Analysing and Exploiting the Mantin Biases in
RC4

Remi Bricout!, Sean Murphy?, Kenneth G. Paterson?, and Thyla van der
Merwe?

L ENS, Paris
2 Royal Holloway, University of London

Abstract. We explore the use of the Mantin biases (Mantin, Eurocrypt
2005) to recover plaintexts from RC4-encrypted traffic. We provide a
more fine-grained analysis of these biases than in Mantin’s original work.
We show that, in fact, the original analysis was incorrect in certain cases:
the Mantin biases are sometimes non-existent, and sometimes stronger
than originally predicted. We then show how to use these biases in a
plaintext recovery attack. Our attack targets two unknown bytes of plain-
text that are located close to sequences of known plaintext bytes, a sit-
uation that arises in practice when RC4 is used in, for example, TLS.
We provide a statistical framework that enables us to make predictions
about the performance of this attack and its variants. We then extend
the attack using standard dynamic programming techniques to tackle
the problem of recovering longer plaintexts, a setting of practical in-
terest in recovering HTTP session cookies and user passwords that are
protected by RC4 in TLS. We perform experiments showing that we can
successfully recover 16-byte plaintexts with 80% success rate using 23!
ciphertexts, an improvement over previous attacks.

1 Introduction

RC4 is a very widely-deployed stream cipher, but its usage in particular appli-
cations such as TLS and WPA /TKIP has recently come under heavy attack —
see [1,5,7,9,8,4], and the concurrent work to ours, [12]. The main idea of these
attacks is to exploit known and newly discovered biases in RC4 keystreams to
recover fixed plaintexts that are repeatedly encrypted under RC4. Such attacks
can be realised against applications using RC4, including TLS and WPA /TKIP,
and in particular lead to serious breaks in application layer protocols using TLS.

Mantin [6] showed that patterns of the form ABSAB occur in RC4 keystreams
with higher probability than expected for a random sequence. Here A and B are
byte values and § is an arbitrary byte string of some length G. Mantin’s main re-
sult can be stated as follows. Let G > 0 be a small integer. Under the assumption
that the RC4 state is a random permutation at step r, then

e(—4—8G)/256>

Pr ((Zr7 ZrJrl) = (ZT+G+27 ZT+G+3)) = 2_16 (1 + 256

Note that for a truly random byte string Z,, ..., Z,.1c+3, the probability that
(Zyry Zri1) = (Zrycaoy Zriges) is equal to 2716, The relative bias is therefore
equal to e(~478G)/256 /956 which is about 1/256 for small G.

Mantin’s biases are particularly attractive for use in attacks on RC4 because
they are a) relatively large, b) numerous, and c) persistent in RC4 keystreams.
Their presence was confirmed experimentally in [6, 10]. Indeed, they have already
been exploited in attacks — see [7] and the concurrent work to ours, [12]. In the
current paper, we make a systematic study of their use in attacking RC4 in the
broadcast setting. Our main contributions can be summarised as follows:

1. We provide a more fine-grained analysis of the Mantin biases than in the
original analysis [6], showing that in fact for certain values of A and B, the
biases are non-existent, or, in some cases, stronger than predicted by (1). For
example, we show that if A =1 or B = 1, then the analysis in [6] fails, and
so there is no reason to expect any bias for strings of the form 1BS1B or
A1S A1l. We also conducted large-scale experiments to confirm that our new
analysis is correct. These results are important given the way in which the
Mantin biases are used to attack RC4, for two reasons. Firstly, significant
deviations from the expected bias behaviour would reduce the effectiveness
of the attacks. Secondly, if the biases depended significantly on the values
of A, B and G, and this dependence was well-understood, then it could be
exploited in refined attacks on RC4 (this phenomenon was exploited in [9,
8] for RC4 as deployed in WPA /TKIP, though for different biases).

2. Fortunately, as we will see, the number of byte pairs (A4, B) for which Mantin’s
analysis is incorrect is small, and the average behaviour is still in-line with
(1). This makes it profitable to develop a statistical framework for exploiting
the Mantin biases in plaintext recovery attacks for the broadcast setting. We
provide such a framework which directly leads to an algorithm that recovers
adjacent pairs of unknown plaintext bytes, under the assumption (also used
in [7,12] and valid in practice for attacks against protocols like TLS) that the
target plaintext bytes are in the neighbourhood of known plaintext bytes.

3. Importantly, and in contrast with [7,12], our analysis enables us to make
predictions about the numbers of ciphertexts needed to reliably recover tar-
get plaintext bytes. More precisely, our attack computes the likelihood of
each possible target plaintext byte pair, and we are able to compute the dis-
tribution of the rank of the likelihood of the correct byte pair amongst the
likelihoods of all possible pairs as a function of the number of ciphertexts N
and the number of known plaintext bytes T'. In particular, we can compute
the values of (N,T) needed to ensure that the median value of the rank
is 1, meaning that the correct plaintext is recovered with high probability.
Our approach here is to use results from order statistics, a well-established
field of statistical investigation that does not appear to have been applied
extensively before in cryptanalysis.

4. Our framework extends smoothly to make predictions in practically inter-
esting cases where, for example, some side information is known about the

plaintexts, or where known plaintext bytes are present on either side of the
unknown bytes.

5. We also extend the algorithm targeting just two unknown plaintext bytes to
algorithms recovering longer sequences of unknown plaintext bytes, a situ-
ation of practical interest in attacking session cookies [1] and passwords [4]
that are protected by RC4 in TLS. Here, we rely on standard methods from
the literature, namely beam-search and the list Viterbi algorithm [11], to
combine likelihood estimates for plaintext candidates on overlapping pairs
of bytes to produce approximate likelihood estimates for longer sequences of
bytes. The beam-search algorithm is memory-efficient but does not provide
any guarantees about the quality of its outputs; the list Viterbi algorithm
is memory-intensive, but is guaranteed to output a list of candidates having
the L highest (approximate) likelihoods, where L is a parameter of the al-
gorithm. In practical attacks involving cookies and passwords, this type of
guarantee is sufficient, since large numbers of candidates can be tested for
correctness.

6. We report on a range of experiments with the beam-search and list Viterbi
algorithms, evaluating their performance for different parameters. For exam-
ple, using L = 26 in the list Viterbi algorithm, N = 23! ciphertexts, and
130 known plaintext bytes split either side of a 16-byte unknown plaintext,
we are able to recover that 16-byte target plaintext with a success rate of
about 80% This is a significant improvement on the preferred attack of [1],
which required around 232 — 234 ciphertexts, and is broadly comparable with
the results obtained in [12].

1.1 Further remarks on related work

AlFardan et al. [1] presented two attacks against RC4 in TLS, using single-
byte biases in the first and double-byte Fluhrer-McGrew biases from [3] in the
second. As in our work, their second attack uses a Viterbi algorithm (though
only outputting a single plaintext candidate, so not a list Viterbi algorithm).
Their second attack requires around 234 ciphertexts to reliably recover a 16-byte
target plaintext. Isobe et al. [5] also gave plaintext recovery attacks for RC4
using single-byte and double-byte biases, though their attacks were less effective
than those of [1] and they did not explore in detail the applicability of the attacks
to TLS.

Ohigashi et al. [7] were the first to use the Mantin biases in plaintext recovery
attacks against RC4. They present an attack that targets a single unknown
plaintext byte and that uses multiple Mantin biases (for different values of G).
Roughly speaking, the unknown plaintext byte is aligned with the second “B”
in patterns of the form ABSAB for varying sizes of S, while the plaintext bytes
in the other 3 positions are known; a count is made of the number of times
in the RC4 output a string ABSAB is suggested for each unknown plaintext
byte. In the analysis of [7], all biases are “weighted” in the same way, while,
intuitively, the weaker the bias, the less reliable the information about plaintext
bytes it provides. This overweights the known plaintext bytes that are far from

the unknown, target bytes, and leads to a statistically sub-optimal attack. Their
attack also recovers multiple plaintext bytes in a byte-by-byte fashion, meaning
that if the attack goes wrong, then it tends to continue wrongly. This in turn
means that the success rate of the attack decreases exponentially with the target
plaintext length. Ohigashi et al. did not provide any rigorous analysis of their
attacks, but instead simulated them to estimate their effectiveness.

