
Domain-Specific Pseudonymous Signatures
Revisited

Kamil Kluczniak

Wroc law University of Technology, Department of Computer Science
kamil.kluczniak@pwr.edu.pl

Abstract. Domain-Specific Pseudonymous Signature schemes were re-
cently proposed for privacy preserving authentication of digital identity
documents by the BSI, German Federal Office for Information Secu-
rity. The crucial property of domain-specific pseudonymous signatures is
that a signer may derive unique pseudonyms within a so called domain.
Now, the signer’s true identity is hidden behind his domain pseudonyms
and this pseudonyms are unlinkable, i.e. it is infeasible to correlate two
pseudonyms with a single user. In this paper we take a critical look at
the security definitions and constructions of domain-specific pseudony-
mous signatures proposed by far. We review two articles which propose
“sound and clean” security definitions and point out some issues present
in this models. Some of this issues may have a strong practical impact
on constructions provable secure in this models. Additionally, we point
out some worrisome facts about the proposed schemes and their security
analysis.

Key words: eID Documents, Privacy, Domain Signatures, Pseudonymity,
Security Definition, Provable Security

1 Introduction

Domain signature schemes are signature schemes where we have a set of users,
an issuer and a set of domains. Each user obtains his secret keys in collaboration
with the issuer and then may sign data with regards to his pseudonym. The
crucial property of domain signatures is that each user may derive a pseudonym
within a domain. Domain pseudonyms of a user are constant within a domain
and a user should be unable to change his pseudonym within a domain, however,
he may derive unique pseudonyms in each domain of the system. Moreover, a
domain owner (verifier) should be convinced that the signer was admitted by the
issuer. In short domain signature schemes need to fulfil the following properties:

– Unforgeability - it is infeasible for a coalition of malicious users and domain
holders to produce a signature on behalf of a honest user.

– Seclusiveness - it is infeasible for a group of malicious users (possibly all
users in the system) to create a signature on behalf of a user which was not
admitted by the issuer. In other words, it is infeasible for any coalition to
produce false identities.

2 Kamil Kluczniak

– Unlinkability - having two or more pseudonyms from different domains it
is infeasible to tell whether this pseudonyms came from a single user or
different users.

The concept of Domain Signatures was first introduced in a short paper [1]
and was inspired by the design goals for Restricted Identification protocols1 for
electronic identity cards stated by the German Federal Office for Information
Security (BSI). The proof of concept construction from [1] requires a user to
obtain a certificate for each pseudonym in each domain.

Later the idea was developed in [2] and then continued in [3]. The paper [2]
first introduced a definition for domain signatures and proposed a construction
where users may derive domain pseudonyms and produce signatures without
the need to obtain a certificate for each domain separately. The authors from [3]
point out some serious issues with the definition and construction proposed in
[2]. They also introduced a security definition which allegedly solves the issues
present in previous work and design an efficient domain signature scheme based
on groups with bilinear maps.

In this article we focus on the papers [2] and [3]. We recall the issues present
in [2] pointed out by [3] and give some additional comments. Then, we review
the work from [3] pointing out some issues and even mistakes in the security
definition, construction and security analysis. The paper [3] was also a signif-
icant contribution in the thesis [4]. In our opinion, because of the complexity
of scientific writing, this issues may be overlooked by potential implementers
or even specialist in the field what may be significant for the security of the
end user. Significance, to our critical review gives the fact that [2] and [3], may
be considered for standardization according to the technical guideline [5] and
further implementation on identity documents.

Structure of the Paper. In Section 2 we recall the work from [2] and describe
some issues and mistakes partially identified in [3]. In Section 3 we first recall
the security definitions from [3]. Then, we discuss some controversial parts of
the definitions. The crucial part is the unlinkability which allegedly captures the
“dynamic case” i.e. the case where users may be admitted to the group at any
point of the lifetime of the system. We will give some critical arguments on the
unlinkability definition and the definition of other properties, which may result
in “unnatural” (stupid) schemes but provably secure in the proposed model. In
a further version of the paper we plan to show such constructions and proof
that they fulfil all defined requirements. Finally, we show some issues according
to the implementation of the protocol. As the construction from [3] requires
time consuming operations from a signer and the prime implementation target
is supposed to be a smart card, the authors propose an extension of the definition
and the signature scheme to outsource come computation to a reader. We will in
particular show, some overcomings present in the security models and security
analysis, and discuss the practical impact of this issues.

1 Interactive identification protocols which need to fulfil similar properties as Domain
Signatures.

Domain-Specific Pseudonymous Signatures Revisited 3

In our review we will recall some definitions from [2] and [3], and use the
original notation and terminology from these papers. In order to make our paper
as self contained as possible, we additionally recall the signature schemes from
[2] and [3] in Appendix A and B. However, for detailed security analysis etc. we
refer to the original papers.

2 Domain-Specific Pseudonymous Signatures for the
German Identity Card

In this section we review the security models and constructions from [2]. We will
point out some mistakes and flaws, some of which have been already disclosed
in [3]. While the paper [2] is merely a research publication, the technical guide
released by BSI [5] implicitly points to this algorithm.

Bellow we briefly recall the definition of the scheme and the notation as it has
been introduced in [2]. For a more detailed description we refer to the original
paper [2].

Definition 1. A Domain-specific Pseudonymous Signature scheme is a collec-
tion of the following efficient algorithms NYMS = (NymKGen, NymDSgen,
NymSig, NymVf) defined as follows:

NymKGen(1λ, 1n, 1d) is a probabilistic algorithm which, on input a security
parameter 1λ and parameters 1n, 1d (both “polynomial in λ” according to
[2]) outputs a pair (gpk, gmsk), where gpk is the group public key and gmsk
the secret key of the group manager, and outputs n (unique) pseudonyms nym
with their corresponding secret keys gsk[nym], and d domain descriptions dpk.

