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Abstract

Auctions and elections are seemingly disjoint research fields. Never-
theless, we observe that similar cryptographic primitives are used in both
fields. For instance, mixnets, homomorphic encryption, and trapdoor bit-
commitments, have been used by state-of-the-art schemes in both fields.
These developments have appeared independently. For example, the adop-
tion of mixnets in elections preceded a similar adoption in auctions by over
two decades. In this paper, we demonstrate a relation between auctions
and elections: we present a generic construction for auctions from election
schemes. Moreover, we show that the construction guarantees secrecy and
verifiability, assuming the underlying election scheme satisfies secrecy and
verifiability. We demonstrate the applicability of our work by deriving an
auction scheme from the Helios election scheme. Our results inaugurate
the unification of auctions and elections, thereby facilitating the advance-
ment of both fields.

Keywords. Auctions, elections, privacy, secrecy, verifiability.

1 Introduction

We present a construction for auction schemes from election schemes, and prove
that the construction guarantees security, assuming the underlying election
scheme is secure.

Auction schemes. An auction is a process for the trade of goods and services
from sellers to bidders [Kri00, MM87], with the support of an auctioneer. We
study first-price sealed-bid auctions [Bra10], whereby bidders create bids which
encapsulate the price they are willing to pay, and the auctioneer opens the bids
to determine the winning price (namely, the highest price bid) and winning
bidder.
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1 INTRODUCTION 2

Election schemes. An election is a decision-making procedure used by vot-
ers to choose a representative from some candidates [Gum05, AH10], with the
support of a tallier. We study first-past-the-post secret ballot elections [LG84,
Saa95], which are defined as follows. First, each voter creates a ballot which
encapsulates the voter’s chosen candidate (i.e., the voter’s vote). Secondly, all
ballots are tallied by the tallier to derive the distribution of votes. Finally, the
representative – namely, the candidate with the most votes – is announced.

Bidders and voters should be able to freely participate in auctions and elec-
tions [UN48, OAS69, OSC90], without fear of repercussions; this is known as
privacy. Formulations of privacy depend on the environment [DKR06, DKR09,
BHM08]. The following properties provide privacy in collusion-free environ-
ments [Smy15, MSQ14a].

• Bid secrecy: A losing bidder cannot be linked to a price.

• Ballot secrecy: A voter cannot be linked to a vote.

Ballot secrecy is intended to protect the privacy of all voters, whereas bid se-
crecy is only intended to protect the privacy of losing bidders. This intuitive
weakening is necessary, because the auctioneer reveals the winning price and
winning bidder, hence, a winning bidder can be linked to the winning price.

Bidders and voters should be able to check that auctions and elections are
run correctly [JCJ02, CRS05, Adi06, Dag07, Adi08, DJL13]; this is known as
verifiability. We sometimes write auction verifiability and election verifiability
to distinguish verifiability in each field. Verifiability includes the following two
properties [KRS10, SFC15].

• Individual verifiability: bidders/voters can check whether their bid/ballot
is included.

• Universal verifiability: anyone can check whether the result is computed
properly.

Conceptually, individual and universal verifiability do not differ between auc-
tions and elections.

1.1 Constructing auction schemes from election schemes

Our construction for auction schemes from election schemes works as follows.

1. We represent prices as candidates, and instruct bidders to create bids by
voting for the candidate that represents the price they are willing to pay.

2. Bids are tallied to derive the distribution of prices and the winning price
is determined from this distribution.
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The relation between auctions and elections is so far straightforward. The chal-
lenge is to establish the winning bidder. This step is non-trivial, because election
schemes satisfying ballot secrecy ensure voters cannot be linked to votes, hence,
the bidder in the aforementioned steps cannot be linked to the price they are
willing to pay. We overcome this by extending the tallier’s role to addition-
ally reveal the set of ballots for a specific vote.1 We exploit such extension to
complete the final step.

3. The tallier determines the winning bids and a winning bidder can be se-
lected from these bids.2

Extending the tallier’s role is central to our construction.

1.2 Motivation and related work

There is an abundance of rich election scheme research which can be capitalised
upon to advance auctions. Indeed, this statement can be justified with hind-
sight: Chaum [Cha81] exploited mixnets in election schemes twenty-three years
before Peng et al. [PBDV04] made similar advances in auctions (Jakobsson &
Juels [JJ00] use mixnets in a distinct manner from Chaum and Peng et al.),
Benaloh & Fischer [CF85] proposed the use of homomorphic encryption seven-
teen years before Abe & Suzuki [AS02a], and Okamoto [Oka96] demonstrated
the use of trapdoor bit-commitments six years before Abe & Suzuki [AS02b].

Magkos, Alexandris & Chrissikopoulos [MAC02] and Her, Imamot & Saku-
rai [HIS05] have studied the relation between auction and election schemes.
Magkos, Alexandris & Chrissikopoulos remark that auction and election schemes
have a similar structure and share similar security properties. And Her, Imamot
& Sakurai contrast privacy properties of auction and election schemes, and com-
pare the use of homomorphic encryption and mixnets between fields. More
concretely, McCarthy, Smyth & Quaglia [MSQ14a] derive auction schemes from
the Helios and Civitas election schemes. Lipmaa, Asokan & Niemi study the
converse: they propose an auction scheme and claim that their scheme could be
used to construct an election scheme [LAN02, §9].

1.3 Contribution

We formally demonstrate a relation between auctions and elections: we present
a generic construction for auction schemes from election schemes, moreover,
we prove that auction schemes produced by our construction satisfy bid secrecy
and verifiability, assuming the underlying election scheme satisfies ballot secrecy
and verifiability. To achieve our results, we first formalise syntax and security
definitions for auction schemes, since these are prerequisites to rigorous, formal
results.

1Ballot secrecy does not prohibit such behaviour, because ballot secrecy assumes the tallier
is trusted.

2Selecting a winning bid from a set of winning bids – i.e., having a strategy to handle
tie-breaks – is beyond the scope of this paper.
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Summary of contributions and paper structure. We summarize our con-
tributions as follows.

• We propose auction scheme syntax, and the first computational security
definitions of bid secrecy and verifiability for auction schemes (Section 2).

• We present a construction for auction schemes from election schemes (Sec-
tion 3).

• We prove that our construction guarantees bid secrecy (Section 4) and
verifiability (Section 5), assuming the underlying election scheme satisfies
analogous security properties.

• We use our construction to derive an auction scheme from the Helios
election scheme (Section 6).

It follows from our results that secure auction schemes can be constructed from
election schemes essentially for free, allowing advances in election schemes to
be capitalised upon to advance auction schemes.

2 Auction schemes

2.1 Syntax

We formulate syntax for auction schemes.