In concurrent work to ours, Vanhoef and Piessens [12] conducted an exten-
sive search for new biases in RC4 keystreams, and settled on using the Mantin
biases in combination with the Fluhrer-McGrew biases to target the recovery
of HTTP session cookies from TLS sessions. (They also presented an attack on
WPA/TKIP that is based heavily on the single-byte bias attacks from [9, 8].)
Like us, they use a likelihood-based analysis involving Mantin biases, but their
analysis is only formalised for single values of (G, and they simply take the prod-
ucts of likelihoods for different values of G without further formal statistical
justification (though this procedure can be rigorously justified, as our work here
shows). They also include in their product a likelihood term arising from the
Fluhrer-McGrew biases. Given the ad hoc nature of their approach, they resort
to (convincing) verification of attack performance via simulations. By contrast,
we are able to provide an analytical approach which makes predictions about
the distribution of the rank of our likelihood statistic for the correct plaintext
bytes. Vanhoef and Piessens [12] extend their attacks to the recovery of multiple
plaintext bytes using a list Viterbi algorithm, as we do. They are able to obtain
results for impressive values of L, the list size, in this algorithm. For example,
their headline result is obtained using L = 22 and recovers a 16-byte plaintext
with 94% success rate using N = 9 - 227 ciphertexts and roughly 256 known
plaintext bytes on either side of the unknown bytes.

1.2 Paper Organisation

In Section 2 we provide further background on the RC4 stream cipher. In Sec-
tion 3, we present our refined analysis of the Mantin biases. Section 4 presents
our attacks targeting two unknown plaintext bytes along with their analysis us-
ing order statistics. In Section 5, we explain briefly how standard techniques can
be used to extend these attacks to recovering multiple plaintext bytes.

2 Background

2.1 The RC4 algorithm

RC4 allows for variable-length key sizes, anywhere from 40 to 256 bits, and
consists of two algorithms, namely, a key scheduling algorithm (KSA) and a
pseudo-random generation algorithm (PRGA). The KSA takes as input an I-
byte key and produces the initial internal state sty = (i, j, S) for the PRGA; S
is the canonical representation of a permutation of the numbers from 0 to 255
where the permutation is a function of the I-byte key, and ¢ and j are indices

Algorithm 1: RC4 key schedul- Algorithm 2: RC4 keystream

ing (KSA) generator (PRGA)
input : key K of [bytes input : internal state st,
output: initial internal state st output: keystream byte Z, 1
begin updated state st,41
for i = 0 to 255 do begin
L S[i] « 4 parse (i, j, S) < st,
j«0 1 1+1
for i = 0 to 255 do]F]'&_'SM .
j < j+ S[i] + K[i mod {] swap(S[i], Sj])
L swap(S{il, S1j]) Zrr < SIST 1 SU]
.. Str1 < (7/7.]75)
,j 0 return (Z,41, str41)
sto « (i, 4,5)
| return sto

Fig. 1: Algorithms implementing the RC4 stream cipher. All additions are per-
formed modulo 256.

for S. The KSA is specified in Algorithm 1 where K represents the [-byte key
array and S the 256-byte state array. Given the internal state st,., the PRGA
will generate a keystream byte Z,,1 as specified in Algorithm 2.

For an overview of how RC4 is used in TLS, see [1,4]. The salient points for
our analysis are as follows: in each TLS connection, RC4 is keyed with a 128-bit
key that is effectively uniformly random; the key is used throughout the lifetime
of a TLS connection.

2.2 Known RC4 Biases

We recall the main results on biases in RC4 outputs from [3] and [6] that are
relevant here. The following is the main result of [3]:

Result 1 Let Z, be the r-th output byte of RCY given a random key (of any
length), where the outputs are numbered starting from 1. Then, for sufficiently
large r and for specific values, the adjacent byte pairs (Z,, Z,+1) are non-uniformly
distributed as shown in Table 1.

Extensive computations in [1] confirmed the presence of these biases and also
did not reveal any other significant biases in adjacent byte pairs. Further, the
biases are present from position 256 onwards.

The following result is a restatement of Theorem 1 of Mantin [6], concerning
the probability of occurrence of byte strings of the form ABSAB in RC4 outputs,
where A and B represent bytes and S denotes an arbitrary byte string of a
particular length G.

(Zr, Zr+1) |Condition on ¢ = r mod 256/ Probability
(0,0) i=1 2715(1+277)
(0,0) i#1,255 2716(14278)
(0,1) i#0,1 2716(1 4-27%)

(i +1,255) i # 254 2715(1 +27%)

(255,43 + 1) i#1,254 2716(1 4+ 278)

(255,14 + 2) i # 0,253,254, 255 2716(1 4 27%)

(255, 0) i =254 2715(1 +279)
(255,1) i =255 2716(14278)
(255, 2) i=0,1 2716(1 +278)
(129, 129) i=2 2715(1 +279)
(255, 255) i # 254 2711 -27%)
0,7+ 1) i# 0,255 2716(1 —27%)

Table 1: Fluhrer-McGrew biases for consecutive pairs of byte values. Here, i is
the value of the internal variable of the RC4 keystream generation algorithm at
the point when the first symbol of the pair is output; 7 is implemented as an
8-bit counter with wrap-around, and ¢ = r mod 256 when the output bytes Z,
of RC4 are numbered starting from 1.

Result 2 Let G > 0 be a small integer. Under the assumption that the RCY
state is a random permutation at step r, then

(—4-8G) /256
(&4
Pr((Zy, Zrs1) = (Zryct2, Zrigys)) = 2710 <1 + 256) .

The approximate correctness of the above result was experimentally con-
firmed in [6] for values of G up to 64 and for long keystreams. Further confirma-
tion for the same range of G and for relatively short keystreams was provided
in [10].

3 A Fine-grained Analysis of the Mantin Biases

The Mantin biases, as presented in Result 2, concern the probability of occur-
rence of byte strings of the form ABSAB in RC4 outputs. The probabilities
do not depend on the specific values of A and B, but are instead averaged over
these values, and depend only on the length G of string S. Here we provide more
fine-grained results about the statistics of patterns ABSAB in RC4 outputs for
specific values of A and B (and in some cases, G). We then verify these through
experiment with large numbers of RC4 outputs. All previous experimental con-
firmations of which we are aware only studied the dependence of the bias on G
and so did not observe the phenomena that we catalogue below.

Our notation is the same as in [6] and in Section 2. Specifically, S denotes the
RC4 permutation, and i and j are the algorithm’s internal indices. We use S, to
denote array S at the end of round r. Similarly we use 4, and j, to denote the

values of 7 and j at the end of round r. Also, when studying a pattern ABSAB
in the RC4 output, G will denote the length of the string S.

3.1 Mantin’s Analysis

In [6], Mantin explains that the pattern ABSAB is more likely to arise in RC4
output than in an unbiased random byte stream because of a particular scenario
that produces this type of pattern and whose probability is higher than expected.
The scenario is as follows: for a given round r, let g denote j,._1 — 4,_1; now
suppose the following three conditions are satisfied:

(1) Srfl[ir] =1

(2) Jrag—1=1tr_1;

(3) i and j avoid the values 4,_1, iy, ir4+g—1 and i,4+4 from round r + 1 to round
r+g— 2, as well as value S,_1[i,_1] + Sy—1[jr—1] from round r to round
r 4+ g — 1, and value S, [i,] + S, [j,] from round r + 1 to round r + g.