NymDSGen(nym, gsk[nym], dpk) is a deterministic algorithm which maps a pseudonym
nym (and its secret key gsk[nym]) and the domain description dpk to a
domain-specific pseudonym dsnym = nym[dpk] of the user with the pseudonym
nym.

NymSig(dsnym, gsk[nym], dpk,m) is a probabilistic algorithm which, on input a
domain-specific pseudonym dsnym, a secret key gsk[nym] of the user having
domain pseudonym dsnym, a domain dpk, and message m, outputs a signa-
ture σ of m created with the user’s private key gsk[nym] and related to the
domain dpk.

NymVf(gpk, dsnym, dpk,m, σ,B) is a deterministic algorithm which, on input
a message m and a signature σ together with the group public key gpk,
a domain-specific pseudonym dsnym, the domain’s description dpk, and a
blacklist B, outputs either 1 (for “the signature is valid”) or 0 (for “the
signature is invalid”).

One may first observe that

– According to the definition there is a constant group of users, and a constant
number of domain descriptions, where both user secret keys and domain
descriptions are generated beforehand by NymKGen.

4 Kamil Kluczniak

– NymKGen also produces a secret key of the group manager, which however
is not used by any algorithm in the system. Thus, we find it puzzling what is
the point of returning a group manager secret key actually is? Any unused
component in a system is commonly regarded as a security threat and should
be removed as a potential place for installing backdoors.

Cross-Domain Anonymity. For a detailed definition of Cross-Domain Unlinka-
bility we refer to [2]. Here we show some flaws present in the definition. First we
recall the definition of Cross-Domain Anonymity from [2].

Definition 2. A domain-specific pseudonymous signature scheme NYMS =
(NymKGen,NymDSGen,NymSig,NymVf) is (n, d, t,Q, ε) cross-domain anonymous
with Q = (qc, qs, qt) is for any algorithm A running in time t, and making at
most qc queries to the corruption oracle, qs queries to the signing oracle, and qt
queries to the left-or-right oracle, the probability that the following experiment
returns 1 is at most ε:

CD-AnonNYMSA (k, n, d):

b
R← {0, 1}

T,S,W,B,C,N,D← ∅
(gpk, gmsk, gsk[nym]n, [nym]n, dpkd)← NymKGen(1k, 1n, 1d)
N = nymn, and D = dpkd
W = {NymDSGen(nym, gsk[nym], dpk)|nym ∈ N, dpk ∈ D}
W� D := {(NymDSGen(nym, gsk[nym], dpk), dpk)|nym ∈ N, dpk ∈ D}
st← ACorrupt(gpk,W,W�,D,N)
If A queries Corrupt(nym) on input nym ∈ N

- set C← C ∪ {nym}
- return gsk[nym]

d← AB′,NymSig′,LoR(st)
If A queries B′(dsnym) on input dsnym ∈W

- set B← B ∪ {dsnym}
If A queries NymSig′(dsnym, dpk,m) on input dsnym ∈ W \ B, dpk ∈ D, and
message m

- set S← S ∪ {(dsnym, dpk,m)}
- find nym ∈ N such that dsnym = NymDSGen(nym, gsk[nym], dpk)
- return NymSig(dsnym, gsk[nym], dpk,m)

If A queries LoR(dsnym0, dsnym1, dpk,m) on input dsnym0, dsnym1 ∈ W \ B,
dpk ∈ D, and message m,

- set T← T ∪ {({dsnym0, dsnym1}), dpk,m}
- find nym0, nym1 ∈ N \ C such that dsnymi = NymDSGen(nymi, gsk[nymi],

dpk) for i = 0, 1
- return ⊥ if no such nym0, nym1 exist, else return NymSig(dsnymb, gsk[nymb],

dpk, m)
Return 1 iff

a) d = b and

Domain-Specific Pseudonymous Signatures Revisited 5

b) for any ({dsnym0, dsnym1}, dpk, m), ({dsnym′0, dsnym′1}, dpk, m′) ∈ T we
have either {dsnym0, dsnym1} = {dsnym′0, dsnym′1} or {dsnym0, dsnym1} ∩
{dsnym′0, dsnym′1} = ∅, and

c) for any (dsnym, dpk, m) ∈ S there is no dsnym′, m′ such that ({dsnym,
dsnym′}, dpk, m′) ∈ T
The probability is taken over all coin tosses of NymKGen, NymSig, and A,

and the choice of b.

In short, the goal of the authors is to provide unlinkability of pseudonyms
across different domains. As noticed in [3]:

“The left-or-right challenge takes as input two pseudonyms for the same do-
main and a message and outputs a signature on this message by one of the
corresponding users. A simple strategy to win the game, independently of the
construction, is to verify this signature using both pseudonyms: it will be valid
for only one of them.”

and further
“Moreover, in their game, both pseudonyms queried to the challenge oracle

are in the same domain, which does not fit the cross-domain anonymity,”
Indeed, the input of the left-or-right oracle consists of two pseudonyms dsnym0,

dsnym1, a single domain specification dpk and a message m. The oracle will re-
turn ⊥ if any of these pseudonyms does not belong to any user with regards
to the domain dpk. Thus, the definition says nothing about linking pseudonyms
across different domains.

Unforgeability. The definition of unforgeability from [2] finally refers to the group
managers secret key.

