, q#A2
+

γ∗|σ|n′ < 1
2 · w · n

′ = 1
2 · w

′ · T · n′, while managing to convince n′ verifiers to

accept. A(IPoW )
2 makes the same number of queries and uses the same amount

of space, hence we must show that it can output T · n′ valid IPoWs in order to
win the compression challenge.
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To do this, we require that for every PoST table for which A(IPoW )
2 recon-

structed less half of the entries, A2 will fail to convince a verifier with high
probability. Thus, there must be at least n′ tables with 1

2T “good” entries.

Let S be the entries of one of the tables output by A2, such that A(IPoW )
2

reconstructed less than 1
2 |S| of the entries. Since A(IPoW )

2 will reconstruct any
entry that was a valid IPoW and was included in a path-query, this means A2 did
not make path-queries about at least half of the entries in the table. However, in
order to convince the verifier, A2 must output k “good” nonces—that is, paths
for which H2 (·) returned value less than p∗ = k2/(8 · T ). Consider the array
nonce1 . . . , noncek of nonces output for this table by A2. For each nonce, the
probability of finding a good path with less than 1

2p∗ queries to H2 (·) is at most
1
2 . Since H2 (·) queries are independent for different nonces, if there are more
than 1

2k of the nonces for which less than 1
2p∗ queries were made, the probability

that all of the nonces are good is at most 2−k/2. (Note that H2 (·) is entirely
independent of the view of A1 (and hence of σ, since we used an internally
simulated oracle in A2. This is ok because the challenge was chosen with high
min-entropy, so the probability that A1 could have queried H2 (·) on the same
challenge prefix is negligible.)

Hence, we can assume that at least 1
2p∗ ·

k
2 = k

4p∗ path-probes were made.
Moreover, since the table indices are chosen i.i.d. for each different nonce and
challenge, if the adversary has previously asked about less than 1/2 of the table
entries, with high probability at least 1/4 of the indices in each path probe query
will be new. Thus, each path-probe query will add at least k/4 new table entries

to the set collected by A(IPoW )
2 . Hence, except with negligible probability in k,

the set S will contain at least k
4 ·

k
4p∗ = 1

2T valid entries.

3 Hash-Preimage IPoW

One of the most popular proofs of work is the hash-preimage PoW: given a
challenge ch ∈ {0, 1}k, interpret the random oracle’s output as a binary fraction

in [0, 1] and find x ∈ {0, 1}k s.t.

H(ch||x) < p (1)

p is a parameter that sets the difficulty of the proof. For any adversary, the
expected number of oracle calls to generate a proof-of-work of this form is at
least 1/p.

At first glance, this might seem to be an incompressible PoW already—after
all, the random oracle entries are uniformly distributed and independent, so
compressing the output of a random oracle is information-theoretically impossi-
ble. Unfortunately, this intuition is misleading. The reason is that we need the
proof to be incompressible even with access to the random oracle. However, given
access to the oracle, it’s enough to compress the input to the oracle. Indeed, the
hash-preimage PoW is vulnerable to a very simple compression attack: Incre-
ment a counter x until the first valid solution is found, but don’t store the zero
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prefix of the counter. Since the expected number of oracle calls until finding a
valid x is only 1/p, on average that means only log 1

p bits need to be stored

(rather than the full length of an oracle entry).
We show that this is actually an optimal compression scheme. Therefore,

to make this an incompressible PoW, we instruct the honest user to use this

strategy, and store exactly the
⌈
log 1

p

⌉
least significant bits of the counter. We

note that 1
p is the expected number of attempts—in the worst case the prover

may require more; thus, we allow the prover to search up to k
p entries; the

verifier will check k possible prefixes for the log 1
p bits sent by the prover (with

overwhelming probability, there will be a valid solution in this range). Thus, the
verifier may have to make k oracle queries in the worst case in order to check a
proof (however, in expectation it will be only slightly more than one).4

Formally,

Definition 8 (Hash-Preimage IPoW (k, p)). The honest prover and verifier
are defined as follows:

Prover Given a challenge y, calls H on the inputs {y||x}
x∈{0,1}log

k
p

in lexico-

graphic order, returning as the proof π the least significant log 1
p bits of the

first x for which H(y||x) < p.
Verifier Given challenge y and proof π, verifies that |π| ≤ log 1

p and that there

exists a prefix z of length log k such that H(y||z||π) < p (where π is zero-
padded to the maximum length).

Completeness

Claim. The hash-preimage protocol is a
(

1/p,
⌈
log 1

p

⌉)
-IPoW.

Proof. With all but negligible probability (in k), the honest prover succeeds in

finding a valid proof.
⌈
log k

p

⌉
bits can express any number in the range 0, . . . , kp .

Since each call to the random oracle returns independent and uniformly random
coins, the number of calls to the oracle will be geometrically distributed with
mean 1/p, hence the probability that the honest prover will make more than k/p
calls is (1− p)k/p ≤ e−k.