Then it can be shown that the bytes output by RC4 at rounds r + g — 1 and
r + g are equal to the bytes output at rounds r — 1 and r, respectively. That
is, a pattern ABSAB arises in the RC4 output, with S of length G = g — 2.
Mantin then goes on to evaluate the probability that these conditions hold, and,
with some approximations, finally arrives at the expression in the statement of
Result 2.

We now analyse this argument from [6] for special values of A, B and g. For
each case, we will use conditions (1) and (2) to show that condition (3) cannot
hold. This in turn implies that, for the special values of A, B and g, there is no
reason to expect strings ABS AB to occur with the biased probabilities predicted
by Mantin.

Case A =1: Since A is the output during round r — 1, we know that
Sr—l[Sr—l[ir—l] + Sr—l[jr—l” =1

Moreover, because of condition (1) above, we have S,_1[i,] = 1. But S,_; is
a permutation, which implies that S,_1[i,—1] + Sr—1[jr—1] = i». But this is in
contradiction with condition (3), since it forbids the equality iy = S,_1[ir—1] +
Sp_1ljr—1] forr <k <r+g-—1

Case B = 1: This case is similar to the previous one. Assuming that B = 1,
we get Sp[Sr[ir] + Sr[jr]] = 1. Condition (1) gives S,_1[i] = 1, so by the
definition of RC4 (in particular, since it swaps S[i] and S[j] in each round), we
have S,.[j»] = 1. As before, S, is a permutation, and so its injectivity implies
Srlir] + Srljr] = jr. However, since S,_1[i,] = 1, we know that j, = j,—1 + 1.
Then, since g = j,_1—%,_1, we obtain j, = g+1,_1+1. Finally, since ¢ increments
on each round, we get j, = i,44, which provides the relation S,[i,] + S.[jr] =
ir4g, giving a contradiction with condition (3).

Case A = 253 and g = 2: We assume now that A = 253 and g = 2 (i.e.
Jr—1 = tr—1 +2). Since S,_1[i,] = 1 (from condition (1)), we get j,. = jr,—1+1=
ir—1 + 3. Condition (2) becomes j.+1 = i,—1. From the behaviour of the RC4
algorithm (namely j.r1 = jr + Sp[irt1]), we obtain S,.[i,11] = 253. Finally,
since i, = 4,41 — 1 and j, = 4,41 + 1, the value of S in entry i,;; is not
affected by round r, and so Sy_1[ir+1] = Sr[ir+1] = 253. On the other hand,
Sy_1[Sr—1[ir—1] + Sr—1[jr—1]] = 253, because A = 253. By combining these
results, and noting that S,_; is a permutation, we get Sy._1[ir—1] + Sr—1[jr—1] =
ir+1 which invalidates condition (3).

Case B = 253 and g = 2: Because g = 2, as in the previous case, we know
that S,[i,11] = 253. The hypothesis B = 253 is equivalent to writing S,.[S,[i,] +
Sylir]] = 253. Then S,[iy] + Sr[jr] = %r+1, and condition (3) is contradicted
again.

Note that the last two cases above concern patterns of the form ABAB for
specific values of A and B (G = 0), while the first two cases apply concern
patterns with A = 0 or B = 0 for any value of G > 0. Between them, the 4 cases
account for roughly 1/128 of all possible patterns ABSAB.

3.2 The Mantin Bias When A = B

We now focus on refining Mantin’s estimate for biases in distributions for strings
of the form AASAA (i.e. when A=B). We will assume here that A # 1 and
B # 1, since those cases were already treated above.

When A = B, we have that S,_1[i,—1] + Sy—1[jr—1] = Sy[ir] + Sr[4-]. This is
because these two values are the indices in S that are used for producing outputs
A and B in rounds r — 1 and 7, respectively, and because, by assumption, the
elements in these indices are not moved during these rounds. Thus Mantin’s
condition (3), which states that ¢ and j must not collide with these two values
across certain rounds (amongst other things) is more likely to hold since the two
values are equal. Specifically, the term (1 — 52%:)? - e~29/256 in Mantin’s proof
of [6, Lemma 2] can be replaced with a term (1 — 5%;) - e~9/25%; when 1 — 5% is
approximated by e~9/256 as is the case throughout Mantin’s analysis, we finally

arrive at the following:

Theorem 1. Let G > 0 be a small integer. Under the assumption that the RCY
state is a random permutation at step r, then

o(—4-6G) /256
256) '

Pr((Zy, Zr11) = (ZriGr2, Zriays) = 2710 (1 +

Notice here how the exponent (—4 — 6G)/256 replaces the usual exponent
of (—4 — 8G)/256 appearing in Mantin’s bias, leading to larger biases in the
special case A = B. Note too that this special case concerns roughly 1/256 of
all possible patterns ABSAB.

3.3 Double-byte Bias Correction

As shown in Table 1, some pairs of bytes are more likely to occur in RC4 outputs
for particular values of i. Some pairs are especially lucky because the bias exists
for almost every value of i. This leads to additional biases in patterns of the form
ABSAB that are not accounted for by Mantin’s analysis. In fact, the resulting
biases are at least twice as big as Mantin’s for G = 0 and do not decrease with
G; so for G = 64, they are ten times the size!

Case A =0 and B = 0: According to Table 1, the pair of bytes (0,0) occurs
with probability 2716(1 4 278), instead of 2716, for all but two values of i. Since
the generation mechanism for these biases is independent of that for the Mantin
bias, for any size of S, the pattern 00500 can be expected to be output with
an extra bias of 277. As a result, we expect to see 00S00 in RC4 outputs with
probability 2716 (1 4 278(=1-6G)/256 4 9=T)

Case A = 0 and B = 1: Here the analysis is as in the previous case, except
that, since B = 1, we do not expect to find any Mantin bias at all. Then, for
any size of S, the pattern 01501 can be expected to be output with probability
216 (1 4+ 2°7).

Case A = 255 and B = 255: In this case, Table 1 indicates that the byte pair
(A, B) occurs with probability 2716(1—278) for all but one value of 7, that is, we
have a negative bias. However A = B, so the analysis in Section 3.2 applies for
the Mantin bias. A simple calculation then shows that the occurrence probability
for this case is 2716 (1 + 27 8¢(—4-6G)/256 _ 2’7).

Note that between them, the above 3 cases concern only a small proportion
(3 out of 210) of all possible patterns of the form ABSAB.

3.4 Experimental Validation

We have conducted experiments to confirm the above theoretical observations.

We computed the distributions of patterns of the form ABSAB for values
(A, B,G) with A, B ranging over the possible byte values and for G with 0 <
G < 64. We used 238 RC4 keystreams with random 128-bit keys, each keystream
containing 2'2 bytes, for a total of 2°° keystream bytes; this computation required
72 core-days of computation on our local server (Intel Xeon cores running at
3.3Ghz, 256 GB RAM).

Our experimental results are illustrated in Figures 2 and 3, which show the
biases we observed as a function of byte values A and B, for G =0 (g = 2) and
aggregated over G, respectively. Note that these plots are predominately red,
which aligns with the prediction of Mantin’s analysis that all strings ABSAB
have a positive bias.

The data in Figure 2 is somewhat noisy, but it is possible to see the absence
of biases for A =1, B =1, A = 253 and B = 253. However, when A = B,
we do not see the positive bias behaviour predicted by Theorem 1 but instead a

255 0.006
224
192 0.003
n
n
~N 160
S,
o
5 128 0
[
=3
[
g 9%
>
o
64 -0.003
32
0 -0.006

0 32 64 96 128 160 192 224 255
Byte value of A [0...255]

Fig. 2: Observed biases for strings of the form ABAB (G = 0) in RC4 outputs for
random 128-bit keys for different values of A (z-axis) and B (y-axis). For each
position we encode the bias in the keystream for the string ABAB as a colour.
The colouring scheme encodes the difference between the observed probabilities
and the (expected) probability 1/216, scaled up by a factor of 216.

small, negative bias. We do not currently have an explanation for this behaviour.
Coming now to Figure 3, showing aggregated behaviour, the absence of biases
for A =1, B = 1 and the strong positive bias for A = B are clear. It is less
easy to see the deviations from Mantin’s predictions arising from the double-
byte bias corrections for (A4,B) = (0,0),(0,1),(255,255). Averaging over G,
we empirically observed probabilities that were consistent with the theoretical
values computed in Section 3.3: for (A4, B) = (0, 0), the empirical probability was
2716(14-0.01005), for (A4, B) = (1,1), it was 2716(14-0.00834) and for (255, 255),
it was 2716(1 — 0.00574).