“It should be infeasible to create a valid signature on behalf of an honest
pseudonym for a previously unsigned message. This should even hold if the ad-
versary knows the group manager’s secret key (but not the user’s secret key, else
trivial attacks would be possible).”

In our opinion, it seems somehow strange to require hardness of forging a
signature on behalf of a user by the group manager while it is the group manager
who creates the user’s secret keys.

Defining such a requirement is actually saying that: “it is infeasible for the
group manager to produce signatures on behalf of honest users, although he owns
every secret key, since the group manager simply won’t forge this signatures”.

However, as the authors state that “adversary may know the group manager’s
secret key, it must not collaborate with the group manager during generation” it
seems that the aim of the model should be to capture the case, where after
generating a user’s secret key the group manager simply “forgets” this key. In
theory this may be valid if we assume the secret keys are independently gener-
ated, and the secret is immediately deleted (e.g. via a hardware mechanism) on
the group manager’s side. However, if we treat the group manager’s secret key as
all his secret data including for instance the seeds for a pseudorandom number
generator etc., then an adversary may reconstruct the user’s secret keys. Hence,
it would be necessary to use true randomness each time a user’s secret key is

6 Kamil Kluczniak

created. In practice, in case of an attack on a group manager, it might be that
not only the “secret key” leaks but also, all other sensitive information related
to the security of the system.

While in many real life situations we take the risk and trust a certain body,
the presented definition and discussion attempts to hide this necessary trust
assumption. This may awake a lot of justified concerns.

Seclusiveness. This property should guarantee that no adversary should be able
to produce a signature for a pseudonym which would be acceptable in the system
as a valid domain signature but which cannot be attributed to any legitimate
user created in the system.

While the seclusiveness model seems to be adequate, the construction pre-
sented in [2] contains a severe weakness, which the authors actually admit:

“By construction, this means that the adversary can thus only corrupt one
user, else z becomes known. When considering blacklisting for our construction,
we stipulate this below by requiring that the secrets are stored securely in hard-
ware, or, respectively, that the number of corrupt requests qc is at most 1.”

For a powerful adversary it does not make real difference to break into one
or two smart cards implementing domain signatures. Thereby, the assumption
of 1-seclusiveness is correctly stated in a purely mathematical sense, but quite
dubious in the practical sense. When implementing a system like this, we have to
assume that certain party may get the system key z and therefore may produce
valid identities. So seclusiveness property does not hold for the system from [2]
in a very practical sense. It may be regarded as secure against petty criminals
with standard technical capabilities for attacks against smart cards.

In our opinion this Achilles’ heel of the construction from [2] is a critical issue
and disqualifies it for any large scale practical applications, in particular for an
implementation on personal eID cards issued by the state authorities.

3 Efficient and Strongly Secure Dynamic Domain-Specific
Pseudonymous Signatures for ID Documents

In this section we review the definitions, constructions and security proofs from
[3] (which also appear in the PhD dissertation [4]). The authors of this scheme
propose a definition for Domain Pseudonymous Signatures which is supposed
to capture the dynamic case, i.e. the scenario in which the users may be added
dynamically. Moreover, their definition also allows to add new domains to the
system. The authors also encounter some flaws in [2] and attempt to patch them.
However, we find that their security models and security proofs have also some
serious drawbacks and even mistakes. Finally, we give some comments on the
construction.

Bellow we recall the definition from [3]. Since the model and, especially, the
oracle description are quite complicated we recall them here instead of referring
the reader to the original article [3].

Domain-Specific Pseudonymous Signatures Revisited 7

Definition 3. A dynamic domain-specific pseudonymous signature scheme is
given by an issuing authority IA, a set of users U , a set of domains D, and
the functionalities {Setup, DomainKeyGen, Join, Issue, NymGen, Sign, Verify,
DomainRevoke, Revoke} as described below. By convention, the users are enu-
merated here with indices i ∈ N and the domains with indices j ∈ N.

Setup: On input a security parameter λ, this algorithm computes global param-
eters gpk and an issuing secret key isk. A message spaceM is specified. The
sets U and D are initially empty. The global parameters gpk are implicitly
given to all algorithms, if not explicitly specified:

(gpk, isk)← Setup(1λ)

DomainKeyGen: On input the global parameters gpk and a domain j ∈ D, this
algorithm outputs a public key dpkj for the domain j. At the same time an
empty revocation list RLj associated to the domain j is created:

(dpkj , RLj)← DomainKeyGen(gpk, j)

Join↔Issue: This protocol involves a user i ∈ U and the issuing authority IA.
Join takes as input the global parameters gpk. Issue takes as input the global
parameters gpk and the issuing secret key isk. At the end of the protocol, the
user i gets a secret key uski and the issuing authority IA gets a revocation
token rti:

uski ← Join(gpk)↔ Issue(gpk, isk)→ rti

NymGen: On input the global parameters gpk, a public key dpkj for a domain
j ∈ D and a secret key uski of a user i ∈ U , this deterministic algorithm
outputs a pseudonym nymij for the user i related to the domain j:

nymij ← NymGen(gpk, dpkj , uski)

Sign: On input the global parameters gpk, a public key dpkj of a domain j ∈ D,
a secret key uski of a user i ∈ U , a pseudonym nymij for the user i in the
domain j and a message m ∈M, this algorithm outputs a signature σ:

σ ← Sign(gpk, dpkj , uski, nymij ,m)

Verify: On input the global parameters gpk, a public key dpkj of a domain
j ∈ D, a pseudonym nymij, a message m ∈ M, a signature σ and the
revocation list RLj of the domain j, this algorithm outputs a decision d ∈
{accept; reject}:

d← Verify(gpk, dpkj , nymij ,m, σ,RLj)

