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Abstract. The related-key model is now considered an important sce-
nario for block cipher security and many schemes were broken in this
model, even AES-192 and AES-256. Recently were introduced e�cient
computer-based search tools that can produce the best possible related-
key truncated di�erential paths for AES. However, one has to trust the
implementation of these tools and they do not provide any meaning-
ful information on how to design a good key schedule, which remains a
challenge for the community as of today.
We provide in this article the �rst human-readable proof on the minimal
number of active Sboxes in the related-key model for AES-128, without
any help from a computer. More precisely, we show that any related-key
di�erential paths for AES-128 will respectively contain at least 0, 1, 3
and 9 active Sboxes for 1, 2, 3 and 4 rounds. Our proof is tight, not trivial,
and actually exhibits for the �rst time the interplay between the key state
and the internal state of an AES-like block cipher with an AES-like key
schedule. As application example, we leverage our proofs to propose a
new key schedule, that is not only faster (a simple permutation on the
byte positions) but also ensures a higher number of active Sboxes than
AES-128's key schedule. We believe this is an important step towards a
good understanding of e�cient and secure key schedule designs.
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1 Introduction

Block ciphers and more generally symmetric key cryptographic primitives are
very important components in nowadays security systems. While one usually
gets con�dence in a symmetric-key ciphering scheme only after a thorough crypt-
analysis period of several years, ensuring the soundness of the algorithm during
the design phase is also primordial. In particular, it is today desired that newly
proposed ciphers must have very strong security arguments regarding state-of-
the-art attacks. The most common security arguments put forward by designers



is the resistance of the cipher against di�erential and linear cryptanalysis, that
proved to be a very powerful tools to break many primitives.

The symmetric key cryptography community has now reached a quite good
experience in designing good permutations for which it is possible to provide
such arguments. The current NIST block cipher standard AES [8] bene�ts from
very simple yet powerful proofs on the minimal number of active Sboxes in a
di�erential path (active/inactive Sbox refers to an Sbox containing/not contain-
ing a di�erence): it is very simple to prove that any di�erential path for AES
will contain at least 25 active Sboxes over 4 rounds. These proofs are actually
generic enough to be applied to other matrix sizes than the AES. From the min-
imal number of active Sboxes and the best di�erential transition through the
Sbox, one directly deduces an upper bound on the probability of a di�erential
path.

However, these AES security arguments only hold in the classical single-key
security model in opposition to the related-key security model where the attacker
is allowed to insert di�erences not only in the plaintext/ciphertext, but also in
the key input of the block cipher. The related-key attacks are much harder to
protect against, and many ciphers eventually got broken in this scenario. Even
AES-192 and AES-256, respectively the 192-bit and 256-bit key versions of
AES, were recently shown to be weak in this model [2, 3] (and possible patches
of the key schedule were proposed in [18, 7]).

Matsui [15] was the �rst to present an algorithm that searches for the best
possible di�erential characteristics, and showed the soundness of such a strategy
by applying it to the previous block cipher standard DES. Based on his work, we
have recently seen the emergence of much more e�cient computer assisted tools
that can even work for the related-key model [4, 5, 17, 9, 22] (unfortunately, they
were introduced too late to avoid the issues on AES-192 and AES-256). These
tools are generally smart exhaustive search through all the possible di�erential
paths. As such, their e�ciency is quite dependent on the parameters of the cipher
analysed. This can be considered a drawback and while analysing AES-128 is
de�nitely doable, reaching AES-256 is much harder and using a 8 × 8 matrix
as internal state would probably render these strategies impossible to apply in
practice. A second drawback is that one has to trust the implementation that
has been utilized. The tool will output the best possible di�erential path that
it found and because it was programmed to search exhaustively among all the
candidates, we conclude that it is the best possible di�erential path. However,
the mere knowledge of the best di�erential path found by the tool is not su�cient
to be fully convinced, and one would have to review the entire code. Finally, the
last drawback, and probably the most important, is that these tools don't tell
us anything about how to design a good block cipher and in particular its key
schedule component. No really meaningful information is output that can help
the designers to understand the interactions going on between the key schedule
part and the internal state part.

The problem of designing a good (i.e. secure and e�cient) key schedule is
actually very important and can also serve to incorporate tweak inputs in a block



cipher [14]. Yet, it remains a di�cult challenge for the designers as of today and
no general construction has so far emerged as being particularly good. The clas-
sical strategy is to build an e�cient key schedule function quite di�erent from the
internal state round function, in a hope that it will be di�cult for the attacker to
arrange good interactions between the key state and the internal cipher state (as
for example in AES or in the PRESENT block cipher [6]). However, the obvious
drawback of this strategy is that while it makes things hard for the cryptan-
alyst, it also makes it harder for anyone to prove or to get a good con�dence
in the security of the construction. Some primitives take a more security-based
approach, but they su�er from e�ciency loss. For example, the internal cipher
of the WHIRLPOOL hash function [1] has a strong key schedule function that is
almost the same as the internal state round function. This e�ectively ensures
a good security in the related-key scenario, but basically doubles the number
of computations required. On the other extreme, LED block cipher [10] has no
key schedule at all and can trivially adapt the simple AES single-key security
proofs to the related-key scenario, but at the cost of a signi�cant increase in the
number of rounds.

Our contributions. In this article, we provide the �rst human-readable proof
on the minimal number of active Sboxes for 1/2/3/4 rounds of AES-128 in the
related-key model, without any external computational help. Our bounds are
tight regarding truncated di�erences.

Apart from the extra con�dence that our proof provides to the AES-128
key schedule (as the current proofs on AES-128 were produced with search
tools), we believe our work is a new step towards helping future designers to
create e�cient and secure key schedule algorithms. It provides new insight on
the important and complex interactions between the key schedule state and the
internal state in a AES-like cipher. As example of this new insight, leveraging our
proofs, we also propose a new fully linear key schedule for AES-like function that
is much faster than AES-128's key schedule (it is basically composed of only
a simple permutation on the byte positions) and that guaranties more actives
Sboxes. The holy grail would be to generate an e�cient key schedule algorithm
for which the security against related-key attacks can be proven in a simple and
generic way (i.e. for any parameters of the cipher).

We note that this is the �rst proof of this kind, as to the best of our knowl-
edge all ad-hoc block ciphers that can prove resistance to related-key di�erential
attacks used computer-aided proofs [21, 18, 13, 11, 12] or non-e�cient construc-
tions [1, 10, 7, 16].

In short, our article will be devoted to proving the following without any
external computational help: any non-null related-key di�erential path for 1, 2,
3 and 4 consecutive rounds of AES-128 contains at least 0, 1, 3 and 9 active
Sboxes respectively.



2 Description of AES-128

The AES-128 cipher takes as input a 128-bit plaintext and transforms it using
a 128-bit key to a produce a 128-bit ciphertext. The cipher is composed of 10
successive applications of a round function, and we denote by Si, S

′
i the internal

input, output states of the round function, and by Ki the internal state of the
key schedule at the i-th round. Each state can be viewed as a 4-by-4 array of
bytes.
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Fig. 1. One AES-128 round.

The AES-128 round is depicted in Figure 1. At round i, AddRoundKey
(AK) is performed to xor the previous output state S′i−1 with the round key Ki,
to form input state Si. This is transformed by the round function to produce
output state S′i. The round function �rst performs SubBytes (SB), which nonlin-
early transforms each byte of the internal state by the AES Sbox. Then it does
ShiftRow (SR), which shifts row r of the internal state by (r − 1)-bytes to the
left. Finally, MixColumn (MC) is applied, where each column is mixed through
multiplication by an MDS matrix. The round key Ki is updated by a key sched-
ule layer to form the next round key Ki+1. Please note that the MixColumn
operation is omitted in the tenth round of AES-128 and a �nal round key is
xored to produce the ciphertext.