Definition 1 (Auction scheme). An auction scheme is a tuple of efficient al-
gorithms (Setup,Bid,Open,Verify) such that:

Setup, denoted3 (pk , sk ,mb,mp) ← Setup(κ), is run by the auctioneer. Setup
takes a security parameter κ as input and outputs a key pair pk , sk, a
maximum number of bids mb, and a maximum price mp.

Bid, denoted b← Bid(pk ,np, p, κ), is run by voters. Bid takes as input a public
key pk, an upper-bound np on the range of biddable prices, a bidder’s
chosen price p, and a security parameter κ. A bidder’s price should be
selected from the range 1, . . . ,np of prices. Bid outputs a bid b or error
symbol ⊥.

Open, denoted (p, b, pf )← Open(sk ,np, bb, κ), is run by the auctioneer. Open
takes as input a private key sk, an upper-bound np on the range of biddable
prices, a bulletin board bb, and a security parameter κ, where bb is a set.
It outputs a winning price p, a set of winning bids b, and a non-interactive
proof pf of correct opening.

3Let A(x1, . . . , xn; r) denote the output of probabilistic algorithm A on inputs x1, . . . , xn

and random coins r. Let A(x1, . . . , xn) denote A(x1, . . . , xn; r), where r is chosen uniformly
at random. And let ← denote assignment.
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Verify, denoted s← Verify(pk ,np, bb, p, b, pf , κ), is run to audit an auction. It
takes as input a public key pk, an upper-bound np on the range of biddable
prices, a bulletin board bb, a price p, a set of ballots b, a proof pf , and a
security parameter κ. It outputs a bit s, which is 1 if the auction verifies
successfully or 0 otherwise.

Auction schemes must satisfy correctness, completeness, and injectivity, which
we define below.

Correctness asserts that the price and the set of bids output by algorithm
Open correspond to the winning price and the set of winning bids, assuming the
bids on the bulletin board were all produced by algorithm Bid.

Definition 2 (Correctness). There exists a negligible function negl, such that
for all security parameters κ, integers nb and np, and prices p1, . . . , pnb ∈
{1, . . . ,np}, it holds that

Pr[(pk , sk ,mb,mp)← Setup(κ);

for 1 ≤ i ≤ nb do
bi ← Bid(pk ,np, pi, κ);

(p, b, pf )← Open(sk ,np, {b1, . . . , bnb}, κ)
: nb ≤ mb ∧ np ≤ mp
⇒ p = max(0, p1, . . . , pnb) ∧ b = {bi | pi = p ∧ 1 ≤ i ≤ nb}] > 1− negl(κ).

Completeness stipulates that outputs of algorithm Open will be accepted by
algorithm Verify. This prevents biasing attacks [SFC15, §6].

Definition 3 (Completeness). There exists a negligible function negl, such that
for all security parameters κ, bulletin boards bb, and integers np, we have

Pr[(pk , sk ,mb,mp)← Setup(κ); (p, b, pf )← Open(sk ,np, bb, κ)

: |bb| ≤ mb ∧ np ≤ mp ⇒ Verify(pk ,np, bb, p, b, pf , κ) = 1] > 1− negl(κ).

Injectivity asserts that a bid can only be interpreted for one price, assuming
the public key input to algorithm Bid was produced by algorithm Setup. This
ensures that distinct prices are not mapped to the same bid by algorithm Bid.
Hence, a bid unambiguously encodes a price.

Definition 4 (Injectivity). For all security parameters κ, integers np, and
prices p and p′, such that p 6= p′, we have

Pr[(pk , sk ,mb,mp)← Setup(κ); b← Bid(pk ,np, p, κ);

b′ ← Bid(pk ,np, p′, κ) : b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

Our proposed syntax is based upon syntax for auction schemes by McCarthy,
Smyth & Quaglia [MSQ14a] and syntax for election schemes by Smyth, Frink
& Clarkson [SFC15]. Moreover, our correctness, completeness and injectivity
properties are based upon similar properties of election schemes. (Cf. Sec-
tion 3.1.)
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2.2 Bid secrecy

We formalise bid secrecy as an indistinguishability game between an adversary
and a challenger.4 Our game captures a setting where the challenger generates a
key pair using the scheme’s Setup algorithm, publishes the public key, and only
uses the private key for opening.

The adversary has access to a left-right oracle [BDJR97, BR05] which can
compute bids on the adversary’s behalf. Bids can be computed by the left-
right oracle in two ways, corresponding to a randomly chosen bit β. If β = 0,
then, given a pair of prices p0, p1, the oracle outputs a bid for p0. Otherwise
(β = 1), the oracle outputs a bid for p1. The left-right oracle essentially allows
the adversary to control the distribution of prices in bids, but bids computed
by the oracle are always computed using the prescribed Bid algorithm.

The adversary outputs a bulletin board (the bulletin board may contain bids
output by the oracle and bids generated by the adversary), which is opened
by the challenger to reveal winning price p, set of winning bids b, and non-
interactive proof pf of correct opening. Using these values, the adversary must
determine whether β = 0 or β = 1.

To avoid trivial distinctions, we insist that a bid for price p was not output
by the left-right oracle, assuming p is the winning price. This assumption is
required to capture attacks that exploit poorly designed Open algorithms, in
particular, we cannot assume that Open outputs the winning price p, because
algorithm Open might have been designed maliciously or might contain a design
flaw. We ensure winning bids were not output by the left-right oracle using a log-
ical proposition. The proposition uses predicate correct-price(pk ,np, bb, p, κ),
which holds when: (p = 0 ∨ (∃r . Bid(pk ,np, p, κ; r) ∈ bb \ {⊥} ∧ 1 ≤ p ≤
np)) ∧ (¬∃p′, r′ . Bid(pk ,np, p′, κ; r′) ∈ bb \ {⊥} ∧ p < p′ ≤ np). Intuitively,
the predicate holds when winning price p has been correctly computed, that is,
when there exists a bid for price p on the bulletin board and there is no bid for
a higher price. Moreover, injectivity ensures that the bid was created for that
price.5

By design, our notion of bid secrecy is satisfiable by auction schemes which
reveal losing prices, assuming that these prices cannot be linked to bidders.
And our construction will produce auction schemes of this type. Hence, to
avoid trivial distinctions, we insist, for each price p, that the number of bids on
the bulletin board produced by the left-right oracle with left input p, is equal
to the number of bids produced by the left-right oracle with right input p. This
can be formalized using predicate balanced(bb,np, L), which holds when: for
all prices p ∈ {1, . . . ,np} we have |{b | b ∈ bb ∧ (b, p, p1) ∈ L}| = |{b | b ∈

4Games are algorithms that output 0 or 1. An adversary wins a game by causing it to
output 1. We denote an adversary’s success Succ(Exp(·)) in a game Exp(·) as the probability
that the adversary wins, that is, Succ(Exp(·)) = Pr[Exp(·) = 1]. Adversaries are assumed to
be stateful, that is, information persists across invocations of the adversary in a single game,
in particular, the adversary can access earlier assignments.