Aside from the special case of A = B and G = 0, we did not observe any
additional significant deviations from the behaviour predicted by Result 2 and
our refinements of that result. However, a larger-scale computation might well
reveal further fine structure.

255 0.004
224
192 0.002
n
wn
N 160
< 8
o %
5 128 0
[
=3
[
s 9
>
o
64 -0.002
32
0 -0.004

0 32 64 96 128 160 192 224 255
Byte value of A [0...255]

Fig.3: Observed biases for strings of the form ABSAB in RC4 outputs for
random 128-bit keys and averaged over 0 < G < 64 for different values of A
(z-axis) and B (y-axis). For each position we encode the bias in the keystream
for the string ABSAB as a colour. The colouring scheme encodes the difference
between the observed probabilities and the (expected) probability 1/216, scaled
up by a factor of 216,

4 A Plaintext Recovery Attack Based on Mantin Biases
and Its Performance

Whilst we have observed that the distribution of patterns of the form ABSAB in
RC4 outputs does not conform exactly with Mantin’s analysis [6], the deviations
from the predicted behaviour are small, in the sense of affecting the probabilities
of only a small proportion of the possible patterns. This means that, when the
Mantin biases are used in statistical plaintext recovery attacks, it is reasonable
to assume that the behaviour is as predicted by Result 2.

We do so henceforth, and present a plaintext recovery attack that exploits
the Mantin biases. The attack is derived by first posing the plaintext recovery
problem as one of maximum likelihood estimation. This enables us to also provide
a concise analysis of the expected number of ciphertexts required to successfully
recover the correct plaintext (and, more generally, to rank the correct plaintext
within the top R candidates, for some chosen value of R).

We operate in the broadcast setting, so the same plaintext is assumed to
be encrypted many times under different RC4 keystream segments, in known
positions. We target the recovery of two unknown, consecutive plaintext bytes

that are adjacent to a group of known plaintext bytes. These attack assumptions
(partially known plaintext, broadcast setting) are fully realistic when mounting
attacks that target HTTP cookies in protocols such as TLS-RC4 (see [1] for
further details).

In the next section, we explain how to extend our attack targeting two con-
secutive plaintext bytes so as to recover longer strings of bytes.

4.1 Maximum Likelihood Estimation

We consider the problem of plaintext recovery for various situations arising from
RC4 encryption as a maximum likelihood problem.

Notational Setup Suppose p1,...,pr, Pri1, Pryo are T + 2 successive plain-
text bytes which are to be encrypted a number of times under RC4 using a
number of different keystreams. We suppose that the first T plaintext bytes
p1,...,pr are known plaintext bytes, but that the next two plaintext bytes
Pry1, Prio are unknown and we wish to determine them. (Throughout we use
lower-case letters for known quantities, and upper-case for unknown quantities,
which can be regarded as random variables.)

We let ¢;1,...,¢i1,Ci 741, Ci,7+2 denote the T 4 2 successive known cipher-
text bytes obtained by encrypting the plaintext bytes pi,...,pr, Pry1, Prio
using the i*" RC4 keystream Zidy- 1%,y L5 741, Zi,T+2. Thus we have that

zi1=p1DcCi, ..., 2,1 =pr D cr are known keystream bytes
and
Zir+1 = Pryi® iy, , Zir+2 = Pryo © ¢ 742 are unknown keystream bytes.

Now the Mantin bias can be expressed in the following way. We first define
a positive decreasing sequence dg, 01, ...,07_o by

1 _G
32

b = e\ T178G/256) 1956 — 98¢ s (G=0,1,...,T—2].

Then, from Result 2, we have:
P ((Zir+1, Zirso) = (2iT-G-1,2i7-c)) = 271 + d¢).
By contrast, for byte pairs (a;,az) not in the i*" RC4 keystream we have

P ((Zirs1, Zirso) = (a1,a2)) =~ 271% [(a1,a2) # (2i1,2i2), - - - (zir—1, 2i7)].

A Likelihood Function We now calculate the probability mass function for
0 = (Pr41, Pryo) for the it" encryption based on the above probabilities. This
will lead us to a likelihood function for 6.

By a straightforward calculation, we have:

P ((Pri1, Pri2) = (0',0") = P((Zirs1, Zirs2) = (0 @ cirg1, 0" @ ciria)).

This probability is therefore different from 2716 if, for some G, there exists a
keystream byte pair (z; 7—c—_1, 2, 7—g) such that

@ ® ciri1,0" @ cirye) = (Zirs1, Zirv2) = (2ir—G-1,%,7-G)
= (pr-g-1® ¢, r—G-1,P17—-C D CiT—G)s

that is to say if

@, p") = (pr—G-1® cir—G-1® CiT+1,Pp7—-G D Cir—G D CiT12)-
We now let z; ¢ denote the known 2-byte quantity

(Pr—c—1® ¢i7—G—1 P Ci,741,PT—C D Ci7—c D Cir42)

for the i*® RC4 encryption, and we let z; = (%0, ...,%;r-2)T denote the vector
of such known 2-byte quantities. If we then let 6 denote the value of the unknown
plaintext bytes (Pr41, Pr42), then the probability mass function of z; given the
parameter 6 is

. 2716(1 4 65) xg=0 [G=0,...,T—2
fi:0) ~ { 2716 otherwise.

This means that the likelihood function of the parameter § = (Pry1, Pry2)
given the data x; is given by

. 27(14+65) O=wzic [G=0,...,T—2]
L(0;z;) ~ { 9-16 otherwise.

We now consider the likelihood function of the parameter § = (Pry1, Pr2)
given N such data vectors x1,...,xn derived from known plaintext-ciphertext
bytes. If we let

Sa(0;z) =#{zric=0|i=1,...,N}

be a count of the number of times the G*" component of z1,...,zx is equal to
0, then the joint likelihood function satisfies

T—2
LO;x1,...,x5) ~ 27 16N H (1 + 6¢)5c0),
G=0

Thus if we let © denote the data x1,...,zy, then the log-likelihood function is
given by

T—2

L(0;2) =log L(0;2) = —16Nlog2+ Y Sc(6;x)log(1 + d¢)
T2
~ —16Nlog2+ Y daSa(0;x)

G=0
~ 675(6;z) — 16N log 2,

where § = (8o,...,07_2)T and S(6;z) = (So(0;2),...,S7r_2(0;x))T. Thus the

value of 8 which maximises
67S(0;x) ~ L(6;x) + 16N log 2

is essentially the maximum likelihood estimate 9 of the plaintext parameter
0 = (Pr41, Pry2) given the known data z.

4.2 Plaintext Recovery Attack

The preceding analysis leads immediately to an attack recovering the two un-
known bytes 8 = (Pr41, Pry2) given access to N ciphertexts: for each value of
6, compute 67S(0; z) and output the value of # which maximises this expression.

The attack can be implemented efficiently by processing the i-th ciphertext
as it becomes available, using it to compute the quantities z; ¢ and updating a
(T — 1) x 26 array of integer counters by incrementing the array in positions
(G, z,¢) for each G between 0 and T — 2. Once all N ciphertexts are processed
in this way, the array contains the counts S(6;) from which the log likelihood
of each candidate 6 can be computed by taking inner products with the vector
0.

Note too that, since the attack produces log likelihood estimates for each of
the 26 candidates 6, it is trivially adapted to output a ranked list of plaintext
candidates in order of descending likelihood. This feature is important for our
extended attacks in the following section.