↑S

Fig. 2. The AES-128 key schedule
(omitting the round constant addition).
The top state represents Ki−1 and the
bottom state represents Ki.

The AES-128 key schedule func-
tion KS is given in Figure 2. The
key schedule internal state is a 4-by-
4 byte array which is initialized by
the 128-bit key. To compute the �rst
column of Ki, the fourth column of
Ki−1 is upward rotated by 1-byte, and
then transformed by the AES Sbox
and xored with round constant RCON,
before being xored to the �rst col-
umn of Ki−1. To compute subsequent
columns c = 2, 3, 4 of Ki, column



c of Ki−1 is xored to column c − 1
of Ki. Since round constant addition
with RCON does not a�ect di�erential
cryptanalysis, we omit it in our sub-
sequent analysis.

3 Preliminaries

3.1 Notations

In order to represent the various internal states and key states di�erences, we
use the notations given in Figure 3. The initial state (respectively �nal state)
of each round is denoted Sx (respectively S′x), where x is the round number
(1 ≤ x ≤ 4). The key state is denoted Kx.
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Fig. 3. Notations for 4 rounds of AES-128.

Moreover, as depicted in Figure 4, we denote by S|j the byte column j (start-
ing the counting from 1) of state S and similarly we use notation S\j to represent
the j-th top-left bottom-right byte diagonal (starting the counting from 1) of
state S. More formally, for a state S, if one denotes Si,j the byte located at row
i and column j (starting the counting from 1), S|j represents the four bytes Si,j

with i ∈ {1, 2, 3, 4}. Then, for the diagonal, we have S\1 = {S1,1, S2,2, S3,3, S4,4},
S\2 = {S2,1, S3,2, S4,3, S1,4}, S\3 = {S3,1, S4,2, S1,3, S2,4} and S\4 = {S4,1, S1,2,
S2,3, S3,4}. We will use interchangeably column j or j-th column to denote S|j

(similarly diagonal j or j-th diagonal to denote S\j). Finally, in order to keep
the notations light and since we will only deal with di�erences and not the val-
ues, we will also use Sx, Kx, etc. to denote the di�erence on Sx, Kx, etc. Then,
|S| (respectively |S|i| and |S\i|) will stand for the number of active bytes in a
state S (respectively in a column |S|i| and diagonal |S\i|). A round x for which
|Sx| = |S′x| = 0 will be called a zero or non-active or empty round. A column
such that |S|i| = 4 is called a fully active column and in contrary if |S|i| = 0 we
call it a zero or non-active or empty column. We naturally extend this column
notation to diagonals.

3.2 Best possible related-key di�erential paths

Before we begin our analysis on the di�erential characteristics in AES-128,
we would like to exhibit an example of the best possible related-key truncated
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Fig. 4. Column/diagonal notations S|i and S\i.

di�erential paths for AES-128, so that the readers can get a glimpse of the
shape of such paths. This is done in Figure 5. We can observe that our example
of the best path on 4 rounds actually contains an example of the best path on 3
rounds, which in turns contains an example of the best path on 2 rounds, etc.

AK1
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SR MC AK2
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KS

SB
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SB

SR MC

best 1-round RK di�erential path

best 2-round RK di�erential path

best 3-round RK di�erential path

Fig. 5. Example of best possible 1/2/3/4-round related-key truncated di�erential paths
for AES-128. The black/white cells represent active/inactive bytes.

We emphasize that these characteristics are truncated, thus they don't con-
sider the actual value inside the active bytes. This might lead to non-valid can-
didates as instantiating these di�erences might be impossible (due to the con-
straints imposed by the Sbox di�erential transitions and by the coe�cients of the
MixColumns layer). It turns out that this is actually the case here: the 4-round
related-key path given in Figure 5 is impossible for AES-128. However, this
path would potentially become possible if another di�usion matrix or another
Sbox was utilised. Thus, these truncated di�erential paths tells a lot about the
structural security provided by the AES-128.

We summarise in Table 1 the bounds on the number of active Sboxes proven
by the computer-aided search tools [4, 17, 9] in the related-key model and we
compare them to our proven bounds. One can see that we achieve the same



bounds. In other words, our bounds are tight. For completeness, we also provide
the bounds proven by computer-aided search tools when the truncated di�er-
ences must be instantiated to actual di�erences.

Rounds 1 2 3 4

computer-aided bounds [4, 9]
0 1 5 13

(non-truncated di�erences)

computed-aided bounds [4, 17, 9]
0 1 3 9

(truncated di�erences)

our bounds
0 1 3 9

(truncated di�erences)

Table 1. Summary of the proven bounds on the number of active Sboxes in a
related-key di�erential path for several rounds of AES-128. While previous works used
computer-aided search, we obtained our bounds without any computation help.



3.3 Key schedule patterns

Studying the related-key security of AES-128 regarding di�erential cryptanaly-
sis will of course rely a lot on analysing how the truncated di�erences can spread
through the key schedule. In Figure 6, we provide the truncated di�erential prop-
agation of a single active byte, in both forward direction (key schedule function
KS) and backward direction (inverse of the key schedule function KS−1). One
can see that there are four di�erent patterns obtained, depending on which col-
umn belongs the active byte in the starting key state Kx. All these patterns are
invariant by rotation along the columns, so one directly obtains all the single
active byte-induced patterns from this �gure.

KS−1 KS

KS−1 KS

KS−1 KS

KS−1 KS

Kx−1 Kx Kx+1

Fig. 6. Backward/forward truncated di�erential transitions through the AES-128 key
schedule when only a single byte is active in Kx. All these patterns are invariant by
rotation along the columns. The black/white cells represent active/inactive bytes.

As the analysis depends heavily on the propagation (especially in the back-
ward direction) of the active bytes through the key states, in Figure 7 we provide
the detailed truncated di�erential propagation of a singe active column, in both
forward and backward direction. One can trace the propagation of each active
cells in Kx through the same shade pattern. The white cells represent inactive
bytes, while the gray cells can be active or inactive depending on the choice of
active cells in Kx.

We emphasize that all these truncated di�erential transitions will happen
with probability 1 (except for the bytes depicted in gray in Figure 7). This
�gure will be extensively referred to in our proof, as it will allow us to extract
some properties on the truncated di�erential patterns when studying the various
cases.

3.4 Preliminary lemmas

Consecutive empty rounds. We �rst note that since we force a di�erence to
be present in the key states, it is obviously impossible to have two consecutive
empty rounds.
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Fig. 7. Backward and forward truncated di�erential transitions through the AES-128
key schedule when only one column is active in Kx. The propagation of each active cells
in Kx can be traced using the same shade pattern. The white cells represent inactive
bytes, while the gray cells can be either active or inactive.

Lemma 1. It is impossible to have two consecutive empty rounds when a dif-
ference is inserted in the key.

Proof. Assume that |Sx| = |Sx−1| = 0. It implies that |Kx| = 0 which is impos-
sible since every subkey must contain a di�erence (the AES-128 key schedule is
a permutation). ut

Adjacent key-state bound. We simply state here a simple bound due to the
bitwise XOR operation during the key addition phase of an AES-128 round.

Lemma 2. For any round x, we have |Sx| ≤ |S′x−1| + |Kx| , but also |Kx| ≤
|Sx|+ |S′x−1| and |S′x−1| ≤ |Kx|+ |Sx|.