5The existential quantifiers in correct-price demonstrate the importance of defining injec-
tivity perfectly rather than computationally. In particular, correct-price cannot interpret a
bid for more than one price.
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bb ∧ (b, p0, p) ∈ L}|, where L is the set of oracle call inputs and outputs.
Intuitively, if the adversary loses the game, then the adversary is unable

to distinguish between bids for different prices, assuming that a bid is not a
winning bid; it follows that losing prices cannot be linked to bidders. On the
other hand, if the adversary wins the game, then there exists a strategy to
distinguish honestly cast bids.

Our formalisation is as follows.

Definition 5 (Bid secrecy). Let Σ = (Setup,Bid,Open,Verify) be an auction
scheme, A be an adversary, κ be a security parameter, and Bid-Secrecy(Σ,A, κ)
be the following game.6

Bid-Secrecy(Σ,A, κ) =

(pk , sk ,mb,mp)← Setup(κ);
β ←R {0, 1}; L← ∅;
np ← A(pk , κ); bb← AO();
(p, b, pf )← Open(sk ,np, bb, κ);
g ← A(p, b, pf );
if g = β ∧ balanced(bb,np, L) ∧ |bb| ≤ mb ∧ np ≤ mp
∧ (correct-price(pk ,np, bb, p, κ)⇒ ∀b ∈ bb . (b, p, p1) 6∈ L ∧ (b, p0, p) 6∈ L)
then

return 1
else

return 0

Oracle O is defined as follows:7

• O(p0, p1) computes b ← Bid(pk ,np, pβ , κ);L ← L ∪ {(b, p0, p1)} and out-
puts b, where p0, p1 ∈ {1, ...,np}.

We say Σ satisfies bid secrecy, if for all probabilistic polynomial-time adver-
saries A, there exists a negligible function negl, such that for all security param-
eters κ, we have Succ(Bid-Secrecy(Σ,A, κ)) ≤ 1

2 + negl(κ).

Our definition of bid secrecy is based upon the notion of ballot secrecy
proposed by Smyth [Smy15] (cf. the forthcoming companion technical report)
and, roughly speaking, corresponds to a symbolic security definition proposed
by Dreier, Lafourcade & Lakhnech [DLL13, Definition 15].

2.2.1 Example: Enc2Bid

We demonstrate the applicability of our definition with a construction (Enc2Bid)
for auction schemes from asymmetric encryption schemes.8

6We write x←R S for the assignment to x of an element chosen uniformly at random from
set S.

7The oracle may access game parameters, e.g., pk . Henceforth, we allow oracles to access
game parameters without an explicit mention.

8We present definitions of cryptographic primitives and relevant security definitions in the
forthcoming companion technical report.
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Definition 6 (Enc2Bid). Given an asymmetric encryption scheme Π = (Gen,
Enc,Dec), we define Enc2Bid(Π) as follows.

• Setup(κ) computes (pk , sk)← Gen(κ) and outputs (pk , sk , poly(κ), |m|).

• Bid(pk ,np, p, κ) computes b ← Enc(pk , p) and outputs b, if 1 ≤ p ≤ np ≤
|m|, and outputs ⊥, otherwise.

• Open(sk ,np, bb, κ) proceeds as follows. Computes d ← {(b,Dec(sk , b)) |
b ∈ bb}. Finds the largest integer p such that (b, p) ∈ d ∧ 1 ≤ p ≤ np,
outputting (0, ∅, ε) if no such integer exists. Computes b ← {b | (b, p′) ∈
d ∧ p′ = p}. Outputs (p, b, ε).

• Verify(pk ,np, bb, p, b, pf , κ) outputs 1.

Algorithm Setup requires poly to be a polynomial function, algorithms Setup and
Bid require m = {1, . . . , |m|} to be the encryption scheme’s plaintext space, and
algorithm Open requires ε to be a constant symbol.

Lemma 1. Suppose Π is an asymmetric encryption scheme with perfect correct-
ness. We have Enc2Bid(Π) is an auction scheme (i.e., correctness, completeness
and injectivity are satisfied).

The proof of Lemma 1 and all further proofs, except where otherwise stated,
appear in the forthcoming companion technical report.

Intuitively, given a non-malleable asymmetric encryption scheme Π, the auc-
tion scheme Enc2Bid(Π) derives bid secrecy from the encryption scheme until
opening and opening maintains bid secrecy by only disclosing winning bids and
the winning price. We defer a formal proof of bid secrecy until Section 4.2.1,
where we can use our election to auction scheme construction and accompanying
security results.

2.3 Auction verifiability

We formalise individual and universal verifiability as games between an adver-
sary and a challenger. Our definitions are based upon analogous definitions for
election schemes by Smyth, Frink & Clarkson [SFC15] (cf. Section 5.1).

2.3.1 Individual verifiability

Individual verifiability challenges the adversary to generate a collision from al-
gorithm Bid. If the adversary cannot win, then bidders can uniquely identify
their bids, hence, bidders can check whether their bid is included in an auction.

Definition 7 (Individual verifiability). Let Σ = (Setup,Bid,Open,Verify) be an
auction scheme, A be an adversary, κ be a security parameter, and Exp-IV(Σ,
A, κ) be the following game.
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Exp-IV(Σ,A, κ) =

(pk ,np, p, p′)← A(κ);
b← Bid(pk ,np, p, κ);
b′ ← Bid(pk ,np, p′, κ);
if b = b′ ∧ b 6= ⊥ ∧ b′ 6= ⊥ then

return 1
else

return 0

We say Σ satisfies individual verifiability, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Exp-IV(Σ,A, κ)) ≤ negl(κ).

Individual verifiability resembles injectivity, but game Exp-IV allows an adver-
sary to choose the public key and prices, whereas there is no adversary in the
definition of injectivity (the public key is an output of algorithm Setup and
prices are universally quantified, under the restriction that prices are distinct).

2.3.2 Universal verifiability

Universal verifiability challenges the adversary to concoct a scenario in which
Verify accepts, but the winning price or the set of winning bids is not cor-
rect. Formally, we check the validity of the winning price using predicate
correct-price. And we check the validity of the set of winning bids using
predicate correct-bids(pk ,np, bb, p, b, κ), which holds when b = bb ∩ {b | b =
Bid(pk ,np, p, κ; r)}, i.e., it holds when b is the intersection of the bulletin board
and the set of all bids for the winning price.