This basic attack can be extended in several different ways (some of which
can be considered in combination):

1. To the situation where the unknown plaintext bytes are not contiguous with
the known plaintext bytes. This merely requires adjusting the above analysis
to use Mantin biases for the correct values of G (rather than starting from
G = 0). Note that because the Mantin biases decrease in strength with
increasing G, the attack will be rendered less effective.

2. To the case where known plaintext bytes are located on both sides of the
unknown plaintext bytes (possibly in a non-contiguous fashion on one or
both sides). Again, this only requires the above analysis to be adjusted to
use the correct set of values for GG. Using more biases in this way results in
a stronger attack.

3. To the case where one of two target plaintext bytes, Pprii say, is already
known. This is easily done by considering only the log likelihoods of a reduced
set of candidates 6 in the attack.

4. To the situation where the plaintext space is constrained in some way, for
example, where the bytes of § are known to be ASCII characters or where
base64 encoding is used. Again, this can be done by working with a reduced
set, of candidates 6.

4.3 Distribution of the Maximum Likelihood Statistic and Attack
Performance

We now proceed to evaluate the effectiveness of the above basic attack, as a
function of the number of available ciphertexts, N, and the number of known
plaintext bytes, T

We let 0* denote the true value of the plaintext parameter . The compo-
nent S¢(6; x) has a binomial distribution, and there are two cases depending on
whether or not @ is this true value 0*, so we have

S (0%;x) ~ Bin(N,2715(1 + §¢))
and Sg(6;z) ~ Bin(NV,2716) [0 # 0%].

If we write p = N2716 then E(Sg(0*;2)) = 271N (1 + 6¢) = u(l + d¢) and
E(Sg(0;7)) = 271N = p for 0 # 6%, with Var(Sg(0;)) ~ 276N = p for all
6 (to a very good approximation). For the values of N and hence p = 276N of
interest to us, these binomial random variables are very well-approximated by
normal random variables, and we essentially have

Sc(0;x) ~ N(u(1+dc), 1)
and S¢(0;) ~ N(u, p) [0 # 6.

Thus the vector S(6*;z) = (So(0%:),...,S7_1(0%;2))" corresponding to the
true parameter 6* and the vectors S(6;z) = (So(6;2),...,S7_1(6;z))" (for
0 # 6*) corresponding to other values of the plaintext parameter have a mul-
tivariate normal distribution. Furthermore, it is reasonable to assume that the
components of these vectors are independent, so we have

S(0*;2) ~ Np_q(p(1 4 6), plr_1)
and S(6;x) ~ Np_y (p1, plr—1) [0 0%].

The maximum likelihood statistic is essentially determined by the distribu-
tions of 67S(0*;x) and 67S(0;x) (for § # 0*). However, these are just rank-1
linear mappings of multivariate normal random variables and so have univariate
normal distributions given by

5TS(0%) ~ N(u(671 + [51), ulo]?)
and 67.8(0; z) ~ N(uéT1, u|8)?) [0 # 6%].

The above distributions suggest that it is convenient to consider the function
650, @) — paTé

Jow) == = T E (0] (87 S(0;2)) — |73 (170)

on the parameter space. It is clear that J(0;z) is a very good approximation to
an affine transformation of the log-likelihood function, so the value of 6 which
maximises J(6;) is essentially the maximum likelihood estimate 6 of the plain-
text parameter § = (Pri1, Pros) given the known data z.

We note that J(#;x) has a univariate normal distribution with unit variance
in both cases as we have

J(0%;2) ~ N (/ﬁléh 1) and J(6;) ~ N (0,1) for 6 # 6*.

Furthermore, we may essentially regard all of these random variables J(0;z) as
independent since the random variables S, (6; z) are very close to being indepen-
dent.

The function J(6;2) can be thought of as a “variance-stabilised” form of
log-likelihood function L£(6;x) of the plaintext parameter §. Furthermore, the
squared length of the vector § can be calculated as

T—2 T
S et oehe
G=0 ¢ 216(et — 1)

This means, for instance, that |§| ~ 0.00385 for T" = 2 and |6| ~ 0.00930 for
T = 8, with |6] = 0.0156 for large T.

Performance of Plaintext Ranking in the Basic Attack With the above
reformulation, finding the maximum likelihood estimate # by maximising the
function J(f;z) can now be seen as essentially comparing a realisation of a
normal N(z2|6],1) random variable (corresponding to .J(6*;z)) with a set R =
{J(0;2)|0 # 6*} of realisations of 216 — 1 = 65535 independent standard normal
N(0, 1) random variables. Thus the maximum likelihood estimate 0 gives the true
plaintext parameter 6* if a realisation of an N(;2|d|, 1) random variable exceeds
the maximum of the realisations of 2'6 — 1 independent standard normal random
variables.

This enables the probability that the maximum likelihood estimate is correct
(and the basic attack succeeds) to be evaluated as a function of N and T.
However, we are able to go further and consider the rank of the correct plaintext
0* in the ordered list of values J(6;x) (from highest to lowest) as a function
of N and T, that is to evaluate the performance of the ranking version of the
plaintext recovery attack. Such an evaluation makes use of the following result
concerning order statistics [2].

Result 3 Suppose Xi,...,Xi are independent standard normal N(0,1) ran-
dom wvariables and that @ denotes the standard normal distribution function,
then &(X1),...,P(Xg) are independent Uni(0,1) random variables and the or-
der statistics X(1),..., X) satisfy

J
E (X)) =——.
(2X»)) = 77
It follows that @(z) is an accurate representation on a linear uniform scale

between 0 and 1 of the position of a value z within X(y),..., X(). Thus the
random variable giving the position (from highest to lowest) or “rank” of J(6*; x)

0 10000 20000 30000 40000 50000 60000

Fig. 4: Cumulative distribution function of the rank Rk(#*) for different numbers
of ciphertexts, N (T = 26).

within the set R, and hence the rank of §*, is given accurately by rounding the
random variable
Rk(0%) = 2'%(1 — &(J(6%;2)))
to the nearest integer.
The distribution function FRy ., of this (unrounded) rank Rk(6*) of 6* is
given by

FRk(e*>(z):P(Rk()< 2)=P (291 - &(J(67:2))) <)
=P (J(070) > 07 (1-271%2)) =1 = F, (271 (1-271%2)),

where F is the distribution function of J(8*; z), that is to say of an N (,u% 0], 1)
distribution.

Figure 4 shows the cumulative distribution function of the rank Rk(6*) for
different numbers of ciphertexts, N, for the specific value T' = 26. It can be seen
that as N approaches 232, it becomes highly likely that the rank of §* is rather
small. On the other hand, when N drops below 228, the attack does not have
much advantage over random guessing (which would produce a diagonal line on
the cumulative distribution plot).

The median of Rk(6*), which is very close to the mean of Rk(6*), is the
value of z satisfying FRk(e*)(Z) = %, that is to say

Median (RK(6")) = 2'° (1 - @ (F* (1)) =2 (1 - @ (u#)9]))

* 2

= 216 (—2—8N%\5|) .

Table 2 shows some median rankings for the value of J(6*;z) within the set
of all such 216 = 65536 values of J(6;x). A median rank of “1” indicates that

the maximum likelihood estimate 6 gives the true plaintext parameter 8* with
high probability.

N 927 [928 [920 | 930 | 931 | 932 [933 [93% [935[936[937
T = 2"(28236(26390(23838|20387|15920[10628[5353[1596|174
T = 2%(22081[18078[13105| 7664 | 3024 | 566 | 25 [1 | 1
T = 25[15735[10423] 5176 | 1502 | 155 2 1 1|1

—| =]
—| = =

Table 2: Median Rank of Maximum Likelihood Estimate of Plaintext Parameter

Performance of Plaintext Ranking in Variant Attacks The above analysis
is easily extended to evaluate the performance of the variant attacks described
in Section 4.2.