Proof. Since XOR is a bitwise operation, and since Sx = Kx ⊕ S′x−1, we have
that any active byte in Sx must necessarily come from an active byte in Kx

or in S′x−1 (or both) at the same byte position. Thus, we directly deduce that
|Sx| ≤ |S′x−1|+ |Kx| and the reasoning is identical for the two other inequalities.

ut

We remark that this lemma also holds if we take any column or diagonal sep-

arately. For example |K |ix | ≤ |S|ix | + |S′|ix−1| or |K
\i
x | ≤ |S\ix | + |S′\ix−1| for any

i.



MixColumns di�usion bound. We state here the simple branching number
of the matrix underlying the MixColumns di�usion layer of the AES-128 round.

Lemma 3. For any round x, if a diagonal S
\i
x is active, then we have |S\ix | +

|S′|ix | ≥ 5.

Proof. Immediate since the branching number of the matrix underlying the
MixColumns layer is equal to 5. ut

Column sum bound. We state here the relation between a subkey and two
consecutive internal states columns/diagonals, due to the branching number of
the AES-128 di�usion matrix. This lemma will be useful as it will give us a
large bound on the number of active Sboxes given a certain subkeys truncated
di�erential characteristic.

Lemma 4. For any round x, we have |S\ix−1| + |S
|i
x | ≥ 5 − |K |ix | if |S′|ix−1| 6= 0.

Otherwise, we have |S\ix−1| = 0 and |S|ix | = |K |ix |.

Proof. First, if |S′|ix−1| = 0, we trivially deduce that |S\ix−1| = 0 by inverting

the AES-128 round function. Moreover, since there is no active byte in S
′|i
x−1,

the active/inactive bytes pattern of S
|i
x and K

|i
x are exactly the same and thus

|S|ix | = |K |ix |.
If |S′|ix−1| 6= 0, then the AES-128 di�usion matrix guaranties that |S\ix−1| ≥

5− |S′|ix−1|. Thus, |S
\i
x−1|+ |S

|i
x | ≥ 5+ |S|ix | − |S′|ix−1| and from the column version

of Lemma 2 we deduce that |S\ix−1|+ |S
|i
x | ≥ 5− |K |ix |. ut

Di�usion in the key schedule. We give here a few useful lemmas regarding
the di�usion of the AES-128 key schedule in the forward and backward direction.

Lemma 5. For any round x, if Kx has only a single active column, then |Kx+1| ≥
2 · |Kx|, |Kx−1| ≥ 2 · |Kx| and |Kx−2| ≥ 2 · |Kx|. Moreover, at least two columns
of Kx+1, Kx−1 and Kx−2 will contain exactly |Kx| active bytes.

Proof. This can directly be observed from Figure 7 by considering di�erent com-
bination of the active column. ut
Lemma 6. For any active row of Kx, if the rightmost active byte is in column
c, then for the same row in Kx+c−4, the byte in the 4th column will be active.

Proof. One can observe from Figure 2 that the rightmost active byte will prop-
agate (in the backward direction) one column to the right (unless it is already
on the 4th column) without fail. Thus for any row with active byte, the right-
most active byte will propagate to the 4th column within 3 inverse key schedule
function. ut
Corollary 1. For any four consecutive rounds x to x+ 3, if Kx+3 has k active

rows, then
∑x+3

i=x |K
|4
i | ≥ k.

Proof. A direct consequence of Lemma 6. ut



Internal empty round bound. The following lemma captures the intuition
that if there is an empty round at some point in the truncated di�erential path,
then many Sboxes will be active in the previous and next round.

Lemma 7. For any empty round x + 1 (i.e. |Sx+1| = 0), we have that |Sx| +
|Sx+2| ≥ 6.

Proof. Suppose �rst that Kx+1 contains only a single active column. From
Lemma 5, one has that |Kx+2| ≥ 2 ∗ |Kx+1|. Then, since |Sx+1| = |S′x+1| = 0,
we have

|Sx|+ |Sx+2| = |Sx|+ |Sx+1|+ |S′x+1|+ |Sx+2|
≥ |Sx|+ |Sx+1|+ |Kx+2| (Lemma 2)

≥ 5− |Kx+1|+ |Kx+2| (Lemma 4)

≥ 5 + |Kx+1| (|Kx+2| ≥ 2 ∗ |Kx+1|)
≥ 6 (|Kx| 6= 0 for all x)

Suppose now that Kx+1 contains more than a single active column. Thus,

there must be a column u of Kx+1 such that |K |ux+1| > 0 and a column v > 1

of Kx+1 such that |K |vx+1| > 0. Since the round x + 1 is empty, we get that
the active/inactive bytes pattern between |S′x| and |Kx+1| are exactly the same
(similarly, Sx+2 and Kx+2 also have the same pattern). Thus, there must be

a column u of S′x such that |S′|ux | > 0 and a column v > 1 of S′x such that

|S′|vx | > 0.

|Sx|+ |Sx+2| = |Sx|+ |Kx+2| (Sx+2 and Kx+2 have the same pattern)

≥ |S\ux |+ |S\vx |+ |Kx+2| (|Sx| =
∑

i |S
\i
x |)

≥ 1 + |S\vx |+ |Kx+2| (|S\ux | 6= 0)

≥ 6− |S′|vx |+ |Kx+2| (Lemma 3)

= 6− |K |vx+1|+ |Kx+2| (S′x and Kx+1 have the same pattern)

≥ 6− |K |vx+1|+ |K
|v−1
x+2 |+ |K

|v
x+2| (|Kx+2| =

∑
i |K

|i
x+2|)

≥ 6

The last inequality comes from the observation that |K |v−1x+2 |+ |K
|v
x+2| ≥ |K

|v
x+1|.

Indeed, since v > 1 the AES-128 key schedule tells us thatK
|v−1
x+2 ⊕K

|v
x+2 = K

|v
x+1

and the inequality is obtained by a reasoning on the XOR operation just like for
Lemma 2. ut

From Lemma 7, one can draw some conclusions about the round key Kx+1

when the bound is tight.

Corollary 2. For any empty round x+1 (i.e. |Sx+1| = 0), if |Sx|+ |Sx+2| = 6,
then the round key Kx+1 either has



• exactly 1 active byte in the 3rd column,

• or exactly 2 fully active columns. In addition,
∑x+2

i=x−1 |K
|4
i | ≥ 4.

Proof. If |Sx| + |Sx+2| = 6, then all the inequalities in the proof of Lemma 7
must be tight. Hence, we reconsider the proof but with equalities and observe
their implication.

Suppose �rst that Kx+1 contains only a single active column. From the 5th
equality, we see that |Kx+1| = 1, and the 4th equality implies that the active
byte is in the 3rd column of Kx+1, else |Kx+2| > 2 ∗ |Kx+1|.

Suppose now that Kx+1 contains more than a single active column. The 2nd
equality implies that Kx+1 contains at most 2 active columns, column u and

v. The 3rd equality implies |S\ux | = 1, which means K
|u
x+1 is fully active. The

6th equality implies that Kx+2 contains at most 2 active columns, column v− 1

and v and from the last equality we see that |K |v−1x+2 | + |K
|v
x+2| = |K

|v
x+1|. Now

suppose v < 4, from Figure 2, we see that K
|u
x+1 will propagate to K

|u
x+2 and

is fully active. Hence from the previous equation, we must have u = v − 1 and

|K |vx+1| = 4. On the other hand, if v = 4, then |K |1x+2| is empty only if u = 1

and |K |vx+1| = 4. Therefore, Kx+1 has 2 fully active columns and by Lemma 6,∑x+2
i=x−1 |K

|4
i | ≥ 4. ut

Impossible internal states. In general, identifying the minimum number of
active bytes in the internal states in the related-key scenario is much harder than
the single-key scenario. Here we present a lemma that helps us to �lter several
cases where the internal states have little active bytes as such internal states are
impossible.