Since function correct-price will now be parameterised with a public key
constructed by the adversary, rather than a public key constructed by algorithm
Setup (cf. Section 2.2), we must strengthen injectivity to hold for adversarial
keys.

Definition 8 (Strong injectivity). An auction scheme (Setup,Bid,Open,Verify)
satisfies strong injectivity, if for all security parameters κ, public keys pk, in-
tegers np, and prices p and p′, such that p 6= p′, we have

Pr[b← Bid(pk ,np, p, κ); b′ ← Bid(pk ,np, p′, κ) : b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

Definition 9 (Universal verifiability). Let Σ = (Setup,Bid,Open,Verify) be an
auction scheme satisfying strong injectivity, A be an adversary, κ be a security
parameter, and Exp-UV(Σ,A, κ) be the following game.

Exp-UV(Σ,A, κ) =

(pk ,np, bb, p, b, pf )← A(κ);
if (¬correct-price(pk ,np, bb, p, κ) ∨ ¬correct-bids(pk ,np, bb, p, b, κ))
∧ Verify(pk ,np, bb, p, b, pf , κ) = 1 then

return 1
else

return 0



3 AUCTION SCHEMES FROM ELECTION SCHEMES 10

We say Σ satisfies universal verifiability, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Exp-UV(Σ,A, κ)) ≤ negl(κ).

3 Auction schemes from election schemes

3.1 Election scheme syntax

We recall syntax for election schemes from Smyth, Frink & Clarkson [SFC15].

Definition 10 (Election scheme [SFC15]). An election scheme is a tuple of
efficient algorithms (Setup,Vote,Tally,Verify) such that:

Setup, denoted (pk , sk ,mb,mc) ← Setup(κ), is run by the tallier. Setup takes
a security parameter κ as input and outputs a key pair pk , sk, a maximum
number of ballots mb, and a maximum number of candidates mc.

Vote, denoted b ← Vote(pk ,nc, v, κ), is run by voters. Vote takes as input
a public key pk, some number of candidates nc, a voter’s vote v, and a
security parameter κ. A voter’s vote should be selected from a sequence
1, . . . ,nc of candidates. Vote outputs a ballot b or error symbol ⊥.

Tally, denoted (v, pf ) ← Tally(sk ,nc, bb, κ), is run by the tallier. Tally takes
as input a private key sk, some number of candidates nc, a bulletin board
bb, and a security parameter κ, where bb is a set. It outputs an election
outcome v and a non-interactive proof pf that the outcome is correct. An
election outcome is a vector v of length nc such that v[v] indicates9 the
number of votes for candidate v.

Verify, denoted s ← Verify(pk ,nc, bb,v, pf , κ), is run to audit an election. It
takes as input a public key pk, some number of candidates nc, a bulletin
board bb, an election outcome v, a proof pf , and a security parameter
κ. It outputs a bit s, which is 1 if the election verifies successfully or 0
otherwise.

Election schemes must satisfy correctness, completeness, and injectivity, which
are defined below.

Definition 11 (Correctness [SFC15]). There exists a negligible function negl,
such that for all security parameters κ, integers nb and nc, and votes v1, . . . ,
vnb ∈ {1, . . . ,nc}, it holds that if v is a vector of length nc whose components
are all 0, then

9Let v[v] denote component v of vector v.
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Pr[(pk , sk ,mb,mc)← Setup(κ);

for 1 ≤ i ≤ nb do
bi ← Vote(pk ,nc, vi, κ);
v[vi]← v[vi] + 1;

(v′, pf )← Tally(sk ,nc, {b1, . . . , bnb}, κ)
: nb ≤ mb ∧ nc ≤ mc ⇒ v = v′] > 1− negl(κ).

Definition 12 (Completeness [SFC15]). There exists a negligible function negl,
such that for all security parameters κ, bulletin boards bb, and integers nc, we
have

Pr[(pk , sk ,mb,mc)← Setup(κ); (v, pf )← Tally(sk ,nc, bb, κ)

: |bb| ≤ mb ∧ nc ≤ mc ⇒ Verify(pk ,nc, bb,v, pf , κ) = 1] > 1− negl(κ).

Definition 13 (Injectivity). For all security parameters κ, integers nc, and
votes v and v′, such that v 6= v′, we have

Pr[(pk , sk ,mb,mc)← Setup(κ); b← Vote(pk ,nc, v, κ);

b′ ← Vote(pk ,nc, v′, κ) : b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

Injectivity for election schemes (Definition 13) is analogous to injectivity for
auction schemes (Definition 4) and is slightly weaker than the original definition
(cf. Definition 23).

Comparing auction and election schemes. Auction schemes are distin-
guished from election schemes in the final step of their execution: auction
schemes open the bulletin board to recover the winning price and winning bids,
whereas, election schemes tally the bulletin board to recover the distribution of
votes. Our goal is to bridge this gulf; we do so by introducing reveal algorithms.

3.2 Reveal algorithm

To achieve the functionality required to construct auction schemes from election
schemes, we define reveal algorithms which can link a vote to a set of ballots for
that vote, given the tallier’s private key. We stress that ballot secrecy does not
prohibit the existence of such algorithms, because ballot secrecy asserts that the
tallier’s private key cannot be derived by the adversary.

Definition 14 (Reveal algorithm). A reveal algorithm is an efficient algorithm
Reveal defined as follows:

Reveal, denoted b ← Reveal(sk ,nc, bb, v, κ), is run by the tallier. Reveal takes
as input a private key sk, some number of candidates nc, a bulletin board
bb, a vote v, and a security parameter κ. It outputs a set of ballots b.
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Let Γ = (Setup,Vote,Tally,Verify) be an election scheme. The reveal algorithm
is correct with respect to Γ, if there exists a negligible function negl, such that
for all security parameters κ, integers nb and nc, and votes v, v1, . . . , vnb ∈
{1, . . . ,nc}, it holds that

Pr[(pk , sk ,mb,mc)← Setup(κ);

for 1 ≤ i ≤ nb do
bi ← Vote(pk ,nc, vi, κ);

b← Reveal(sk ,nc, {b1, . . . , bnb}, v, κ)
: nb ≤ mb ∧ nc ≤ mc ⇒ b = {bi | vi = v ∧ 1 ≤ i ≤ nb}] > 1− negl(κ).

Reveal algorithms are run by talliers to disclose sets of ballots for a specific
vote. Hence, we extend the tallier’s role to include the execution of a reveal
algorithm (cf. Section 1.1), thereby bridging the gap between elections and
auctions. It is natural to consider whether this extension is meaningful, i.e.,
given an arbitrary election scheme, does there exist a reveal algorithm, such
that the reveal algorithm is correct with respect to that election scheme? We
answer this question positively in the forthcoming companion technical report.