For variant 1, in which the unknown plaintext bytes are not contiguous with
the known plaintext bytes, we need only replace the value of || with the appro-
priate value computed from the biases actually used in the attack. For variant
2, where known plaintext bytes are located on both sides of the unknown plain-
text bytes, the same is true, but this time § increases; the analysis is otherwise
identical. For example, |§|? doubles when we use an additional T' known plain-
text bytes pris,...,por42 in concert with pq,...,pr. Recalling that J(0*;z)

has a N (u% 4], 1) distribution with p = 271N it can be seen that the effect

of doubling |§|? by using “double-sided” biases in this way is the same as that
of doubling N in the attack; put another way, using double-sided biases reduces
the number of ciphertexts needed to obtain a given median ranking for the value
of J(6*;z) by a factor of 2.

Variants 3 and 4 both concern the case where the plaintext space for the
pair (Pr, Pr.1) is reduced from a set of 2!6 candidates to some smaller set of
candidates, C say. For example, in variant 3, where one of the plaintext bytes is
known, |C| = 28. This means that our fundamental statistical problem becomes
one of distinguishing a realisation of a normal N(x2|d|, 1) random variable (cor-
responding to J(6*; z)) from a now smaller set R = {J(6;x)|0 € C\6*} of |C| -1
realisations of independent standard normal N(0, 1) random variables. Our pre-
vious analysis goes through as above, except that we simply replace 2¢ by |C|
where appropriate, resulting in

Median (Rk(6%)) = [C| - & (—2—8N%|5\) .

The effect of this is to scale all the entries in Table 2 by 2'6/|C|. For example,
in variant 3 where |C| = 2%, we would expect a median rank of roughly 6 with
N = 230 ciphertexts and T = 2.

Note that these two effects are cumulative. For example, using double-sided
biases and assuming one byte of plaintext from the pair (Pryi1, Pr42) is known

has the effect of both reducing N by a factor of 2 and dividing the median rank
by 28. Then, for example, with only N = 229 ciphertexts and T = 2% we would
expect J(0*;x) to have a median rank of about 6, meaning that the correct
plaintext 8* can be expected to have a high ranking.

Experimental Validation We carried out an experimental validation of our
statistical analysis, performing experiments with 7' = 2% for different numbers
of ciphertexts, N, and computing the cumulative distribution function of the
rank Rk(6*). The results are shown in Figure 5 for N = 228, 229 and 23°. Good
agreement can be seen between the experimental results and the predictions
made by our statistical analysis, with the experiments slightly outperforming
the theoretical predictions in each case.

4.4 Incorporating Prior Information about Plaintext Bytes

Prior information about the unknown plaintext bytes is frequently available and
can be exploited (see, for example, [4]) to improve attacks.

Prior information in our setting can be incorporated using the inferential
form of Bayes Theorem, which can be loosely expressed as

Posterior oc Likelihood x Prior ,
or equivalently in its logarithmic form as
Log-Posterior = Log-Likelihood + Log-Prior + Constant .

If we let 7w(0) denote the prior probability of the plaintext parameter § =
(Pri1, Pry2) and 7(6;x) the posterior probability of the parameter 6 given the
data z, then we have

log7(6;x) = L(6;x) + log w(#) + Constant
~ 67S(0;x) +logm(f) + Constant .

This suggests that for purposes such as posterior plaintext ranking, we consider
an adaptation of J(6;x) given by

_ 61S5(0;2) 4+ logw(0) — p1”s

J.(6:2) = : — J(0;2) + 2870)
p2 o]

pils|

We note that J(6;x) has a univariate normal distribution with unit variance as
we have

Lwﬂ@NN(WHH-Il

1
and Jﬂ(e;x)~N<Og1ﬂ|((5|9),1> for 0 # 0*.
M2

It is clear that when N or equivalently u = 276NV is small, that is roughly
speaking when p|§|? << |log m(0)|, the mean value of the posterior scoring func-
tion is given by E (Jx(6;z)) ~ p=2|6|" logm(6) for both § = 6* and 6 # 6*.
Thus when N or p is small, the posterior scoring function essentially orders the
plaintext parameters 7 according to the prior distribution 7; analysis of the avail-
able ciphertexts does not yield enough evidence to “overturn” the evidence given
by the prior distribution. By contrast when N or p is large, that is roughly speak-
ing when 1|62 >> [logw(0)|, then E (J(0%;z)) ~ 126 and E (J,(0;z)) ~ 0 for
0 # 0*. In this situation, the evidence of the experiment “overwhelms” the ev-
idence given by the prior distribution, and we are essentially considering the
previous scenario.

The interesting situation is therefore when 1|d|? and |log w(6)| are of roughly
comparable size. We consider how much data is needed to “overturn” an ordering
of plaintext parameters according to their prior probabilities. In this situation,
the scoring function for the plaintext parameter has means given by

log (6*)

E (J.(0%:2)) = p?|6] + —>2 and B (Jy(0;2)) = 2870 r g ge
1o nz 8|

Thus the scoring function for the correct plaintext parameter 6* is expected to
exceed that of the plaintext parameter 6 when E (J:(6%;2)) > E (J;(00;x)),
that is to say when

1 7(0) 216 ()

w> W log ~(0°) or equivalently when N > W log ~(0°)

The interesting case is obviously when m(0) > w(6*), that is to say when 6
is a priori a more likely plaintext parameter than 6*. In this case, the above
expression indicates how many samples are likely to be required to be able to
place an a posteriori rank 6* above that for 6. Clearly, the answer depends on
the specifics of the distribution 7.

5 Attacks Recovering Multiple Plaintext Bytes

We now extend the preceding attacks and analysis to consider the situation
where the target plaintext extends over multiple bytes. As in previous [1,5,7,9,
8,4] and concurrent [12] works, this is important in building practical attacks
targeting HT'TP cookies, passwords, etc. We are particularly interested in attack
algorithms that output lists of candidates rather than single candidates, since
in many practical situations, many suggested candidates can be tried one after
another, as was first suggested in [1]. Throughout, we let W denote the byte-
length of the target plaintext.

This problem was already addressed in [1] and [7] for attacks exploiting
Fluhrer-McGrew and Mantin biases, respectively. Although not explicit in [1],
the algorithm used there is a Viterbi algorithm and is guaranteed to output the
best plaintext candidate on W bytes according to an approximate log likelihood

metric; roughly 233 — 234 ciphertexts were needed to recover a 16-byte plaintext
with high success rate. The algorithm in [7] proceeds on a byte-by-byte basis
and the success probability of it recovering the correct plaintext is the product
of success rates for single bytes. This, unfortunately, means that the success rate
drops rapidly as a function of W. For example, with N = 232 ciphertexts and
T = 66 known plaintext bytes, the algorithm of [7] achieves a success rate of
0.7656 for a single byte, but this would be reduced to (0.7656)'6 = 0.014 for
W = 16 bytes.

As previously, we assume plaintext bytes p1, ..., pr are known. Our task now
is to recover the W unknown bytes 8 = (Pry1,..., Priw). We let 6; denote
(Prii, Pryiy1) for 1 < 4 < W — 1. Using the methods of Section 4, we can
form W — 1 ranked lists of values for £(;;x), where as before & denotes the
collection of N data vectors x1,...,xyN derived from known plaintext-ciphertext
bytes. Note here that when ¢ > 2, these log-likelihoods will be computed using
progressively weaker Mantin biases with G > 1.