Lemma 8. If |Sx| ≤ 1 and |Sx+1| ≤ 1, then |Sx+2| ≤ 3 is impossible.

Proof. If |Sx+1| = 0, by Lemma 7, |Sx| + |Sx+2| ≥ 6, hence |Sx+2| ≤ 3 is
impossible. If |Sx| = 0, by Lemma 1, |Sx+1| 6= 0, this implies that Kx+1 is single
active byte while S′x+1 has a fully active column. Since Sx+2 = S′x+1 ⊕ Kx+2,
one can observe from Figure 6 that |Sx+2| ≤ 3 is impossible.

Finally for the case |Sx| = |Sx+1| = 1, since Sx is a single active byte, then
S′x is a single fully active column. Moreover, as Sx+1 is a single active byte,
Kx+1 = S′x ⊕ Sx+1 must necessarily be either:

• a single fully active column,
• or 3 active bytes all located in the same column,
• or a single fully active column with an extra active byte located in another
column.

For the �rst 2 cases, Kx+2 has at least 2 active columns of 4 (or resp. 3) active
bytes. Since S′x+1 is a single fully active column, |Sx+2| ≤ 3 is impossible. For
the last case, if the 3rd column is fully active, Kx+2 is expected to have 2 fully
active columns in the next round key, while the extra active byte will propagate



and may cancel some active bytes in one row4, but always adds an active byte
in the 2nd column. Since Sx+1 cancels at most 1 column of active bytes, there
are at least 4 remaining active bytes (3 in a column and 1 in another column).
If the fully active column is in the other columns, there will be more fully active
columns and the similar argument holds. ut

Round key bound under special internal state. We give a few useful
lemmas to better understand the lower bound of the number of active Sboxes in
the round keys under some speci�c internal state.

Lemma 9. For any four consecutive rounds x to x + 3, if |Sx+2| = 1 and

|Sx+3| = 0, then
∑x+3

i=x |K
|4
i | ≥ 4. In addition, Kx+1 have at least 2 fully ac-

tive columns.

Proof. Since Sx+2 is a single active byte and Sx+3 is an empty state, thenKx+3 =

S′x+2 is a single fully active column. By Corollary 1, we have
∑x+3

i=x |K
|4
i | ≥ 4.

By Lemma 5, Kx+1 has at least 2 fully active columns. ut

Lemma 10. For any four consecutive rounds x to x + 3, if |Sx+2| = 2 and

|Sx+3| = 0, then
∑x+3

i=x |K
|4
i | ≥ 4. Except for a special case where

∑x+3
i=x |K

|4
i | =

3, then Kx+1 will have at least 2 active columns of 3 active bytes.

Proof. Since Sx+2 has 2 active bytes, and Sx+3 is an empty state, then Kx+3 =
S′x+2 must necessarily be either:
• a single fully active column,
• or 3 active bytes all located in the same column,
• or 2 fully active columns.

For the 2nd case, by Lemma 5, Kx+1 has at least 2 active columns of 3 active

bytes. For the other 2 cases, by Corollary 1, we have
∑x+3

i=x |K
|4
i | ≥ 4. ut

Lemma 11. For any four consecutive rounds x to x+3, if |Sx+2| = |Sx+3| = 1,

then
∑x+3

i=x |K
|4
i | ≥ 4, except for a special case where

∑x+3
i=x |K

|4
i | = 3, then Kx+1

will have at least 2 active columns of 3 active bytes.

Proof. Since Sx+2 is a single active byte, then S′x+2 is a single fully active column.
Moreover, as Sx+3 is a single active byte, Kx+3 = S′x+2⊕Sx+3 must necessarily
be either:
• a single fully active column,
• or 3 active bytes all located in the same column,
• or a single fully active column with an extra active byte located somewhere
else.

For the 2nd case, by Lemma 5, Kx+1 has at least 2 active columns of 3 active

bytes. For the other 2 cases, by Corollary 1, we have
∑x+3

i=x |K
|4
i | ≥ 4. ut

4 plus a single byte in another row if the extra active byte is in the 4th column, but
adds two active bytes in the 1st and 2nd columns, thus it is still impossible to reduce
the number of active bytes in Sx+2 to less than 4.



4 Related-key security proof for 1/2/3 rounds of AES-128

Theorem 1. Any non-null related-key di�erential path for 1, 2 and 3 consecu-
tive rounds of AES-128 contains at least 0, 1, and 3 active Sboxes respectively.

The best related key di�erential paths for 1 and 2 rounds of AES-128
have 0 and 1 active Sboxes respectively and this is trivial to prove. For a single
round, one simply inserts the same di�erence in the key and in the plaintext to
get a zero di�erence coming the Sbox layer. For two rounds, Lemma 1 tells us
that it is impossible to have two consecutive non-active rounds, and thus there
must be at least one active Sbox in any of the two rounds. Thus, |S1| + |S2| +
|K |41 |+ |K

|4
2 | ≥ |S1|+ |S2| ≥ 1. The best 2-round path is very easy to build: force

the top-left Sbox in S1 to be the only active one and choose K2 to have only its
�rst column to be fully active, so as to fully correct the di�erence coming from
|S′1| and ensure no active Sbox in S2 (|S1| = 1 and |S2| = 0). Inverting the key
schedule from K2, one can check that K1 will only have its two �rst columns

active. Therefore, |K |41 | = |K
|4
2 | = 0.

For 3 rounds of AES-128, the computer-aided search tools have shown that
the best related-key di�erential paths contain 3 active Sboxes. Proving that it
is impossible to obtain less than 3 active Sboxes in three consecutive AES-128
rounds is not so complicated once the Lemmas from Section 3.4 introduced. First,
one can observe that in order to have less than 3 active Sboxes, the three rounds
obviously can't be all active. Moreover, Lemma 1 tells us that it is impossible
to have two consecutive non-active rounds. Thus, we are left with �ve cases,
{|S1| = 0, |S2| = 1, |S3| = 1}, {|S1| = 1, |S2| = 0, |S3| = 1}, {|S1| = 1, |S2| =
1, |S3| = 0}, {|S1| = 0, |S2| = 2, |S3| = 0} and {|S1| = 0, |S2| = 1, |S3| = 0}.
Conveniently with Lemma 8, we are left with one case to be analysed, that is
{|S1| = 0, |S2| = 2, |S3| = 0}.

For this special case {|S1| = 0, |S2| = 2, |S3| = 0}, one can observe that
K2 = S2 and K3 = S′2 since S1 and S3 are both empty rounds. Since |S2| = 2,
K3 must necessarily be either:

• a single fully active column,

• or 3 active bytes all located in the same column,

• or 2 fully active columns.

However, one can see from Figure 6 that the key state K2 with 2 active bytes
will not propagate to any of the 3 patterns. Hence, this case is also not possible.

All these bounds are tight, as can be seen in Figure 5 where an example of
best di�erential paths is given. One can note that all the best possible related-
key di�erential paths on 1/2/3 rounds of AES-128 do not contain any active
Sbox in the key schedule. This will be di�erent for the 4-round case, which will
render the analysis much more complex.



5 Related-key security proof for 4 rounds of AES-128

In this section, we would like to bound the minimal number of active Sboxes
NSB for four consecutive rounds of the AES-128, in the related-key model.
More precisely, we will prove that at least 9 will be active for 4 consecutive
rounds of AES-128 in the related-key model, matching the bound found by the
computer-aided searches.

Theorem 2. Any non-null related-key di�erential path for 4 consecutive rounds
of AES-128 contains at least 9 active Sboxes.