Revoke: On input the global parameters gpk, a revocation token rti of a user
i ∈ U and a list of domain public keys {dpkj}j∈D′⊆D, this algorithm outputs
a list of auxiliary informations {auxj}j∈D′⊆D intended to the subset D′ ⊆ D
of domains:

{auxj}i∈D′⊆D ← Revoke(gpk, rti, {dpkj}j∈D′⊆D)

8 Kamil Kluczniak

DomainRevoke: On input the global parameters gpk, a public key dpkj of a
domain j ∈ D, an auxiliary information auxj and the revocation list RLj of
the domain j, this algorithm outputs an updated revocation list RL′j:

RL′j ← DomainRevoke(gpk, dpkj , auxj , RLj)

Now we recall the oracle descriptions from [3] on Figure 1. The games involve
the following global variables:

– D is a set of domains,
– HU is a set of honest users,
– CU is a set of corrupted users,
– CH is the set of inputs to the challenge oracle,
– UU is the list of “uncertainty”,
– usk lists the users’ secret keys,
– rt lists the revocation tokens,
– nym is a list of pseudonyms,
– dpk is a list of domain public keys,
– RL is the revocation list,
– Σ is a set of signed messages.

Unforgeability

Below we recall the definition of the unforgeability property from [3].
UnforgeabilityDSPS

A (λ):

1. (gpk, isk) ← DSPS.Setup(1λ)
2. D,HU , CU ← {}
3. O← {AddDomain(.), WriteRegistractionTable(., .), Sign(., ., .), SendToUser(., .)}
4. (dpk∗, nym∗,m∗, σ∗)← AO(gpk, isk)
5. Return 1 if all the following statements hold.

(a) There exists j ∈ D such that dpk∗ = dpk[j]
(b) There exists i ∈ HU such that nym∗ = nym[i][j], usk[i] 6=⊥ and

rt[i] 6=⊥
(c) m∗ 6∈ Σ[(i, j)]
(d) DSPS.Verify(gpk, dpk∗, nym∗,m∗, σ∗, {}) = accept

(e) DSPS.Verify(gpk, dpk∗, nym∗,m∗, σ∗, L) = reject where L := Domain-
Revoke(gpk, dpk∗, DSPS.Revoke(gpk, rt[i], {dpk∗}, {})

Otherwise, return 0.

The advantage of an adversary A against the Unforgeability game is defined
by

AdvunforgeabilityA,DSPS (λ) := Pr[UnforgeabilityDSPS
A (λ) = 1]

A DSPS scheme achieves unforgeability if, for all polynomial adversaries A, the
function AdvunforgeabilityA,DSPS (.) is negligible.

Domain-Specific Pseudonymous Signatures Revisited 9

AddDomain(j)
- if j ∈ D, then abort
- RL[j] := {}; All[j] := copy(HU)
- dpk[j]← DomainKeyGen(gpk, j)
- ∀i ∈ HU
• Σ[(i, j)] := {}; UU[(i, j)] := &(All[j])
• nym[i][j]← NymGen(gpk,dpk[j],usk[i])

- return dpk[j]

CorruptUser(i)
- if i ∈ HU ∪ CU , then abort
- CU := CU ∪ {i}
- usk[i] :=⊥; nym[i] :=⊥; rt[i] :=⊥
- dec[IA][i] := cont; state[IA][i] := (gpk, isk)

Nym(i, j)
- if i 6∈ HU or j 6∈ D or (i, j) ∈ CH, abort
- UU[(i, j)] := {i}; All[j] := All[j] \ {i}
- ∀i′ ∈ HU \ {i}, if UU[(i′, j)] 6= &(All[j]),

then UU[(i′, j)] := UU[(i′, j)] \ {i}
- return nym[i][j]

NymDomain(j)
- if j 6∈ D, then abort
- result := random perm(copy(All[j]))
- ∀i ∈ HU ,
• if UU[(i, j)] == &(All[j]),

- UU[(i, j)] := copy(All[j])
- All[j] := {}; return {nym[i][j]}i∈result

Sign(i, j,m)
- if i 6∈ HU or j 6∈ D, then abort
- Σ[(i, j)] := Σ[(i, j)] ∪ {m}
- return Sign(gpk,dpk[j],usk[i],nym[i][j],m)

ReadRegistrationTable(i)
- return rt[i]

WriteregistrationTable(i,M)
- rt[i] := M

AddUser(i)
- if i ∈ HU ∪ CU , then abort
- HU := HU ∪ {i}
- run usk ← Join(gpk)↔ Issue(gpk, isk)→ rt
- usk[i] := usk; rt[i] := rt
- ∀j ∈ D
• Σ[(i, j)] := {}; All[i] := All[j] ∪ {i}
• nym[i][j]← NymGen(gpk,dpk[j],usk[i])
• UU[(i, j)] := &(All[j])

UserSecretKey(i)
- if i 6∈ HU or ∃j ∈ D, s.t. (i, j) ∈ CH, abort
- HU := HU \ {i}; CU := CU ∪ {i}
- ∀j ∈ D,
• UU[(i, j)] := {i}; All[j] := All[j] \ {i}
• ∀i′ ∈ HU , if UU[(i′, j)] 6= &(All[j]),

then UU[(i′, j)] := UU[(i′, j)] \ {i}
- return {usk[i],nym[i]}

Revoke(i,D′)
- ∀i ∈ D′, call DomainRevoke(i, j)
- return {RL[j]}j∈D′

DomainRevoke(i, j)
- if i 6∈ HU or j 6∈ D or (i, j) ∈ CH, then abort
- aux← Revoke(gpk, rt[i], {dpk[j]})
- RL[j]← DomainRevoke(dpk[j], aux,RL[j])
- UU[(i, j)] := {i}; All[j] := All[j] \ {i}
- ∀i′ ∈ HU \ {i}, if UU[(i′, j)] 6= &(All[j]),

then UU[(i′, j)] := UU[(i′, j)] \ {i}
- return RL[j]