3.3 Construction

We show how to construct auction schemes from election schemes. We first
describe a construction (Section 3.3.1) which can produce auction schemes sat-
isfying bid secrecy. Building upon this result, we present our second construction
(Section 3.3.2) which can produce auction schemes satisfying bid secrecy and
auction verifiability.

3.3.1 Non-verifiable auction schemes

Our first construction follows intuitively from our informal description (Sec-
tion 1.1). Algorithm Bid is derived from Vote, simply by representing prices as
candidates. Algorithm Open uses algorithm Tally to derive the distribution of
prices and the winning price is determined from this distribution. Moreover, we
exploit a reveal algorithm Reveal to disclose the set of winning bids.

Definition 15. Given an election scheme Γ = (SetupΓ,Vote,Tally,VerifyΓ) and
a reveal algorithm Reveal, we define Λ(Γ,Reveal) = (SetupΛ,Bid,Open,VerifyΛ)
as follows.

SetupΛ(κ) computes (pk , sk ,mb,mc)← SetupΓ(κ) and outputs (pk , sk ,mb,mc).

Bid(pk ,np, p, κ) computes b← Vote(pk ,np, p, κ) and outputs b.

Open(sk ,np, bb, κ) proceeds as follows. Computes (v, pf ) ← Tally(sk ,np, bb).
Finds the largest integer p such that v[p] > 0 ∧ 1 ≤ p ≤ np, outputting
(0, ∅, ε) if no such integer exists. Computes b ← Reveal(sk ,np, bb, p, κ).
And outputs (p, b, ε).
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VerifyΛ(pk ,np, bb, p, b, pf ′, κ) outputs 1.

Algorithm Open requires ε to be a constant symbol.

Lemma 2. Let Γ be an election scheme and Reveal be a reveal algorithm. Sup-
pose Reveal is correct with respect to Γ. We have Λ(Γ,Reveal) is an auction
scheme.

3.3.2 Verifiable auction schemes

Our second construction extends our first construction to ensure verifiability, in
particular, algorithm Open is extended to include a proof of correct tallying and
a proof of correct revealing. Moreover, algorithm Verify is used to check proofs.

Definition 16. Given an election scheme Γ = (SetupΓ,Vote,Tally,VerifyΓ), a
reveal algorithm Reveal, and a non-interactive proof system ∆ = (Prove,Verify),
we define Λ(Γ,Reveal,∆) = (SetupΛ,Bid,Open,VerifyΛ) as follows.

SetupΛ(κ) computes (pk , sk ,mb,mc)← SetupΓ(κ) and outputs (pk , sk ,mb,mc).

Bid(pk ,np, p, κ) computes b← Vote(pk ,np, p, κ) and outputs b.

Open(sk ,np, bb, κ) proceeds as follows. Computes (v, pf ) ← Tally(sk ,np, bb).
Finds the largest integer p such that v[p] > 0 ∧ 1 ≤ p ≤ np, outputting
(0, ∅, ε) if no such integer exists. Computes b ← Reveal(sk ,np, bb, p, κ)
and pf ′ ← Prove((pk ,np, bb, p, b, κ), sk), and outputs (p, b, (v, pf , pf ′)).

VerifyΛ(pk ,np, bb, p, b, σ, κ) proceeds as follows. Parses σ as (v, pf , pf ′), out-
putting 0 if parsing fails. The algorithm performs the following checks:

1. Checks that VerifyΓ(pk ,np, bb,v, pf , κ) = 1.

2. Checks that p is the largest integer such that v[p] > 0 ∧ 1 ≤ p ≤ np
or there is no such integer and (p, b, pf ′) = (0, ∅, ε).

3. Checks that Verify((pk ,np, bb, p, b, κ), pf ′, κ) = 1.

Outputs 1, if all of the above checks hold, and outputs 0, otherwise.

Algorithms Tally and Verify require ε to be a constant symbol.

To ensure that our construction produces auction schemes, the non-interactive
proof system must be defined for a suitable relation. We define such a relation
as follows.

Definition 17. Given an election scheme Γ = (Setup,Vote,Tally,Verify) and
a reveal algorithm Reveal, we define binary relation R(Γ,Reveal) over vectors
of length 6 and bitstrings such that ((pk ,nc, bb, v, b, κ), sk) ∈ R(Γ,Reveal) ⇔
∃mb,mc, r, r′ . b = Reveal(sk ,nc, bb, v, κ; r) ∧ (pk , sk ,mb,mc) = Setup(κ; r′) ∧
1 ≤ v ≤ nc ≤ mc.
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Lemma 3. Let Γ be an election scheme, Reveal be a reveal algorithm, and ∆
be a non-interactive proof system for relation R(Γ,Reveal). Suppose Reveal is
correct with respect to Γ. We have Λ(Γ,Reveal,∆) is an auction scheme.

Next, we study the security of auction schemes produced by our construc-
tions, in particular, we present conditions under which our constructions pro-
duce auction schemes satisfying bid secrecy and verifiability.

4 Privacy results

We introduce a definition of ballot secrecy which is sufficient to ensure that our
construction produces auction schemes satisfying bid secrecy (assuming some
soundness conditions on the underlying election scheme and reveal algorithm).

4.1 Ballot secrecy

Our definition of ballot secrecy strengthens an earlier definition by Smyth [Smy15].

Definition 18 (Ballot secrecy). Let Γ = (Setup,Vote,Tally,Verify) be an elec-
tion scheme, A be an adversary, κ be a security parameter, and Ballot-Secrecy(Γ,
A, κ) be the following game.

Ballot-Secrecy(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
β ←R {0, 1};L← ∅;W ← ∅;
nc ← A(pk , κ); bb← AO();
(v, pf )← Tally(sk ,nc, bb, κ);
for b ∈ bb ∧ (b, v0, v1) /∈ L do

(v′, pf ′)← Tally(sk ,nc, {b}, κ);
W ←W ∪ {(b,v′)};

g ← A(v, pf ,W );
if g = β ∧ balanced(bb,nc, L) ∧ |bb| ≤ mb ∧ nc ≤ mc then

return 1
else

return 0

Oracle O is defined as follows:

• O(v0, v1) computes b← Vote(pk ,nc, vβ , κ);L← L ∪ {(b, v0, v1)} and out-
puts b, where v0, v1 ∈ {1, ...,nc}.

We say Γ satisfies ballot secrecy, if for all probabilistic polynomial-time ad-
versaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Ballot-Secrecy(Γ,A, κ)) ≤ 1

2 + negl(κ).