To evaluate the overall log-likelihood £(6; z) we make the heuristic step that
this quantity can be replaced by a sum:

W-1
L(6;;) (2)

1=

—

of log-likelihoods for the byte pairs ;. Under this heuristic, to find high log-
likelihood candidates for 6, we need to find sequences of overlapping byte pairs
0; for which the sums in (2) are large, given the W — 1 lists £(6;;). This is
a classic problem in dynamic programming that can be solved by a number of
different approaches. We consider two such standard approaches:

List Viterbi The (parallel) list Viterbi algorithm is described in detail in [11] and
generalises the usual Viterbi algorithm. In its general form it finds the L lowest
cost state sequences through a complete trellis of some width W on some state
space, given an initial state and a final state and where each state transition in
the trellis has an associated cost. The algorithm is easily adapted to the problem
at hand by setting the edge weights to be the log-likelihood values £(6;;) and
interpreting the states as byte values.? Unfortunately, the algorithm is relatively
memory intensive and slow, requiring roughly 256 - W times as much storage as
the beam-search algorithm to return a final list of L candidates.* However, the
algorithm has the advantage that it guarantees to return the L best plaintext
candidates on W bytes, that is the top L candidates according to the metric
represented by (2). The same algorithm appears to have been used in [12].

3 Several additional notational and conceptual changes are needed compared to the
original description in [11]. In particular, the initialisation process described in [11]
contains a small error, and we wish to maximise rather than minimise the cost of
state sequences. The basic algorithm also requires the first and last bytes of plaintext,
Pr41 and Priw to be known.

4 A low memory version of the algorithm is also given in [11] but we did not implement
it.

Beam-search In the beam-search algorithm, we generate a list of L candidates on
J positions T'+1,...,T + 7, each candidate being accompanied by a partial sum
Zf;ll L(0;;). We then expand the list to include all 256 - L candidates that are

1-byte extensions of candidates on the list, computing a new sum Y 7_, £(6;;)
for each candidate by adding a term L£(6;;x). We then prune the list back to
L candidates again, by keeping just the top L candidates, but now on j + 1
positions. The process is initialised using the top L values for £(6;; x) on the first
two unknown plaintext bytes. The process is finalised when j = W — 1, and the
list need not be pruned at the final step, though we do so in our implementation
to provide a fair comparison with the next algorithm. So the algorithm is deemed
successful if the correct plaintext (Pr1, ..., Prow) appears on the final pruned
list of L candidates. In a further enhancement, we may assume the first and last
byte of the plaintext are known, and force the candidate plaintexts to begin and
end with those known bytes. This algorithm is fast and memory-efficient, but
does not provide any guarantees about the quality of its outputs (that is to say,
we do not know if it will successfully include the highest log-likelihood plaintext
on its output list).

Note that both algorithms extend smoothly to the double-sided case where
some plaintext bytes are known on both sides of the W unknown bytes; the only
modification is to the computation of the log likelihoods £(6;; x) that are input
to the algorithms. Again we will be forced to use Mantin biases starting with
non-zero values of G in computing the values L£(6;;), because of the presence
of a run of unknown plaintext bytes before reaching the known plaintext bytes.
Both algorithms also generalise easily to the case where the plaintext space is
constrained in some way, simply by considering only restricted sets of plaintext
bytes when extending candidates (in beam-search) or traversing the trellis (in
the list Viterbi case).

5.1 Simulations

Methodology We performed experiments with the beam-search and list Viterbi
algorithms, for a variety of attack parameters. We focus on recovering 16 un-
known plaintext bytes, a length typical of HT'TP cookies, and on attacks using
single-sided and double-sided biases with, respectively, 7' = 66 and 130 known
plaintext bytes — in the case of List Viterbi, we require a trellis of width 18 as the
first and last plaintext bytes need to be known, and for beam-search we assume
known plaintext bytes, one on either side of the 16 unknown target plaintext
bytes. We are most interested in how the attack performance varies with N, the
number of available ciphertexts, and L, the pruned list size/output list size in
the two algorithms. Further experiments to explore how performance changes
with T and W, and for the case of constrained plaintexts, would be of interest,
but we did not have the computing resources available to perform these.

Our experiments ran in two phases: in phase 1, we generated 2'2 groups,
each group containing N = 227 blocks of keystream bytes. On the fly, for each
group, we computed and stored the single-sided and double-sided log-likelihood

measures L£(6;;x) for each of the 2! possible values of 6; for each of 17 over-
lapping pairs of positions, yielding log-likelihood information for 18 consecutive
unknown plaintext bytes. Then, in phase 2, we collated the measures coming
from different groups to create measures for groups corresponding to progres-
sively larger sets of blocks. This enabled us to carry out 128 plaintext recovery
attacks on up to N = 232 ciphertexts each, using our beam-search and list-
Viterbi algorithms. We ran each of these algorithms with L = 2!¢ and computed
the success rate across different values of N (typical values of N are n - 227
where n € {8,10,11,12,13,14,15, 16, 18,20, 24,28, 32}). The properties of the
list Viterbi algorithm made it easy to extract results for L < 26 too.

All computations were performed on the Google Compute Engine (GCE),
and we optimised various parameters internal to our code for this platform.
Each list Viterbi execution with L = 2'6 on a trellis of width 18 took around
2 hours on a single GCE core; by contrast, the execution of the beam-search
algorithm completed in a only a couple of minutes for the same parameter L.
This favourable running time inspired us to conduct further beam-search exper-
iments for higher values of L. For L = 2!7 each beam-search experiment took
about 20 minutes, and for L = 28, the running time was roughly 2.5 hours
per experiment. We attribute this unfortunate scaling in the running time to an
increasing number of cache misses as L grows. In total for the experiments we
used around 6,200 GCE core-hours of computation.

Results We present our results for the attack simulations starting with those
for the list Viterbi algorithm. We then discuss a number of results for the beam-
search algorithm and conclude this section with a comparison of the two algo-
rithms.

List Viterbi Figure 6 shows how the success rate varies with N, the number of
ciphertexts available, for the list Viterbi algorithm with double-sided biases (130
known plaintext bytes split either side of 16 unknown bytes, with 2 of the known
bytes being used in the list Viterbi algorithm and the remaining 128 being used
for computing log likelihoods). Each curve represents a different value of L. It
can be seen that, for fixed IV, the success rate increases steadily with L and that
a threshold phenomenon is observable, where above roughly 230 ciphertexts, the
success rate takes off rapidly. For example, with N = 23! we see a success rate
86% for L = 2'. We are confident that the success rate would continue to
improve with increasing L and with a larger number of known plaintext bytes,
bringing our results into contention with those of [12] (which used 256 known
bytes instead of our 130, and which used the significantly larger L = 223 in the
list Viterbi algorithm, achieving a success rate of 94% for recovering a 16-byte
plaintext with 9 - 227 ciphertexts, a little over 23° ciphertexts).

Figure 7 compares the performance of the single-sided and double-sided ver-
sion of the attacks. Not surprisingly, the use of double-sided biases significantly
improves the attack performance.

Beam-search We note that unless otherwise stated, we use the enhancement
of assuming the bytes directly adjacent to the 16 target plaintext bytes to be
known, and we force our respective 18-byte candidates to start and end with
these bytes. Figure 8 shows the performance of the beam search algorithm for
varying numbers of ciphertexts, IV, and for L = 2'6,217 and 2'8. As expected, we
do see an improvement in success rates as L grows. For example, with N = 23!
we see a success rate increase of 3% in going from L = 26 to L = 218, Significant
gains, however, are likely to be made with larger values of L, say L = 220,

In order to determine the extent to which assuming adjacent bytes to be
known improves attack performance, we ran the following two sets of experi-
ments: We assumed the first byte adjacent to the 16 target plaintext bytes to be
known and used the single-sided biases to recover 17-byte candidates (in other
words, W = 17 with Pry; known). We then used the single-sided biases to re-
cover 16 unknown target bytes (W = 16 and Pr,; unknown).® Figure 9 shows
that there is a small advantage to using this enhancement. For instance, with
N = 232 we see the success rate increase by 3%.

In a further enhancement, we did not prune the list of plaintext candidates
in the final stage of the beam-search algorithm. In other words, we retained 28-L
candidates in the last step of the process and declared success if the correct plain-
text appeared on this larger list of candidates. Figure 10 shows the performance
of the beam-search algorithm using this enhancement in comparison to the case
in which this enhancement is not used. We see a very slight improvement in
attack performance as a result of this enhancement.