Soundness To prove soundness, we make use of a non-standard assumption
about the adversary (in a similar vein to [8]): we assume that the adversary
cannot make use of dependencies between different IPoW challenges (even if the
adversary chooses the challenges). More formally:

Assumption 2 For any set of independent random oracles H1, . . . ,Hn, each
corresponding to a different IPoW execution, we can partition the adversary’s
storage into n disjoint blocks B1, . . . , Bn such that for all i 6= j it holds that
I(Hi;Bj) = 0.

4 We note that this computation can be performed by the prover instead, but it will
simplify our analysis to assume the verifier performs the checks.
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While this is certainly an unsatisfactory assumption, we conjecture that this is
a limitation of the proof, and that the protocol itself is indeed sound (moreover,
a more general version of assumption is implicitly assumed when claiming that
“when using independent random oracles it is clear that amortization holds”).
For readability, we defer some of the proofs to section A.

Theorem 3. If p < 2−13, the hash-preimage-based IPoW is ( 2
3 , n)-sound for

every n > k.

Proof. Set ε = 2
3 . Suppose, in contradiction, that for some constant c there exists

an adversary A and an infinite increasing sequence k1, k2, . . . such that A(ki)
makes kci queries to the oracle and wins the (ε/p, ε · `k,p, k)-compressibility game
with probability ρ > k−ci . Thus, A must succeed in satisfying either the first or
the second winning condition of the compressibility game with probability ρ/2.

1. q#1 +q#2 ≤ (ε/p) ·k. To win the game via the first condition, A must produce
k distinct outputs satisfying the condition H(z) < p. Since each query to
the random oracle produces an independent uniform response, in bounding
the number of queries made we need only consider the number of distinct
queries made to the oracle—we can ignore the query contents. Denote Xi

the indicator variable for the event “the ith query returned a successful
response”. Then Pr [Xi = 1] = p, and the Xi’s are all independent. Let

q
def
= εk/p be a bound on the number of queries made by the adversary and

X =
∑q
i=1Xi denote the total number of successful responses seen by the

adversary (w.l.o.g. we can assume the adversary makes all q queries). Then
E[X] = εk. Using Chernoff’s bound (noting that 1

2k = 1
2 (1+(1/ε)−1)E[X]),

Pr

[
X ≥ 1

2
k

]
≤ e−

1
2k

(1−ε)2

1+ε

That is, with overwhelming probability the adversary did not see more than
1
2k successful responses. Conditioned on X < 1

2k, there are at least 1
2k

outputs of A that either have not been queried at all (in which case the
probability that the corresponding verifier accepts is exactly p), or have
been queried but are not successful (in which case A loses the game). So the
probability that the adversary wins the game is bounded by

Pr [A wins] ≤ Pr

[
X ≥ 1

2
k

]
+ Pr

[
A wins|X <

1

2
k

]
≤ e−

1
2k

(1−ε)2

1+ε + p
1
2k

For any constant ε and p, this is negligible (exponentially small) in k.
2. By Theorem 4, for any single IPoW in which the adversary successfully

convinces a verifier with probability at least δ = 10
11 , its total cost must be

at least 11
10εw

′. By Assumption 2, we can partition the adversary’s storage
into disjoint blocks for each IPoW instance; Thus, if more than 1

11n of its
IPoW solutions used less than 11

10εw
′ cost, the probability that it succeeds

is at most ( 1
11 )

n
11 = 2−Ω(k). Hence we can assume that it used at least

10
11 ·

11
10 · ε · w

′ · n = ε · w′ · n.
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4 Discussion and Open Questions

One of the apparent drawbacks of our IPoW construction is that the tradeoff
between work and space is fixed, and exponential. However, this can be overcome
by defining a “composite” IPoW made up of several IPoWs in sequence (e.g.,
with challenges formed by appending an index to the original challenge). This
allows us to create a (t ·w′, t ·m)-IPoW from a (w′,m)-IPoW, giving much more
flexibility in the space/time tradeoff, at the cost of increased verification time.

Constructing additional IPoW constructions using different techniques is also
an interesting open question.
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A Information-Theoretic Proofs for Hash-Proof IPoW

Denote wmax = k/p. Let O = O1, . . . , Owmax
be the oracle entries for a given

challenge (chosen i.i.d. in {0, 1}L).

Let O′ be a random variable computed from O in the following way: If Oi < p
then O′i is chosen uniformly at random from the values in [0, p), otherwise it is
chosen uniformly at random from the values [p, 1).

X ∈ [wmax] is a random variable that represents the output of the prover
A prover’s output will be accepted by the verifier iff it holds that OX < p. We
define the indicator variable SuccX,O to capture this event. Z represents the
auxiliary information stored by the adversary. Z is an arbitrary random variable
of size |Z| bits. Z ′ represents any additional randomness used by the adversary
(including additional random oracles) that is independent of O.