Our formalisation of ballot secrecy challenges an adversary to determine
whether the left-right oracle produces ballots for “left” or “right” inputs. In
addition to the oracle’s outputs, the adversary is given the election outcome
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and tallying proof derived by tallying the adversary’s board (intuitively, this
captures a setting where the bulletin board is constructed by an adversary that
casts ballots on behalf of a subset of voters and controls the distribution of votes
cast by the remaining voters). The adversary is also given a mapping W from
ballots to votes, for all ballots on the bulletin board which were not output
by the oracle. To avoid trivial distinctions, we insist that oracle queries are
balanced, i.e., predicate balanced must hold. Intuitively, if the adversary does
not succeed, then ballots for different votes cannot be distinguished, hence, a
voter cannot be linked to a vote, i.e., ballot secrecy is preserved. On the other
hand, if the adversary does succeed, then ballots can be distinguished and ballot
secrecy is not preserved.

Comparing notions of ballot secrecy. Our definition of ballot secrecy
(Ballot-Secrecy) strengthens an earlier definition (SB-Ballot-Secrecy) by Smyth
(the forthcoming companion technical report). In particular, in Ballot-Secrecy
the adversary is given the vote corresponding to any ballot that was not com-
puted by the oracle, whereas in SB-Ballot-Secrecy the adversary does not have
this capability. It is trivial to see that Ballot-Secrecy strengthens SB-Ballot-
Secrecy, because any adversary against SB-Ballot-Secrecy (without access to W )
is also an adversary against Ballot-Secrecy (with access to W ). In the forthcom-
ing companion technical report, we show that Ballot-Secrecy is strictly stronger
using a scheme that satisfies SB-Ballot-Secrecy but not Ballot-Secrecy, hence
separating the two notions.

4.1.1 Example: Enc2Vote satisfies ballot secrecy

We demonstrate the applicability of our definition using a construction (Enc2Vote)
for election schemes from non-malleable public-key encryption schemes.10

Definition 19 (Enc2Vote). Given an asymmetric encryption scheme Π = (Gen,
Enc,Dec), we define Enc2Vote(Π) as follows.

• Setup(κ) computes (pk , sk)← Gen(κ) and outputs (pk , sk , poly(κ), |m|).

• Vote(pk ,nc, v, κ) computes b← Enc(pk , v) and outputs b, if 1 ≤ v ≤ nc ≤
|m|, and ⊥, otherwise.

• Tally(sk ,nc, bb, κ) initialises vector v of length nc, computes for b ∈ bb
do v ← Dec(sk , b); if 1 ≤ v ≤ nc then v[v] ← v[v] + 1, and outputs
(v, ε).

• Verify(pk ,nc, bb,v, pf , κ) outputs 1.

Algorithm Setup requires poly to be a polynomial function, algorithms Setup and
Vote require m = {1, . . . , |m|} to be the encryption scheme’s plaintext space, and
algorithm Tally requires ε to be a constant symbol.

10The construction was originally presented by Bernhard et al. [SB14, SB13, BPW12b,
BCP+11] in a slightly different setting.
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Lemma 4. Suppose Π is an asymmetric encryption scheme with perfect cor-
rectness. We have Enc2Vote(Π) is an election scheme.

Intuitively, given an encryption scheme Π satisfying non-malleability, the
election scheme Enc2Vote(Π) derives ballot secrecy from the encryption scheme
until tallying and tallying maintains ballot secrecy by only disclosing the number
of votes for each candidate. Formally, we have the following result.11

Proposition 5. Suppose Π is an asymmetric encryption scheme with perfect
correctness. If Π satisfies IND-PA0, then Enc2Vote(Π) satisfies ballot secrecy.

4.2 Ballot secrecy implies bid secrecy

The main distinctions between our formalisations of privacy for elections and
auctions are as follows.

1. Our ballot secrecy game tallies the bulletin board, whereas our bid secrecy
game opens the bulletin board.

2. Our ballot secrecy game is intended to protect the privacy of all voters,
whereas our bid secrecy game is only intended to protect the privacy of
losing bidders.

3. Our ballot secrecy game provides the adversary with the vote correspond-
ing to any ballot that was not computed by the oracle, whereas the ad-
versary is not given a similar mapping in our bid secrecy game.

These distinctions support our intuition: we can construct auction schemes
satisfying bid secrecy from election schemes satisfying ballot secrecy. However,
by closer inspection of point 2, we observe a non-trivial distinction which falsifies
our intuition in the general case. In particular, privacy of losing bidders must
be preserved even if the winning price is incorrectly announced.

4. Our ballot secrecy game maps ballots to votes, except for those output by
the oracle, whereas our bid secrecy game permits oracle bids to be mapped
to non-winning prices.

This leads to a separation. Nevertheless, we can formulate soundness conditions
which capture a class of election schemes for which our intuition holds.

Tally soundness. Correctness for election schemes ensures that algorithm
Tally produces the expected election outcome under ideal conditions. A similar
property, which we call tally soundness, can hold in the presence of an adversary.
Our formulation of tally soundness (Definition 20) challenges the adversary to

11Bellare & Sahai [BS99, §5] show that their notion of non-malleability (CNM-CPA) coincides
with a simpler indistinguishability notion (IND-PA0), thus it suffices to consider IND-PA0 in
Proposition 5.
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concoct a scenario in which the election outcome does not include the votes of
all ballots on the bulletin board that were produced by Vote.

Formally, we capture the correct election outcome using function correct-outcome,
which is defined such that for all pk , nc, bb, κ, `, and v ∈ {1, . . . ,nc}, we have12

correct-outcome(pk ,nc, bb, κ)[v] = `

⇐⇒ ∃=`b ∈ bb \ {⊥} : ∃r : b = Vote(pk ,nc, v, κ; r)

That is, component v of vector correct-outcome(pk , bb, nC , k) equals ` iff there
exist ` ballots on the bulletin board that are votes for candidate v. The vector
produced by correct-outcome must be of length nC .

Definition 20 (Tally soundness). Let Γ = (Setup,Vote,Tally,Verify) be an elec-
tion scheme, A be an adversary, κ be a security parameter, and Tally-Soundness(
Γ,A, κ) be the following game.

Tally-Soundness(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(nc, bb)← A(pk , κ);
(v, pf )← Tally(sk ,nc, bb, κ);
if ∃v ∈ {1, . . . ,nc} . v[v] < correct-outcome(pk ,nc, bb, κ)[v] ∧ |bb| ≤ mb ∧
nc ≤ mc then

return 1
else

return 0

We say Γ satisfies tally soundness, if for all probabilistic polynomial-time ad-
versaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Tally-Soundness(Γ,A, κ)) ≤ negl(κ).