NymSig(nym, j,m)
- if i 6∈ D, then abort
- find i ∈ HU such that nym[i][j] == nym

if no match is found, then abort
- Σ[(i, j)] := Σ[(i, j)] ∪ {m}
- return Sign(gpk,dpk[j],usk[i],nym[i][j],m)

SendToUser(i,Min)
- if i ∈ CU , then abort; if i 6∈ HU , then
HU := HU ∪ {i}; Min := ε; usk[i] :=⊥; state[i][IA] := gpk; dec[i][IA] := cont

- (state[i][IA]),Mout, dec[i][IA])← Join(state[i][IA],Min, dec[i][IA])
- if dec[i][IA] == accept, then usk[i] := state[IA]
- return (Mout, dec[i][IA])

SendToIssuer(i,Min)
- if i 6∈ CU , then abort
- (state[IA][i],Mout, dec[IA][i])← DSPS.Issue(state[IA][i],Min, dec[IA][i])
- if dec[IA][i] == accept, then set rt[i] := state[IA][i]
- return (Mout, dec[IA][i])

Challenge(bA, bB , jA, jB , i0, i1)
- if i0 6∈ HU or i 6∈ HU or i0 == i1 or jA 6∈ D or jB 6∈ D or jA == jB , then abort
- ∀j ∈ {jA, jB}, ∃i ∈ {i0, i1} such that {i0, i1} 6⊂ UU[(i, j)], then abort
- CH := {(i0, jA), (i0, jB), (i1, jA), (i1, jB)}; return (nym[ibA][jA],nym[ibB][jB])

Fig. 1. Oracle definition from [3]

10 Kamil Kluczniak

Comments. The authors of [3] declare as follows:

“Informally, we want that a corrupted authority and corrupted owners of the
domains cannot sign on behalf of an honest user.”

Unfortunately, the model fails to provide that, since the adversary does not
have the possibility to create or corrupt existing domains. To be more specific, the
adversary obtains only the AddDomain oracle which on input takes an identifier
j. Moreover, a forgery needs to be done for a domain added by the challenger
via the AddDomain oracle. Thus, the adversary has no control over the creation
of the domains. Hence the model does not capture the case where a malicious
domain owner forges a signature on behalf of an honest user.

Note that this leaves us in an awkward situation, where the issuer is not
trusted, i.e. the adversary controls him, and we want to protect the scheme
against forgeries made by a malicious issuer, but we do not protect the scheme
against the party (whoever this party might be) which generates the domain
descriptions. Thus, the model implicitly assumes that the party which generates
the domain descriptions can be trusted.

Let us also comment the security proof, i.e. the proof of Theorem 7 in [3].
Let us recall literally the response phase from this proof:

Response. A play of A eventually gives (dpk∗, nym∗,m∗, σ∗). If this is a
valid and non trivial response, then (i) we can find a domain j such that
dpk∗ = dpk[j] and an honest user i with consistent values nymij ← nym[i][j],
(Fi, xi) ∈ rt[i] and (∗, Ai, xi, Zi) ∈ usk[i] such that nym∗ = nymij , (Fi, xi) ∈
rt[i] , and (ii) according to the Σ-unforgeability (Lemma 5, Game 2), we
are able to extract a valid certificate (f∗, A∗, x∗, Z∗) where (in particular)
nym∗ = hf∗ · (dpk∗)x∗ . Since discrete representations in G1 are unique mod-
ulo p, then we have that f∗ = logg(Fi) (the pseudonym must be valid in a
non trivial forgery) and x∗ = xi. With probability 1/qU we have i = i, since
i is independent of the view of A. This implies that Ai = A∗ (a value A is

determined by f, x and γ). Therefore A∗ = (g1 · gf∗1)
1

x∗+γ = (g1 · H · hf
′′
i)

1
x∗+γ

and we obtain Θ = f∗ − f ′′i
The conclusion of the sentence starting with the words “Since discrete rep-

resentations in G1 are unique modulo p” is simply not true. There are exactly
p elements (f∗, x∗) which satisfy the equation nym∗ = hf∗ · (dpk∗)x∗ . Therefore,
with probability 1 − 1

p ≈ 1 we have that f∗ 6= logg1(Fi) and x∗ 6= xi. Thus the
reduction is evidently incorrect.

In order to make the proof work, one must assume that the party which
generates g1 and h is trusted. To be more specific, the proof should consider the
case where the extractor returns (f∗, x∗) such that hf∗ ·(dpk∗)x∗ = hfi ·(dpk∗)xi =
nym∗ and (f∗, x∗) 6= (fi, xi), for some i. Now, in case a solver puts the discrete
logarithm problem instance into the value h and knows logg1(dpk∗), he may
compute logg1(h) = r(xi − x∗)/(f∗ − fi).

Nevertheless, the system seems still to be secure in the sense of the unforge-
ability definition given in [3], but the reduction needs to be done similarly as we

have described above, and assuming that the party which generates g1, h
R← G1

Domain-Specific Pseudonymous Signatures Revisited 11

is trusted, i.e. the adversary does not choose h by himself, what the authors of
[3] luckily assume.