5.1 Structure of the proof

In the case where no di�erence is inserted in the key input, the classical AES
proof can be applied and one can easily show that NSB ≥ 25. Therefore, we
would like to prove NSB ≥ 9 when a non-zero di�erence is inserted in the key
input (since the AES-128 key schedule is a bijection, we will have |Kx| 6= 0 for
all x).

We note that the initial state S′0, the �nal state S5, and the �nal key K5 do
not need to be considered in our proof, since no Sbox will be applied to any of
these states. Thus,

NSB =

4∑
x=1

|Sx|+ |K |4x |.

The proof will be decomposed in two steps. First we will show that one always
has

∑4
x=1 |Sx| ≥ 5 (see Section 5.2). In addition, in the event that the bound is

tight, it is necessary that
∑4

x=1 |K
|4
x | ≥ 4. This implies that for four consecutive

rounds, we have either NSB ≥ 9 or
∑4

x=1 |Sx| ≥ 6. For the latter case, NSB ≥ 9

when
∑4

x=1 |K
|4
x | ≥ 3. Secondly, we will prove that if

∑4
x=1 |K

|4
x | < 3, then

necessarily NSB ≥ 9 (see Section 5.3). From there we directly conclude that
NSB ≥ 9. We provide a graphical depiction of the overall structure of the proof
in Figure 8.

5.2 Internal state

In this section, we will show that there are always at least 5 active Sboxes
in the internal state of 4 consecutive rounds of AES-128, i.e.

∑4
x=1 |Sx| ≥ 5

(and in the event where
∑4

x=1 |Sx| = 5, we will show that
∑4

x=1 |K
|4
x | ≥ 4).

Lemma 7 directly tells us that when the second or third rounds are empty, then∑4
x=1 |Sx| ≥ 6. Thus, we only need to study the cases where both the second and

third rounds are non-empty (i.e. |S2| 6= 0 and |S3| 6= 0), and we will prove that all

the con�gurations with
∑4

x=1 |Sx| < 5 are impossible. As there are several cases
and subcases of internal state, we provide a graphical depiction of the overview
of this section in Figure 9.



Internal State Key Schedule

∑
|Sx| ≥ 5

Section 5.2,
Figure 9

∑
|K|4

x | ≥ 3
∑
|K|4

x | < 3

∑
|Sx| = 5

∑
|Sx| ≥ 6

∑
|K|4

x | ≥ 4

Lemma 9, 10, 11

NSB ≥ 9

Section 5.3,
Figure 11

Fig. 8. General structure of the proof of Theorem 2. A thick arrow represents a proven
implication, a thin arrow represents a direct implication and hashed arrows represent
subcases that are split.

Case |S1| = 0. Since S1 is an empty round, K2 and S2 will be equal.

• Let's �rst assume that |S2| = 1, by Lemma 8, |S3| ≤ 3 is impossible. For

|S3| ≥ 5, we have achieved
∑4

x=1 |Sx| ≥ 6. Lastly for |S3| = 4, since S2 = K2

with a single active byte, S′2 is a fully active column, the only possible case
for |S3| = 4 is when the single active byte is in the 3rd column of K2 (see
Figure 6) and S3 has a column of 3 active bytes and a single active byte in a
di�erent column. This implies that S′3 has at least 2 fully active columns. On
the other hand, K4 has at most 6 active bytes as K3 only has single active
byte in the same row of the 3rd and 4th column. Therefore, S4 is active and
we have

∑4
x=1 |Sx| ≥ 6.

• Let's now assume that |S2| = 2, we show that it is always
∑
|Sx| ≥ 6. We

denote a and b respectively the �rst and second active bytes of S2 = K2.
If a and b are located in the same diagonal, then they will be involved
in the same MixColumns function in the second round, in which case we
obtain in |S′2| either 3 or 4 active bytes located in the same column (due to
the MixColumns di�usion property). Otherwise, a and b will evolve in two
di�erent MixColumns functions and |S′2| will be composed of two fully active
columns.



In
te
rn
a
l
S
ta
te

(∗
,0
,∗
,∗
)
o
r
(∗
,∗
,0
,∗
)

(∗
,≥

1
,≥

1
,∗
)

L
em

m
a
7

(0
,≥

1
,≥

1
,∗
)

(≥
1
,≥

1
,≥

1
,0
)

(≥
1
,≥

1
,≥

1
,≥

1
)

L
em

m
a
8
,
1
1

(0
,1
,≥

1
,∗
)

(0
,2
,≥

1
,∗
)

(0
,3
,≥

1
,∗
)

(0
,≥

4
,≥

1
,∗
)

(0
,3
,[
≥

2
])

(≥
1
,≥

1
,2
,0
)

(≥
1
,≥

1
,1
,0
)

(≥
1
,≥

1
,≥

3
,0
)

L
em

m
a
9

(≥
2
,≥

2
,1
,0
)

∑ |S
x
|≥

5

L
em

m
a
2
,
5

L
em

m
a
8

∑ |S
x
|≥

6

L
em

m
a
8
,

F
ig
u
re

7

F
ig
u
re
6
,
1
0

L
em

m
a
8

Fig. 9. General structure of the proof in Section 5.2 for the internal state part. A thick
arrow represents a proven implication, hashed arrows represent subcases that are split
and a square parenthesis represents the sum of two states. A hashed box denotes the
fact that it is subdivided into two subcases�

∑
|Sx| = 5 and

∑
|Sx| ≥ 6.



• if |S′2| = 3 (3 active bytes in the same column) or if |S′2| = 4 (one fully
active column). As in this scenario a and b must be in the same diagonal
in S2 = K2, then it is one of the 6 possible cases (up to row rotations)
from Figure 10, one can see that |S3| ≥ 4 except for the last case where
|S3| can have 3 active bytes, of which 2 active bytes are in the same row.
However, in that case, after the MixColumns operation, S′3 will have at
least a fully active column but K4 will have an empty row, hence S4 is
not empty. Therefore, we always have

∑4
x=1 |Sx| ≥ 6.

KS

KS

KS

Kx Kx+1

KS

KS

KS

Kx Kx+1

Fig. 10. Key schedule patterns for two active bytes located in the same diagonal.

• if |S′2| = 8 (two fully active columns). One can see from the key schedule
patterns in Figure 6 that most of the placements of a and b in K2 will
lead to at most two active rows in K3. If that is the case, then for the two
fully active columns in S′2, at best two bytes per column can be erased
with K3 and we directly have that |S3| ≥ 4. For the placements leading
to three active rows in K3 (it can happen in some of the cases where at
least one of a and b is located in the fourth column), one can see that
at least one row will be fully active. Thus, two bytes from the two fully
active columns in S′2 won't be cancelled and at least two active bytes
outside these columns will be created in S3. We deduce that |S3| ≥ 4.
For the placements of a and b leading to four active rows in K3 (it
can happen in some of the cases where both a and b are located in the
fourth column), one can see that at least two rows will be fully active
and thus this create at least 4 active bytes in S3. We thus always have∑4

x=1 |Sx| ≥ 6.

• Let's assume that |S2| = 3. For at most 5 active Sboxes, we have three cases
{|S1| = 0, |S2| = 3, |S3| = 1, |S4| = 0}, {|S1| = 0, |S2| = 3, |S3| = 1, |S4| = 1}
and {|S1| = 0, |S2| = 3, |S3| = 2, |S4| = 0} since |S3| 6= 0. Note that for all
3 cases, K2 = S2. By Lemma 9, the �rst case is impossible as K2 should
have at least 2 fully active columns which contradicts with |S2| = 3. For the
latter two cases with 5 active Sboxes, by Lemma 10 and 11 we have either∑4

x=1 |K
|4
x | ≥ 4, or K2 has at least 2 active columns of 3 active bytes which

contradicts with |S2| = 3.