Reveal soundness. Correctness for reveal algorithms ensures that algorithm
Reveal produces the set of ballots for a particular vote under ideal conditions.
A similar property, which we call reveal soundness, can hold in the presence of
an adversary. Our formulation of reveal soundness challenges the adversary to
concoct a scenario in which the set of ballots for a particular vote is not correct,
i.e., the set does not contain all the ballots for the specified vote.

Definition 21 (Reveal soundness). Let Γ = (Setup,Vote,Tally,Verify) be an
election scheme, Reveal be a reveal algorithm, A be an adversary, κ be a security
parameter, and Reveal-Soundness(Γ,A, κ) be the following game.

Reveal-Soundness(Γ,A, κ) =

12Function correct-outcome uses a counting quantifier [Sch05] denoted ∃=. Predicate
(∃=`x : P (x)) holds exactly when there are ` distinct values for x such that P (x) is sat-
isfied. Variable x is bound by the quantifier, whereas ` is free.
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(pk , sk ,mb,mc)← Setup(κ);
(nc, bb, v)← A(pk , κ);
b← Reveal(sk ,nc, bb, v, κ);
W ← ∅;
for b ∈ bb do

(v, pf )← Tally(sk ,nc, {b}, κ);
W ←W ∪ {(b,v)};

if b 6= {b | (b,v) ∈W ∧ v[v] = 1} ∧ |bb| ≤ mb ∧ 1 ≤ v ≤ nc ≤ mc then
return 1

else
return 0

We say Reveal satisfies reveal soundness with respect to Γ, if for all proba-
bilistic polynomial-time adversaries A, there exists a negligible function negl,
such that for all security parameters κ, we have Succ(Reveal-Soundness(Γ,A,
κ)) ≤ negl(κ).

Lemma 6. Let Γ be an election scheme and Reveal be a reveal algorithm. If
Reveal satisfies reveal soundness with respect to Γ, then Reveal is correct with
respect to Γ.

4.2.1 Bid secrecy for non-verifiable auction schemes

We prove that the construction presented in Section 3.3.1 produces auction
schemes satisfying bid secrecy, assuming the underlying election scheme satisfies
ballot secrecy and tally soundness, and the underlying reveal algorithm satisfies
reveal soundness.

Proposition 7. Let Γ be an election scheme and Reveal be a reveal algorithm.
Moreover, let Σ = Λ(Γ,Reveal). If Γ satisfies ballot secrecy and tally sound-
ness, and Reveal satisfies reveal soundness with respect to Γ, then Σ satisfies bid
secrecy.

We demonstrate the applicability of our result in the following example.

Example: Enc2Bid satisfies bid secrecy

In the forthcoming companion technical report we present a reveal algorithm
Reveal-Enc2Bid(Π) such that Enc2Bid(Π) is equivalent to Λ(Enc2Vote(Π),Reveal-Enc2Bid(Π))
and use Proposition 7 to prove that Enc2Bid(Π) satisfies bid secrecy, obtaining
the following result.

Proposition 8. Suppose Π is an asymmetric encryption scheme with perfect
correctness. If Π satisfies IND-PA0, then Enc2Bid(Π) satisfies bid secrecy.

4.2.2 Bid secrecy for verifiable auction schemes

We generalise Proposition 7 to verifiable auction schemes, assuming the non-
interactive proof system is zero-knowledge.



5 VERIFIABILITY RESULTS 19

Theorem 9. Let Γ be an election scheme, Reveal be a reveal algorithm, and
∆ be a non-interactive proof system for relation R(Γ,Reveal). Moreover, let
Σ = Λ(Γ,Reveal,∆). If Γ satisfies ballot secrecy and tally soundness, Reveal
satisfies reveal soundness with respect to Γ, and ∆ is zero-knowledge, then Σ
satisfies bid secrecy.

We shall see that tally soundness is implied by universal verifiability (Sec-
tion 5.1.2), hence, a special case of the above theorem requires that Γ satisfies
universal verifiability, rather than tally soundness.

5 Verifiability results

We recall definitions of individual and universal verifiability for election schemes
by Smyth, Frink & Clarkson [SFC15]. We show that these definitions are suffi-
cient to ensure that our construction produces schemes satisfying auction veri-
fiability.

5.1 Election verifiability

5.1.1 Individual verifiability

Individual verifiability challenges the adversary to generate a collision from al-
gorithm Vote.

Definition 22 (Individual verifiability [SFC15]). Let Γ = (Setup,Vote,Tally,
Verify) be an election scheme, A be an adversary, κ be a security parameter,
and Exp-IV-Ext(Γ,A, κ) be the following game.

Exp-IV-Ext(Γ,A, κ) =

(pk ,nc, v, v′)← A(κ);
b← Vote(pk ,nc, v, κ);
b′ ← Vote(pk ,nc, v′, κ);
if b = b′ ∧ b 6= ⊥ ∧ b′ 6= ⊥ then

return 1
else

return 0

We say Γ satisfies individual verifiability, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Exp-IV-Ext(Γ,A, κ)) ≤ negl(κ).

5.1.2 Universal verifiability

Universal verifiability challenges the adversary to concoct a scenario in which
Verify accepts, but the election outcome is not correct.

Formally, we capture the correct election outcome using function correct-outcome.
Since function correct-outcome will now be parameterised with a public key con-
structed by the adversary, rather than a public key constructed by algorithm
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Setup (cf. Section 4.2), we must strengthen injectivity to hold for adversarial
keys.

Definition 23 (Strong injectivity [SFC15]). An election scheme (Setup,Vote,
Tally,Verify) satisfies strong injectivity, if for all security parameters κ, public
keys pk, integers nc, and votes v and v′, such that v 6= v′, we have

Pr[b← Vote(pk ,nc, v, κ); b′ ← Vote(pk ,nc, v′, κ) : b 6= ⊥∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

Definition 24 (Universal verifiability [SFC15]). Let Γ = (Setup,Vote,Tally,
Verify) be an election scheme satisfying strong injectivity, A be an adversary, κ
be a security parameter, and Exp-UV-Ext(Γ,A, κ) be the following game.

Exp-UV-Ext(Γ,A, κ) =

(pk ,nc, bb,v, pf )← A(κ);
if v 6= correct-outcome(pk ,nc, bb, κ) ∧ Verify(pk ,nc, bb,v, pf , κ) = 1
then

return 1
else

return 0

We say Γ satisfies universal verifiability, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Exp-UV-Ext(Γ,A, κ)) ≤ negl(κ).