Seclusiveness

Below we recall the definition of seclusiveness from [3].

SeclusivenessDSPS
A (λ):

1. (gpk, isk) ← DSPS.Setup(1λ)

2. D,HU , CU ← {}
3. O← {AddDomain(.), AddUser(.), CorruptUser(.), UserSecretKey(.), Sign(., ., .),

ReadRegistractionTable(.), SendToIssuer(., .)}
4. (dpk∗, nym∗,m∗, σ∗)← AO(gpk, isk)

5. Find j ∈ D such that dpk∗ := dpk[j]. If no match is found, then return 0.

6. Return 1 if for all i ∈ U , one of the following statements hold.

(a) rt[i] =⊥
(b) DSPS.Verify(gpk, dpk∗, nym∗, m∗, σ∗, RL) = accept where RL :=

DSPS.DomainRevoke(gpk, dpk∗, aux, RL[j]) and aux := DSPS.Revoke(gpk,
rt[i], {dpk∗}).

Otherwise, return 0.

The advantage of an adversary A against the Seclusiveness game is defined
by

AdvSeclusivenessA,DSPS (λ) := Pr[Seclusiveness]DSPS
A (λ) = 1]

A DSPS scheme achieves seclusiveness if, for all polynomial adversaries A, the
function AdvSeclusivenessA,DSPS (λ) is negligible.

Comments. Again in the definition of seclusiveness the adversary is not allowed
to choose the domain descriptions for himself. However, unlike for unforgeability,
the authors do not make an informal statement that malicious domain owners
might be controlled by the adversary. Hence the model does not protect against
malicious domains owners.

For seclusiveness we have just one remark which actually also applies to
unforgeability. For both seclusiveness and unforgeability the authors make use
of the extractor of the signature of knowledge. This extractor is based on the
proof of knowledge property of the Σ-protocol and proved in Lemma 3. Let us
recall literally the beginning of the proof of Lemma 3 from [3]:

12 Kamil Kluczniak

Let us assume that a prover is able to give two valid responses
→
s ,
→
s′ to

two different challenges c, c′ given the same values T, (R1, R2, R3). First, by
dividing

hsf · dpksx = R1 · nymc by hs
′
f · dpks

′
x = R1 · nymc′

we obtain hsf−s
′
f ·dpk = nymc−c′ . Since c 6= c′, then c−c′ 6= 0 mod p, so c−c′

is invertible modulo p. Hence f̃ := (sf −s′f)/(c−c′) and x̃ := (sx−s′x)/(c−c′)
such that nym = hf̃ · dpkx̃. Then by dividing

nymsa · h−sd · dpk−sb = R2 by nyms′a · h−s
′
d · dpk−s

′
b = R2

we obtain nymsa−s′a = hsd−s
′
d · dpksb−s

′
b . Substituting nym = hf̃ · dpkx̃ gives

that (sd − s′d) = f̃ · (sa − s′a) and (sb − s′b) = x̃ · (sa − s′a) (which holds if h
and dpk are generators of G1).

The argument “which holds if h and dpk are generators of G1” is clearly
invalid. The number of pairs (f̃ , x̃) which may satisfy this equations exactly
equals the order of the group. However, the equations (sd − s′d) = f̃ · (sa − s′a)
and (sb − s′b) = x̃ · (sa − s′a) may indeed hold assuming logh(dpk) or logdpk(h)
are unknown to the prover and the DL problem is hard in G1. Therefore, the
existence of the extractor is conditional or at least no other argument is known
by far. This subtlety has some minor impact on the proofs of seclusiveness and
unforgeablity. Fortunately, the authors give no control to the adversary over
computation of dpk or h in their security model. On the other hand, there is no
guarantee, that the trusted party which generates e.g. dpk may not be able to
forge signatures on behalf of honest users since the reduction for such case does
not work. By now, there has not been shown any attack, which would exploit the
fact that the extraction property does not work in such configuration, however,
this is unfortunately not covered by the security proof.

Cross-Domain Anonymity

Now, we will take a closer look on the, perhaps most important feature of domain
signatures which is Cross-Domain Anonymity.

Below we recall the Cross-Domain Anonymity definition from [3].

AnonymityDSPS
A (λ):

1. (gpk, isk) ← DSPS.Setup(1λ)

2. D,HU , CU , CH ← {}
3. bA, bB

R← {0, 1}
4. O← {AddDomain(.), AddUser(.), CorruptUser(.), UserSecretKey(.), Revoke(., .),

DomainRevoke(., .), Nym(., .), NymDomain(.), NymSig(., ., .), SendToIssuer(., .)}
5. b′ ← AO(gpk)

6. Return 1 if b′ == (bA == bB), and return 0 otherwise.

Domain-Specific Pseudonymous Signatures Revisited 13

The advantage of an adversary A against the Anonymity game is defined by

Advc−d−anonA,DSPS (λ) := Pr[AnonymityDSPS
A (λ) = 1]

A DSPS scheme achieves cross-domain-anonymity if, for all polynomial adver-
saries A, the function Advc−d−anonA,DSPS (λ) is negligible.

Comments. In the cross-domain anonymity definition the authors define a un-
certainty set for user indexes:

“Since the functionality is dynamic, there might be no anonymity at all if
we do not take care of the formalization. For instance, an adversary might ask
for adding two domains, two users, i0, i1, ask for their pseudonyms through two
calls to NymDomain, add a user i2 and win a challenge involving i0, i2 with
non-negligible probability. This attack does not work here, since the All list is
emptied after each NymDomain call.”