Q ⊆ [wmax], |Q| = q will denote the set of queries made by the adversary to
O. That is, Q is a random variable consisting of a subset of indices (i1, . . . , iq),
such that the adversary queries Oi1 , . . . , Oiq .

We want to show that any adversary that can compute a successful X must
make a tradeoff between the number of queries to O and the size of its storage.
More precisely,

Theorem 4 (Main Theorem). For every adversary whose auxiliary input,
query set and output are given by the variables Z, Q and X, respectively (and
with access to an arbitrary random oracle Z ′ that is independent of O), if
Pr [SuccX,O = 1] = δ ≥ 10

11 and p < 2−13 then

E(|Q|) + |Z| 1

p log 1
p

≥ 11

10
· 2

3
· 1

p

The proof of the theorem appears below; first we prove several information-
theoretic lemmas that we will require.

Lemma 3. If Pr [SuccX,O = 1] = δ then I(X;O′) ≥ δ log 1/p− 1.
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Proof. Define Y = (SuccX,O, Y1, Y2) to be a random variable as follows: Y1 =
O′|X (that is, Y1 contains all the entries of O′ in order, except for those pointed
to by X).

Y2 =

{
comp(O′X) if SuccX,O = 1

O′X otherwise

where comp is a “compression” function that returns only the L− log 1/p least
significant bits of its input. Since SuccX,O = 1 implies that O′X < p, Y2 suffices
to reconstruct O′X .

By the chain rule for mutual information, I(X;O′) = I(X,Y ;O′)−I(Y ;O′|X).
Since O′ is a deterministic function of X,Y , it holds that I(X,Y ;O′) = H(O′).
On the other hand,

I(Y ;O′|X) ≤ H(Y |X) ≤ H(Y ) ≤ E[|Y |] ,

where |Y | is the length in bits of Y ’s description. We can compute this exactly:

E[|Y |] = 1 + E[|Y1|] + E[|Y2|]
= 1 + E[|Y1|] + δE[|Y2| | SuccX,O = 1] + (1− δ)E[|Y2| | SuccX,O = 0]

= 1 + |O′| − L+

(
δ(L− log

1

p
) + (1− δ) · L

)
= 1 +H(O′)− δ log

1

p

Putting it together:

I(X;O′) ≥ H(O′)− 1−H(O′) + δ log
1

p
= δ log

1

p
− 1

Lemma 4. Let Z be an arbitrary random variable of size |Z| bits, and Q the
set of queries made to O. Let Z ′ be an arbitrary random variable independent
of O and O′ (i.e., I(Z ′;O,O′) = 0). Then

I(O|Q, Z ′, Z;O′) ≤ E(|Q|)H(p) + |Z|

Proof. By definition, I(O|Q, Z ′, Z;O′) = H(O|Q, Z ′, Z)+H(O′)−H(O|Q, Z ′, Z,O′).
SinceH(O|Q, Z ′, Z) ≤ H(O|Q, Z ′)+H(Z) ≤ H(O|Q, Z ′)+|Z|, andH(O|Q, Z ′, Z,O′) ≥
H(O|Q, Z ′, O′), it follows that

I(O|Q, Z ′, Z;O′) ≤ I(O|Q, Z ′;O′) + |Z| .

By the chain rule for mutual information, and the fact that Z ′ is independent
of O,O′,

I(O|Q, Z ′;O′) = I(O|Q;O′) + I(Z ′;O′ | O|Q) = I(OQ;O′) .

Finally, since the only connection between O and O′ is that each for index i
either both satisfy Oi < p ∧ O′i < p or both satisfy Oi ≥ p ∧ O′i ≥ p, the
mutual information between two entries is H(p) if they have the same index and
0 otherwise. Hence,

I(OQ;O′) = E[|Q|]H(p) .
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Proof (Proof of Theorem 4). Since X is a deterministic function of O|Q, Z
and Z ′, it follows that I(X;O) ≤ I(O|Q, Z ′, Z;O). Combining Lemma 3 and
Lemma 4, we have

E(|Q|)H(p) + |Z| ≥ I(O|Q, Z ′, Z;O′) ≥ I(X;O′)

≥ δ log
1

p
− 1

≥ (δ − 1

11
) log

1

p

(the last inequality uses p < 2−11.) Dividing both sides by H(p) and using the
fact that for p < 2−13 it holds that p log 1

p ≤ H(p) ≤ 9
8p log 1

p :

E(|Q|) + |Z| 1

p log 1
p

≥ E(|Q|) + |Z| 1

H(p)
≥ (δ − 1

11
)
log 1

p

H(p)

≥ (δ − 1

11
)

log 1
p

9
8p log 1

p

=
8

9
· (δ − 1

11
) · 1

p

=
8

9
· (10

11
− 1

11
) · 1

p

=
8

9
· 9

11
· 1

p

≥ 11

10
· 2

3
· 1

p
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