Universal verifiability is similar to tally soundness, in particular, both no-
tions challenge the adversary to concoct a scenario in which the election outcome
is not correct. The election outcome is computed by the challenger using algo-
rithm Tally in Tally-Soundness. By comparison, the outcome is chosen by the
adversary in Exp-UV-Ext, under the condition that it must be accepted by algo-
rithm Verify. Since completeness asserts that outcomes output by Tally will be
accepted by Verify, we have the following result.

Lemma 10. Let Γ be an election scheme. If Γ satisfies universal verifiability,
then Γ satisfies tally soundness.

It is trivial to see that universal verifiability is strictly stronger than tally sound-
ness, because Enc2Vote satisfies tally soundness (see proof of Proposition 8), but
not universal verifiability (it accepts any election outcome).

Corollary 11. Universal verifiability is strictly stronger than tally soundness.

The proof of Corollary 11 follows from Lemma 10 and the above reasoning; we
omit a formal proof.

5.2 Election verifiability implies auction verifiability

The following results demonstrate that our second construction (Section 3.3.2)
produces verifiable auction schemes from verifiable election schemes.
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Theorem 12. Let Γ be an election scheme, Reveal be a reveal algorithm, and
∆ be a non-interactive proof system for relation R(Γ,Reveal), such that Reveal is
correct with respect to Γ. If Γ satisfies individual verifiability, then Λ(Γ,Reveal,∆)
satisfies individual verifiability.

The proof of Theorem 12 follows from Definitions 7, 16 & 22 and we omit a
formal proof.

For universal verifiability, we require the non-interactive proof system to
satisfy a notion of soundness. This notion can be captured by the following
property on relation R(Γ,Reveal).

Definition 25. Given an election scheme Γ = (Setup,Vote,Tally,Verify) and a
reveal algorithm Reveal, we say relation R(Γ,Reveal) is verifiable, if ((pk ,np,
bb, p, b, κ), sk) ∈ R(Γ,Reveal) implies correct-bids(pk ,np, bb, p, b, κ).

Theorem 13. Let Γ be an election scheme, Reveal be a reveal algorithm, and
∆ be a non-interactive proof system for relation R(Γ,Reveal), such that Reveal
is correct with respect to Γ. If Γ satisfies universal verifiability, ∆ satisfies
soundness, and R(Γ,Reveal) is verifiable, then Λ(Γ,Reveal,∆) satisfies universal
verifiability.

6 Case study: Helios

We demonstrate the applicability of our construction by deriving an auction
scheme from Helios [AMPQ09].

6.1 Helios

Helios is an open-source, web-based electronic voting system, which has been
deployed in the real-world: the International Association of Cryptologic Re-
search (IACR) has used Helios annually since 2010 to elect board members
[I13, BVQ10, HBH10], the Catholic University of Louvain used Helios to elect
the university president in 2009 [AMPQ09], and Princeton University has used
Helios since 2009 to elect student governments [Adi09, P12].

Informally, Helios can be modelled as an election scheme (Setup,Vote,Tally,
Verify) such that:

Setup generates a key pair for an asymmetric homomorphic encryption scheme,
proves correct key generation in zero-knowledge, and outputs the public
key coupled with the proof.

Vote encrypts the vote, proves correct ciphertext construction in zero-knowledge,
and outputs the ciphertext coupled with the proof.

Tally proceeds as follows. First, any ballots on the bulletin board for which
proofs do not hold are discarded. Secondly, the ciphertexts in the remain-
ing ballots are homomorphically combined, the homomorphic combination
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is decrypted to reveal the election outcome, and correctness of decryption
is proved in zero-knowledge. Finally, the election outcome and proof of
correct decryption are output.

Verify recomputes the homomorphic combination, checks the proofs, and out-
puts 1 if these checks succeed and 0 otherwise.

The original Helios scheme [AMPQ09] is known to be vulnerable to ballot
secrecy attacks, and defences against those attacks have been proposed [CS11,
CS13, SC11, Smy12, BCP+11, BPW12a]. We adopt the formal definition of He-
lios proposed by Smyth, Frink & Clarkson [SFC15], which adopts non-malleable
ballots [SHM15] to defend against those attacks. Henceforth, we write Helios
4.0 to refer to that formalization.

6.2 An auction scheme from Helios 4.0

We derive an auction scheme from Helios 4.0 using our construction parametrised
with a reveal algorithm and a non-interactive proof system. We formally de-
scribe that reveal algorithm and proof system in the forthcoming companion
technical report, and refer to the resulting scheme as the auction scheme from
Helios 4.0. Our privacy and verifiability results allow us to prove security of
that scheme:

Theorem 14. If Helios 4.0 satisfies ballot secrecy, then the auction scheme
from Helios 4.0 satisfies bid secrecy.

Proof. Smyth, Frink & Clarkson have shown that Helios 4.0 satisfies univer-
sal verifiability [SFC15]. It follows from Lemma 10 that Helios 4.0 satisfies
tally soundness. Hence, by Theorem 9, it suffices to prove that the reveal al-
gorithm satisfies reveal soundness and that the non-interactive proof system is
zero-knowledge. We defer those proofs to the forthcoming companion technical
report.

Proving that Helios 4.0 satisfies ballot secrecy would advance the state-of-
the-art in a manner that is beyond the scope of this case study. Indeed, the
only privacy results [BPW12a, Ber14, BCG+15] for Helios consider variants of
Helios 4.0 and depend upon undesirable trust assumptions [Smy15].

Theorem 15. The auction scheme from Helios 4.0 satisfies individual and
universal verifiability.

Proof. Smyth, Frink & Clarkson have shown that Helios 4.0 satisfies individual
and universal verifiability [SFC15]. Hence, by Theorem 12, the auction scheme
from Helios 4.0 satisfies individual verifiability. To show universal verifiability,
it suffices (Theorem 13) to prove that the non-interactive proof system satisfies
soundness and the associated relation is verifiable. We defer those proofs to the
forthcoming companion technical report.
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Deriving auction schemes from Helios is not new. Indeed, McCarthy, Smyth
& Quaglia [MSQ14a] derive the Hawk auction scheme from Helios. Our auction
scheme is distinguished from Hawk by formal security results, whereas Hawk
only has an informal security analysis [MSQ14b, §4.4].

7 Conclusion

We demonstrate that the seemingly disjoint research fields of auctions and elec-
tions are actually related. In particular, we present a generic construction for
auction schemes from election schemes. And we formulate precise conditions
under which auction schemes produced by our construction are secure. The
value of our results is two-fold: we enable advances in the auction research field
from existing election literature, as well as capitalise upon future progress in
election research.

Acknowledgements

This research was largely conducted at École Normale Supérieure and INRIA,
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