• Finally, let's assume that |S2| = 4, the only possible tight
∑4

x=1 |Sx| = 5
case is {|S1| = 0, |S2| = 4, |S3| = 1, |S4| = 0}. By Lemma 9, we directly get∑4

x=1 |K
|4
x | ≥ 4 and we are done.

Note that cases where |S2| ≥ 5 can directly be discarded since |S3| 6= 0, so we

always have
∑4

x=1 |Sx| ≥ 6.

Case |S1| 6= 0 and |S4| = 0. Since S4 is an empty round, K4 and S′3 will be
equal.

• Let's �rst assume that |S3| = 1. After the application of theMixColumns func-

tion, S′3 = K4 will be a single fully active column. By Lemma 5, both
K2 and K3 have at least 2 fully active columns. By Lemma 2, we have
|K3| ≤ |S3| + |S′2|. If |S2| = 1, then |S′2| = 4 and the inequality does not
hold. Thus, we must have |S2| ≥ 2. By the same lemma, if |S1| = 1, then

|K2| ≤ |S2|+ |S′1| will imply that |S2| ≥ 4 and
∑4

x=1 |Sx| ≥ 6. Finally for the
case where |S1| ≥ 2 and |S2| ≥ 2, since we assumed |S3| = 1 and |S4| = 0,

by Lemma 9,
∑4

x=1 |K
|4
x | ≥ 4 and NSB ≥ 9.

• Let's now assume that |S3| = 2. The only possible con�guration for
∑4

x=1 |Sx| <
5 is {|S1| = 1, |S2| = 1, |S3| = 2, |S4| = 0}, which is impossible by Lemma 8.

Hence, we have
∑4

x=1 |Sx| ≥ 5. Since we have |S3| = 2 and |S4| = 0, by

Lemma 10, we have either
∑4

x=1 |K
|4
x | ≥ 4, or K2 has at least 2 active

columns of 3 active bytes. For the latter case, suppose that |S1| = 1, then S′1
is a fully active column and S2 = S′1 ⊕K2 has at least one active column of

3 active bytes, hence
∑4

x=1 |Sx| ≥ 1+3+2 = 6. Suppose |S1| = 2, then S′1 is
either an active column (same conclusion as before) or 2 fully active columns,

in which case S2 at least 2 active bytes, hence
∑4

x=1 |Sx| ≥ 2 + 2 + 2 = 6.

For |S1| ≥ 3, we immediately have
∑4

x=1 |Sx| ≥ 3 + 1 + 2 = 6.
• Finally, let's assume that |S3| = 3, the only possible tight case is {|S1| =
1, |S2| = 1, |S3| = 3, |S4| = 0}. By Lemma 8, this is impossible.

Note that cases where |S3| ≥ 4 can directly be discarded since |S1| 6= 0 and

|S2| 6= 0, so we always have
∑4

x=1 |Sx| ≥ 6.

Case |S1| 6= 0 and |S4| 6= 0. In this subpart, we study the event where all
internal states are active (|Si| ≥ 1 for all 1 ≤ i ≤ 4). There are �ve cases where∑4

x=1 |Sx| ≤ 5, namely {|S1| = 1, |S2| = 1, |S3| = 1, |S4| = 1}, {|S1| = 1, |S2| =
1, |S3| = 1, |S4| = 2}, {|S1| = 1, |S2| = 1, |S3| = 2, |S4| = 1}, {|S1| = 1, |S2| =
2, |S3| = 1, |S4| = 1} and {|S1| = 2, |S2| = 1, |S3| = 1, |S4| = 1}. By Lemma 8,
the only case that is left possible is {|S1| = 1, |S2| = 2, |S3| = 1, |S4| = 1}. By
Lemma 11, either we are done or K2 has at least 2 active columns of 3 active
bytes. Since S′1 has exactly a fully active column, it is not possible for |S2| = 2.

Thus for all four states to be active,
∑4

x=1 |Sx| ≤ 5 is impossible and we have∑4
x=1 |Sx| ≥ 6.



5.3 Key schedule

In this section, we show that if
∑4

x=1 |K
|4
x | < 3, then necessarily NSB ≥ 9. In

Figure 11, we provide a graphical depiction of the overview of this section.

Before going on, we make the observation that the di�erence propagation of
four consecutive round keys is uniquely de�ned by their last columns. Precisely,
if we let the di�erential values in the last column of round keys K1,K2,K3,K4

be A,B,C,D, then we can solve for every column of all four round keys via the
AES-128 key schedule equation (see Section 2).

This is shown in Figure 12 where N represents A⊕B⊕C⊕D and A′, B′ and
C ′ represent the di�erential values of A, B and C after being rotated upward
and sent through the AES S-box (the truncated di�erence column patterns A′,
B′ and C ′ are just rotated versions of A, B and C respectively). A column with
several variables in them represents an XOR-sum. For example, the �rst column
of K1 can be computed as N ⊕A′ ⊕B′ ⊕ C ′.

This gives us useful information by splitting cases on A, B, C and D, because
they are the only key schedule columns that contribute to active S-boxes (the
Sbox is applied only to the last column in KS - see Figure 2). Since we are

considering
∑4

x=1 |K
|4
x | < 3, we look at the cases where there are 0, 1 or 2 active

bytes among the columns A, B, C and D.

Note that whenever we assume |S3| = 0 and by Lemma 7, |S2| + |S4| ≥ 6.
By Corollary 2, having a tight bound implies that K3 is either has

• exactly 1 active byte in the 3rd column,

• or exactly 2 fully active columns. In addition,
∑4

x=1 |K
|4
x | ≥ 4.

Since we are considering
∑4

x=1 |K
|4
x | < 3, we only need to check if K3 meets the

�rst description, else we conclude that the bound cannot be tight and we have
|S2|+ |S4| ≥ 7.

Zero active Sbox in key schedule. This case means that A, B, C and D all
have zero di�erence, which implies that the entire key schedule has zero active
bytes (see Figure 12). This contradicts our original assumption that a non-zero
di�erence is inserted in the key input of the cipher.

One active Sbox in key schedule, occurring in any of the columns

A, B, C and D. By studying Figure 12 (see also Table 2), we see that an
active byte in columns A,B,C or D contributes at most 1 active byte to every
column of the key schedule, except the �rst column of K1, K2 and K3 which
may contain 2 active bytes (propagated from active last column). Also, we can
see from Figure 12 that K2 contains at least 2 active bytes on the same row.

• Suppose |S1| = 0. Then S2 = K2 and hence it contains at least 2 active
bytes on the same row. Thus, S′2 contains at least two active columns u, v.
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Fig. 12. 4-round di�erence propagation of AES-128 key schedule.

Case K2 K3 K4

|A| = 1 1, 0, 1, 0 1, 1, 0, 0 1, 0, 0, 0

|B| = 1 2, 1, 1, 1 1, 0, 1, 0 1, 1, 0, 0

|C| = 1 2, 1, 0, 0 2, 1, 1, 1 1, 0, 1, 0

|D| = 1 1, 1, 0, 0 1, 0, 0, 0 1, 1, 1, 1

Table 2. Number of active bytes in every column of K2, K3, K4 when we have a single
active byte in A or B or C or D.

By Lemma 4, we have:

4∑
x=1

|Sx| ≥ |S2|+ |S3| ≥ (|S\u2 |+ |S
|u
3 |) + (|S\v2 |+ |S

|v
3 |)

≥ (5− |K |u3 |) + (5− |K |v3 |) ≥ 3 + 4 = 7,

because there is at most one column of weight 2 in K3 while the rest are at

most weight 1. This bound is tight only if |K |u3 | = 2, |K |v3 | = 1 and the other
2 columns to be empty. However there is no such K3, hence we have at least
8 active Sboxes in the main cipher together with 1 active Sbox in the key
schedule, which gives NSB ≥ 9 and we are done.