Clearly, the authors are right here, however we see the “uncertainty” set
mainly as a kind of “smoke grenade” which obscures the view of the model, is
not intuitive and makes the model hard to understand.

Moreover, we may consider the following sample game with an adversary A:

1. Start Experiment.
2. A calls dpk[1]← AddDomain(1).
3. A calls dpk[2]← AddDomain(2).
4. A calls AddUser(1).
5. A calls AddUser(2).

Note that the adversary did not yet learn any pseudonym or signature of any
of the added users in any of the added domains. Now if A calls the challenge
oracle Challenge(., ., 1, 2, 1, 2), i.e. for users 1 and 2, and domains 1 and 2, then
the oracle will return ⊥ since {1, 2} 6⊂ UU. So, the notion of uncertainty set does
not allow the adversary for such a strategy, even if the adversary did not ask for
any pseudonym or signature. After a careful analysis one can find out that first
all users have to be added to the system, and then new domains can be added
in order to make the Challenge oracle not to return ⊥.

Let us now consider consequences of this situation. It seems that according
to this definition cross-domain anonymity may only be achieved when there is a
set of users added to the system before any domain appears, regardless whether
a user creates a signature or publishes a pseudonym or not. So, according to the
definition, it seems that only a static group of users determined before creating
any domain may stay cross-domain anonymous.

Implementation Issues. The authors main use case is the implementation of
their protocol for smart cards, or to be more specific, on identity documents like
electronic passports and eID documents. The protocol involves some computa-
tions in GT which is considered to be heavy for smart cards. Thus, the authors
propose to delegate the heavy computation of the smart card to a reader.

The authors claim that

14 Kamil Kluczniak

“In our construction, the adversary can compute A from B2 and σ (if σ
= (T , c, sf , sx, sa, sb, sd), then A = T · (B2 · hsa)−1/c. The fact that we can
simulate signatures even in the cross-domain anonymity game shows that the
knowledge of A does not help linking users across domains.”

Obviously, the fact that a part of the private key leaks is true and worri-
some. But the fact that we can simulate the signature, does not imply that the
knowledge of A does not help a potential adversary. From their analysis of the
“P” protocol on which they base their construction, we see that the honest ver-
ifier zero-knowledge property is preserved on common input the global public
parameters gpk, a domain specification dpk and a pseudonym nym, where the
witness is a tuple (f,A, x) such that A = (g1 · hf)1/(γ+x) and nym = hf · dpkx.
Clearly, when considering the delegation procedure the protocol is not honest
verifier zero knowledge anymore. Some bits of the witness leak! Thus, it remains
unclear whether the knowledge of A does not help a potential adversary in link-
ing pseudonyms or forging signatures. It seems that the authors probably also
noticed this problem, since in the model extension they restrict the Challenge
oracle as follows:

“we restrict the Challenge query to involve at most one user for which the
adversary called GetPreComp (before and after the Challenge call).”

Obviously, in the proof of Theorem 9, the user for which GetPreComp was not
called, is the one for which the solving algorithm will “inject” the DDH problem
instance, and this is exactly the case, where in case such user would delegate the
computation, the solving algorithm could not simulate the signature.

Moreover, the model implicitly also assumes that users stay cross-domain
anonymous only if they do not delegate the computation.

It seems that in case of unforgeability this argument does not work, since
in the proof of Theorem 9 the authors totally change the signature simulation
algorithm.

A final practical remark on the delegation approach is that maybe the knowl-
edge of A does not help in linking users across different domains directly. By now,
no direct attack has been found and luckily A ∈ G1 and nym ∈ G1 where DDH
is assumed to be hard. However, this may still be considered as a privacy threat.
Let us consider the following example. Let us assume that a user creates a sig-
nature and the reader is malicious. Thus the reader might collect pairs (A,nym)
and (A,nym′) for different domains. Of course, there is no proof or check that
A really corresponds to nym or nym′, however why should a smart card “cheat”
and send a different A? This reminds somehow on IP addresses, where obviously
a service receiving an IP address of a user does not have any undeniable proof
that this particular user used that IP (the address may be spoofed). However,
in the scientific literature even this is regarded as a very serious privacy threat
and there is a plenty of work on hiding the IP addresses.

Domain-Specific Pseudonymous Signatures Revisited 15

4 Conclusions

We have shown some drawbacks in the security model, thus it clearly does not
capture what is required from a Domain Pseudonymous Signature Scheme. We
believe that the description of the model is complicated and somehow obscure
to the extend that it might be even impossible for a non expert to understand
the security goals of the proposed scheme. We think that even for experts, the
analysis of the definitions, proofs and finally the construction itself, is quite
tedious.

Despite our remarks, we think that the constructions itself might be useful.
It may turn out that after taking care of some essential detail we could propose
a more readable and sound model, and was is more, get rid of the controversial
properties the reviewed protocols have.