• Suppose |S1| 6= 0. If |S3| = 0, then by Lemma 7, we have |S2| + |S4| ≥ 6.
Since we do not have such K3 with a single active byte in the 3rd column,
|S2|+ |S4| ≥ 7 which implies

∑4
x=1 |Sx| ≥ 8 because |S1| 6= 0. These 8 active

Sboxes in the main cipher together with 1 active Sbox in the key schedule,
which gives NSB ≥ 9 and we are done. Otherwise, if |S3| 6= 0, we have at
least one active column u in S′1, one active column v in S′3 and note that K2

has at least 2 active columns. By Lemma 4, we have:

4∑
x=1

|Sx| ≥ (5−|K |u2 |)+min[(5−|K |w2 |), |K
|w
2 |)]+(5−|K |v4 |) ≥ 3+1+4 = 8,

because there are at most 2 active bytes in each column of K2 and at most
1 active byte in each column of K4. Thus we are done as before because we
have 8 active Sboxes in the main cipher.



Case K2 K3 K4

|A| = 2 2, 0, 2, 0 2, 2, 0, 0 2, 0, 0, 0

|B| = 2 n, 2, 2, 2 2, 0, 2, 0 2, 2, 0, 0

|C| = 2 n, 2, 0, 0 n, 2, 2, 2 2, 0, 2, 0

|D| = 2 2, 2, 0, 0 2, 0, 0, 0 2, 2, 2, 2

Table 3. Number of active bytes in every column of K2, K3, K4 when we have two
active bytes in A or B or C or D, where n is either 3 or 4.

Two active Sboxes in key schedule, occurring in one column of A, B,

C and D. By studying Figure 12 (see also Table 3), we can verify that if one of
the columns of A,B,C or D contains 2 active bytes, then there will be at least
two columns u, v in K2 and one column w in K4 with 2 active bytes. Hence by
Lemma 4, we have:

4∑
x=1

|Sx| ≥ (|S\u1 |+ |S
|u
2 |) + (|S\v1 |+ |S

|v
2 |) + (|S\w3 |+ |S

|w
4 |)

≥ min[(5− |K |u2 |), |K
|u
2 |)] + min[(5− |K |v2 |), |K

|v
2 |)] + min[(5− |K |w4 |), |K

|w
4 |)]

≥ 2 + 2 + 2 = 6,

Note that this inequality can be tight only if |S3| = 0, otherwise by Lemma 4,
the third term will be at least 3 and we get at least 7 active Sboxes in the main
cipher. Again, since no such K3 with a single active byte in the 3rd column,
there are at least 7 active Sboxes in the main cipher together with the 2 active
Sboxes in the key schedule, which gives NSB ≥ 9 and we are done.

Case

XOR-sum = 0

K2 K3 K4

|A| = |B| = 1 1, 1, 0, 1 0, 1, 1, 0 0, 1, 0, 0

|A| = |C| = 1 1, 1, 1, 0 1, 0, 1, 1 0, 0, 1, 0

|A| = |D| = 1 0, 1, 1, 0 0, 1, 0, 0 0, 1, 1, 1

|B| = |C| = 1 n, 2, 1, 1 1, 1, 0, 1 0, 1, 1, 0

|B| = |D| = 1 1, 0, 1, 1 0, 0, 1, 0 0, 0, 1, 1

|C| = |D| = 1 1, 2, 0, 0 1, 1, 1, 1 0, 1, 0, 1

Table 4. Number of active bytes in every column of K2, K3, K4 when we have a two
active bytes in A/B or A/C or A/D or B/C or B/D or C/D with XOR-sum = 0,
where n is either 0 or 1.



Two active Sboxes in key schedule, distributed among two columns of

A, B, C and D. We split the proof into two parts, on whether the two active
columns cancel each other.

• Suppose the two active columns have XOR-sum = 0. Then from Figure 12
(see also Table 4), we see that each column of K4 has at most one active
byte. If |S3| = 0, then by Lemma 7, we have |S2|+ |S4| ≥ 6. By Corollary 2,
the tight case implies that column B and D have to be active for K3 to meet
the �rst description. Since S′2 = K3 has 1 active byte, S2 has a fully active
diagonal. However, since K2 for this case has its 2nd column empty, S′1 is
non-empty. Therefore, there are at least 7 active Sboxes in the main cipher,
which together with the 2 active Sboxes in the key schedule gives NSB ≥ 9
and we are done. Otherwise S′3 has an active column u and by Lemma 4, we
have:

|S3|+ |S4| ≥ 5− |K |u4 | ≥ 4,

because each column of K4 has at most 1 active byte. We can also verify
from Figure 12 that K2 contains at least two active columns, which implies
|S1|+|S2| ≥ 2 by Lemma 4. Having this bound to be tight implies two things,
S1 is empty and K2 contains exactly two active columns of 1 active byte,
which can only be the case where columns A andD are active. Since S2 = K2

with 2 active bytes in the same row (as A = D), |S′2| = 8 while |K3| = 1

implies that |S3| ≥ 7. Lastly, when the bound is not tight,
∑4

x=1 |Sx| ≥
3+4 = 7 active Sboxes in the main cipher, which together with the 2 active
Sboxes in the key schedule gives NSB ≥ 9 and we are done.

• Suppose the two active columns have XOR-sum 6= 0. Then by studying
Figure 12, we can verify that every column of K4 has at most 2 active
bytes, and that K2 and K4 have at least 5 active columns between them.
Suppose |S3| = 0, then by Lemma 7, we have |S2|+ |S4| ≥ 6. Once again by
Corollary 2, the tight case is impossible as no K3 �ts the �rst description5.
With at least 7 active Sboxes in the main cipher, which together with the 2
active Sboxes in the key schedule gives NSB ≥ 9 and we are done. Otherwise
S′3 has an active column u and by Lemma 4, we have:

|S3|+ |S4| ≥ 5− |K |u4 | ≥ 3,

because each column of K4 has at most 2 active bytes. Besides this column,
there are at least 4 more active columns in K2 and K4, which by Lemma 4
ensures at least 4 more active Sboxes in the main cipher. Thus in total we
get at least 7 active Sboxes in the main cipher, which together with the 2
active Sboxes in the key schedule gives NSB ≥ 9 and we are done.

5 The case where column B and D are active may seem to �t the �rst description of
Corollary 2, but since XOR-sum 6= 0, the �rst column is active. Thus, it does not
meet the �rst description.



6 On designing better key schedules for AES-128

As an example of the insight that our proofs provide on the interplay between
the internal state function and the key schedule, we propose a new fully linear
key schedule that can be used to replace the one in AES-128. Our new key
schedule proposal is simple: it is basically a permutation on the key state byte
positions. More precisely, the key state update function will simply:

• rotate respectively by (1, 0, 0, 2) positions to the right the bytes located in
the (1, 2, 3, 4)-th row of the key state matrix
• rotate the entire key state matrix by one position down

In other words, our key schedule proposal simply applies the following per-
mutation on the bytes positions of the 4× 4 key state matrix:

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

 −→

11 15 3 7

12 0 4 8

1 5 9 13

2 6 10 14


Note that this key schedule is extremely e�cient when compared to the

original AES-128 key schedule. Not only it doesn't use any Sbox layer, but it
also doesn't use any XOR for di�usion. In particular, a byte permutation is very
well suited for hardware implementations at it merely consists in wiring, and
one can also hard-code the entire key for further e�ciency gain on the area used
to store the key bits.

Regarding security, even though we don't use any Sbox nor XOR in our key
schedule, we can actually prove more active Sboxes in the related-key model than
for AES-128 as shown in Table 5 (note that we only obtained lower bounds for
new key schedule, so the bounds might be even better than depicted in the table).
These lower bounds on the number of active Sboxes, especially the bounds for
the high number of rounds, were computed with computer-aided tools. However,
the design of the key schedule directly comes from an analysis of our proofs.

Rounds 1 2 3 4 5 6 7 8

AES-128 key schedule
0 1 3 9 11 13 15 21

(truncated di�erences)

our new key schedule
0 1 5 10 14 18 21 25

(truncated di�erences)

Table 5. Summary of the proven lower bounds on the number of active Sboxes in
a related-key di�erential path for several rounds of AES-128 with the key schedule
replaced with our candidate.



Our strategy to build that key schedule was to look at our proof for 3 rounds
(in order to start with a simple proof) and analyse what modi�cations in the
design could improve the minimal number of active Sboxes (only 3 in the case of
AES-128's key schedule). First, since no active Sbox will be involved in the key
schedule state for the best 3-round related-key di�erential paths on AES-128,
one could actually directly remove the Sbox layer in the key schedule without
impacting the bound. Secondly, by removing the XORs in the key update func-
tion, our goal was to reach a zero branching which will make the analysis simpler
(the tracking e�ort in the proof is reduced): the number of active bytes in the
key state always remains constant throughout the rounds.

We ended up with the key update function being simply a permutation on
the key byte positions (and not on the key bit positions themselves, as it would
make the security analysis very complex and software implementations very in-
e�cient). One can see from our proofs that a lot of complex cases arise during
the analysis because some di�erence introduced by a subkey can be corrected by
the next (forward) or previous (backward) subkey. The choice of the permuta-
tion was thus done with the following criteria in mind: we tried to minimise the
overlap between KS and MC◦SR◦SB and between KS−1 and SB−1 ◦SR−1 ◦MC−1.
This criterion actually makes a lot of sense, but was never taken in account in
previous key schedule designs.

Note that several permutations and di�erent choices than (1, 0, 0, 2) right
rotate verify this, but if the sum of the right rotate values is coprime with 4,
then a key byte would go through all 16 possible positions as the key schedule
iterates (which is a desirable design property). Finally, (1, 0, 0, 2) was the simplest
choice that follows these two criteria.

Proving in the related-key model at least 3 active Sboxes for 3 rounds is trivial
for this key schedule: Lemma 1 tells us that it is impossible to have two consec-
utive non-active rounds. Thus, as for AES-128 key schedule, for

∑4
x=1 |Sx| < 3

we are left with �ve cases, {|S1| = 0, |S2| = 1, |S3| = 1}, {|S1| = 1, |S2| =
0, |S3| = 1}, {|S1| = 1, |S2| = 1, |S3| = 0}, {|S1| = 0, |S2| = 2, |S3| = 0} and
{|S1| = 0, |S2| = 1, |S3| = 0}. It is very easy to see that the �rst, second, fourth
and �fth cases are impossible (|Sx| = 0 and |Sx+1| = u means that all subkeys
have u active bytes, which contradicts the internal state constraints for all four
cases). Finally, for the third case, |S2| = 1 and |S3| = 0 means that all subkeys
have 4 active bytes because S′2 is a fully active column. Yet, thanks to the design
criterion of the key schedule, the active byte in S2 can't be erased backward with
the subkey active bytes, and thus |S1| ≥ 4 which is a contradiction.

One could naturally tweak this design (without increasing the tracking e�ort)
by adding an Sbox layer every round to the entire �rst row of the key state.
Because of the down rotation in the key update function, we would be ensured
that one Sbox will necessarily be active in 4 consecutive key states. This would
directly add to the lower bounds given in Table 5.

We emphasize that our goal here is to design a simple yet e�cient key sched-
ule that maximizes the number of active Sboxes in the related-key model. Of
course, other security considerations than the number of active Sboxes should



be taken in account when designing a cipher, as the key schedule impacts many
types of attacks. In particular, one might be tempted to believe that having
no di�usion in the key schedule necessarily helps the attacker for key recovery.
However, to the best of our knowledge, looking at the state-of-the-art of crypt-
analysis on block ciphers, it seems that this is not quite the case as block ciphers
with linear or even non-existent key schedule aren't more prone to successful
key recovery attacks. Besides, we argue that it is a better strategy as a designer
to reduce the attack surface that leads to a key recovery attack (for example
by forcing a higher number of active Sboxes), then to just trying to make a key
recovery harder when such �aw is present.

7 Discussions and future works

Our work leads to many interesting future directions and open problems. First,
it would be interesting to look at what happens for 5 rounds, 6 rounds, etc.
Indeed, the best related-key truncated di�erential path from Figure 5 (like any
4-round path with this amount of active Sboxes) is not iterative and one can
hope for a better bound than 9 + 0 = 9 (9 active Sboxes for 4 rounds and 0 for
1 round).

A second topic to explore is the scalability of our proof to higher dimensions:
can we prove anything when using bigger matrix sizes? This is actually quite an
interesting direction, because the computational complexity of the automated
tools grows very fast with the size of the internal state or key state matrix.
For example, what would be the best possible related-key truncated di�erential
path of an AES-like primitive with a 8× 8 matrix size ? Lightweight encryption
schemes are likely to use smaller Sboxes and thus likely to have bigger matrices
to handle. Moreover, can our proofs easily be adapted to bigger key sizes, such
as AES-192 and AES-256?

A more di�cult goal would be to obtain a proof on the best related-key
di�erential path for AES-128, with actual di�erences instead of truncated dif-
ferences. Indeed, while our bounds apply to the general structure of AES-128,
we remark for example that the best related-key truncated di�erential path from
Figure 5 is actually impossible to instantiate, due to some constraints coming
from the coe�cients of the MDS matrix in the MixColumns function. Looking at
Table 1, we can see that there is a lot of room for improvements. Yet, we believe
this would not be trivial to achieve, at least if the aim is to obtain tight bounds,
as incorporating the MDS coe�cients inside the proof looks di�cult. However,
improving a little the bounds we provide here looks feasible and such improve-
ment would be very meaningful since the minimal number of active Sboxes we
have proven does not directly place AES-128 out of target against related-key
attacks: since the best di�erential transition probability of the AES Sbox is 2−6

and since we can prove 9+9+1 = 19 active Sboxes on the full 10-round AES-128
(9 active Sboxes for 4 rounds and 1 for 2 rounds), one can only conclude that any
related-key di�erential path will have a probability smaller than 2−114 (> 2−128).



Finally, the most promising direction is constructive and extends the example
we proposed in Section 6: can we design an e�cient key schedule for AES-128,
such that very good bounds on the number of active Sboxes in the related-key
model can be guaranteed, with a simple and clean proof (even though it repre-
sents an improvement over the state-of-the-art, our key schedule from Section 6
su�ers from the drawback that proving its security for many rounds still requires
the use of computed-aided proofs). Can we adapt the AES-128 key schedule
and hopefully remove the bottleneck parts of our proofs regarding the number
of active Sboxes? In particular, it seems that the best related-key truncated dif-
ferential paths always contain at least one empty round (and this is re�ected by
the fact that these cases were usually the hardest to handle in our proof). Thus,
a natural strategy would be to choose a key schedule that ensures that an empty
round necessarily costs many active Sboxes in the other (non-empty) rounds.
Eventually, we believe this direction will lead to a good understanding on how
a key schedule should be designed when utilized for an AES-like primitive.
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