References

1. Kuty lowski, M., Shao, J.: Signing with multiple id’s and a single key. In: Consumer
Communications and Networking Conference, IEEE CCNC 2011. (Jan 2011) 519–
520

2. Bender, J., Dagdelen, z., Fischlin, M., Kgler, D.: Domain-specific pseudonymous
signatures for the german identity card. In Gollmann, D., Freiling, F., eds.: In-
formation Security. Volume 7483 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2012) 104–119

3. Bringer, J., Chabanne, H., Lescuyer, R., Patey, A.: Efficient and strongly secure
dynamic domain-specific pseudonymous signatures for id documents. In Christin,
N., Safavi-Naini, R., eds.: Financial Cryptography and Data Security. Volume 8437
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2014) 255–272

4. Patey, A.: Techniques cryptographiques pour lauthentification et lidentifica-
tion biométriques respectant la vie privée (cryptographic techniques for privacy-
preserving biometric authentication and identification). TELECOM ParisTech, PhD
Thesis (2014)

5. BSI: Advanced Security Mechanisms for Machine Readable Travel Documents and
eIDAS Token 2.20. Technical Guideline TR-03110-2 (2015)

A Domain Signature Scheme from [2]

The construction of the domain signature scheme from [2] is as follows:

NymKGen(1k, 1n, 1d): Let G = 〈g〉 be a (public) cyclic group of prime order
q. We also assume a public hash function H, modeled as a random oracle
in the security proofs. Choose z ∈ Zq randomly and calculate g1 := g and
g2 := gz. Define gpk := gx1 for random x ∈ Zq. To generate the secrets for
the pseudonyms choose n random elements x2,1, . . . , x2,nZq and calculate
x1,i = x−z·x2,i for i = 1, 2 . . . , n. Define gsk[i] := (x1,i, x2,i). By xj we denote
the xj,i when pseudonym i is clear from context. For the domain-parameters
pick random r1, · · · , rd ∈R Zq and define dpki := gri for i = 1, . . . , d. Store
z in gmsk. (Note that once the values gsk[·] have been output resp. given to
the users, the group manager deletes them.)

16 Kamil Kluczniak

NymDSGen(nym, gsk[nym], dpk): Compute and output the domain-specific pseudonym
nym[dpk] := dpkx1 , which is also sometimes denoted as dsnym when nym and
dpk are known from context.

NymSig(dsnym, gsk[nym], dpk,m): Let a1 = gt11 · g
t2
2 and a2 = dpkt1 , for random

t1, t2 ∈R Zq. Compute c = H(dpk, dsnym, a1, a2,m). Let s1 = t1 − c · x1 and
s2 = t2 − c · x2. Then, output σ = (c, s1, s2). (Note that in the Restricted-
Identification protocol the user also sends dsnym which we can include here
in the signature, in order to match the protocol description.)

NymVf(gpk, dsnym, dpk,m, σ,B): To verify a signature perform the following
steps:
1. Parse (c, s1, s2)← σ.
2. Let a1 = yc · gs11 · g

s2
2 and a2 = dsnymc · dpks1 .

3. Output 1 iff c = H(dpk, dsnym, a1, a2,m) and dsnym 6∈ B.

B Domain Signature Scheme from [3]

Below we recall the domain signature scheme from [3].

Setup(1λ):
1. Generate an asymmetric bilinear environment (p,G1,G2,GT , e)
2. Pick generators g1, h

R← G1 \ {1GT } and g2
R← G2 \ {1G2}

3. Pick γ ∈ Zp; Set w := gγ2
4. Choose a hash function H : {0, 1}∗ ← {0, 1}λ
5. Return gpk := (p,G1,G2,GT , e, g1, h, g2, w,H); isk := γ

DomainKeyGen(gpk, j):

1. Pick r
R← Z∗p; Set RLj ← {}; Return dpkj := gr1; RLj

Join(gpk) ↔ Issue(gpk, isk):

1. [i] Pick f ′
R← Zp; Set F ′ := hf

′

2. [i] Compute Π := PoK{C := Ext-Commit(f ′)∧NIZKPEqDL(f ′, C, F ′, h)}
3. [U ← IA] Send F , Π [IA] Check Π

4. [IA] Pick x, f ′′ ∈ Zp; Set F := F ′ · hf ′′ ; A := (g1 · F)
1

γ+x ; Z := e(A, g2)
5. [U ← IA Send f ′′, A , x, Z

6. [i] Set f := f ′ + f ′′; Check e(A, gx2 · w)
?
= e(g1 · hf , g2)

The user gets uski := (f,A, x, Z); The issuer gets rti := (F, x)
NymGen(gpk, dpkj , uski):

1. Parse uski as (fi, Ai, xi, Zi); Return nymij := hfi · (dpkj)xi
Sign(gpk, dpk, usk, nym,m):

1. Parse usk as (f,A, x, Z)

2. Pick a, ra, rf , rx, rb, rd
R← Zp; Set T := A · ha

3. Set R1 := hhf · dpkrx ; R2 := nymra · h−rd · dpk−rb
4. Set R3 := Zrx · e(h, g2)a·rx−rf−rb · e(h,w)ra

5. Compute c := H(dpk||nym||T ||R1||R2||R3||m)
6. Set sf := rf + c · f ; sx := rx + c · x; sa := ra + c · a; sb := rb + c · a · x;
sd := rd + c · a · f

Domain-Specific Pseudonymous Signatures Revisited 17

7. Return σ := (T, c, sf , sx, sa, sb, sd)
Verify(gpk, dpk, nym,m, σ,RL):

1. If nym ∈ RL, then return reject and abort.
2. Parse σ as (T, c, sf , sx, sa, sb, sd)
3. Set R′1 := hsf · dpksx · nym−c; R′2 := nymsa · h−sd · dpk−sb
4. Set R′3 := e(T, g2)sx · e(h, g2)−sf−sb · e(h,w)−sa · [e(g1, g2) · e(T,w)−1]−c

5. Compute c′ := H(dpk||nym||T ||R′1||R′2||R′3||m)
6. Return accept is c = c′, otherwise return reject.

Revoke(gpk, rti,D′):
1. Parse rti as (Fi, xi); Return {auxj := Fi · (dpkj)xi}j∈D′

DomainRevoke(gpk, dpkj , aux,RLj):

1. Return RLj := RLj ∪ {auxj}