Comparing list Viterbi and beam-search Figure 11 compares the performance
of list Viterbi and beam-search algorithms with L set to 2'¢ in both cases. It
can be seen that the beam-search algorithm performs very well, close to the
optimal attack that is represented by list Viterbi. It may make for an attractive
alternative in practice, especially for such large values of L where the memory
consumption of the list Viterbi algorithm becomes prohibitive.

6 Conclusions

In this paper, we have thoroughly analysed the Mantin biases in the outputs
of the RC4 algorithm and their exploitation in plaintext recovery attacks. We
showed, perhaps surprisingly, that some aspects of Mantin’s original analysis
were incorrect. Our work provides an improved understanding of the genesis of
the Mantin biases. We developed a statistical framework enabling us to make
accurate predictions about the performance of plaintext recovery attacks target-
ing adjacent pairs of plaintext bytes. A particular novelty is the introduction

5 Using the generated double-sided biases with W = 18 for the recovery of 16-byte
plaintexts would have resulted in us not being able to use some of the strongest
biases for plaintext recovery; targeting bytes Pry2 to Pri17 would mean not using
biases when G = 0, and targeting bytes Pr41 to Pri+16 would mean not using biases
for each G between 0 and 2 in the recovery of Pryi5 and Pryis.

of order statistics, enabling the expected rank of the true plaintext amongst all
possible candidates to be computed. We extended the attacks to the situation of
multiple unknown plaintext bytes, and provided an experimental evaluation of
two different attacks for this setting, using the list Viterbi algorithm and beam
search, respectively.

Several open problems are suggested by our work. Foremost is providing a
formal statistical justification in the multi-byte setting for approximating the
log-likelihood L£(6;x) using the sum ZZ? L(0;;x). This evidently works well
experimentally, but a formal derivation would provide greater insight and pos-
sibly lead to improved algorithms. It would then also be valuable to extend our
statistical analysis from the 2-byte setting to the multi-byte setting to give pre-
dictive power in that setting, something that is currently missing from our and
all other analyses. It would be desirable to obtain a closed-form expression for
the expected rank of the true plaintext candidate amongst all possible candidates
as a function of the attack parameters N, T', and W; this would enable accurate
setting of the parameter L (list size) when targeting a particular success rate in
a real attack.

Finally, it would be beneficial to experiment further with our proposed multi-
byte plaintext recovery algorithms. Our two-byte analysis suggests that signif-
icant gains can be expected in particular in the case of a reduced plaintext
space, for example for base64 or ASCII-encoded plaintexts. These are common
in session cookies and passwords, respectively. Another direction would be to
integrate the use of Mantin biases with suitable plaintext language models, for
example simple Markov models, in an effort to further improve the performance
of plaintext recovery attacks.

Acknowledgements

We would like to thank Google for their generous donation of computing re-
sources which supported this work.

Paterson was supported in part by a grant from Huawei and in part by an
EPSRC Leadership Fellowship, EP/H005455/; van der Merwe was supported by
the EPSRC and the UK government as part of the Centre for Doctoral Training
in Cyber Security at Royal Holloway, University of London (EP/K035584/1).

References

1. Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poet-
tering, and Jacob C. N. Schuldt. On the Security of RC4 in TLS. In Proceedings of
the 22nd USENIX Conference on Security, SEC’13, pages 305-320, Berkeley, CA,
USA, 2013. USENIX Association.

2. B. Arnold, N. Balakrishnan, and H. Nagaraja. A First Course in Order Statistics.
SIAM, 2008.

3. Scott R. Fluhrer and David McGrew. Statistical analysis of the alleged RC4
keystream generator. In Bruce Schneier, editor, FSE, volume 1978 of Lecture Notes
in Computer Science, pages 19-30. Springer, 2000.

10.

11.

12.

Christina Garman, Kenneth G. Paterson, and Thyla van der Merwe. Attacks only
get better: Password recovery attacks against RC4 in TLS. In USENIX Security
Symposium, 2015. Available from http://www.isg.rhul.ac.uk/tls/RC4mustdie.
html.

Takanori Isobe, Toshihiro Ohigashi, Yuhei Watanabe, and Masakatu Morii. Full
plaintext recovery attack on broadcast RC4. In Shiho Moriai, editor, Fast Software
Encryption - 20th International Workshop, FSE 2013, Singapore, March 11-183,
2013. Revised Selected Papers, volume 8424 of Lecture Notes in Computer Science,
pages 179—202. Springer, 2013.

Itsik Mantin. Predicting and distinguishing attacks on RC4 keystream genera-
tor. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in
Computer Science, pages 491-506. Springer, 2005.

Toshihiro Ohigashi, Takanori Isobe, Yuhei Watanabe, and Masakatu Morii. How to
recover any byte of plaintext on RC4. In Tanja Lange, Kristin E. Lauter, and Petr
Lisonek, editors, Selected Areas in Cryptography - SAC 2018 - 20th International
Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers,
volume 8282 of Lecture Notes in Computer Science, pages 155-173. Springer, 2013.
Kenneth G. Paterson, Bertram Poettering, and Jacob C. N. Schuldt. Big bias
hunting in Amazonia: Large-scale computation and exploitation of RC4 biases (in-
vited paper). In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology -
ASIACRYPT 2014 - 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-
11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science,
pages 398—419. Springer, 2014.

Kenneth G. Paterson, Bertram Poettering, and Jacob C. N. Schuldt. Plaintext
recovery attacks against WPA/TKIP. In Carlos Cid and Christian Rechberger,
editors, Fast Software Encryption - 21st International Workshop, FSE 2014, Lon-
don, UK, March 3-5, 2014. Revised Selected Papers, volume 8540 of Lecture Notes
in Computer Science, pages 325-349. Springer, 2014.

Kenneth G. Paterson and Mario Strefler. A practical attack against the use of
RC4 in the HIVE hidden volume encryption system. In Feng Bao, Steven Miller,
Jianying Zhou, and Gail-Joon Ahn, editors, Proceedings of the 10th ACM Sympo-
sium on Information, Computer and Communications Security, ASIA CCS ’15,
Singapore, April 14-17, 2015, pages 475-482. ACM, 2015.

Nambi Seshadri and Carl-Erik W. Sundberg. List Viterbi decoding algorithms with
applications. IEEE Transactions on Communications, 42(234):313-323, 1994.
Mathy Vanhoef and Frank Piessens. All your biases belong to us: Breaking RC4
in WPA-TKIP and TLS. In USENIX Security Symposium, 2015. Available from
http://www.rc4nomore.com/vanhoef-usenix2015.pdf.

10~

08} P
06 2
7 --- N=2/28 (Empricia)
3 —— N=228(Theoretical)
04/
K
b
y
02} J
1f
, , , , , ,
0 10000 20000 30000 40000 50000 60000
10~

08+
06}
; ==~ N=2/29 (Empricial)
—— N=229 (Theoretical)
041
0.2
. \ \ . , .
0 10000 20000 30000 40000 50000 60000
101

08}

06}
--- N=2"30 (Empricial)
0.4 — N=2"30 (Theoretical)
0.2
. \ \ . \ \
0 10000 20000 30000 40000 50000 60000

Fig. 5: Cumulative distribution function of the rank Rk(6*) for different numbers
of ciphertexts, N (T = 26): N = 22® (top), N = 22 (middle), N = 230 (bottom).

0.8

0.6 —

04 —

02

8 10 11 12 13 14 15 16 18 20 24 28 32

Fig.6: Success rate of list Viterbi algorithm in recovering a 16-byte unknown
plaintext for different numbers of ciphertexts, N and different list sizes L, using
double-sided biases, and 130 known plaintext bytes. The z-axis shows number
of ciphertexts divided by 227.

1+ I
—+— double-sided
08 [. .
single-sided
0.6 [/
04 /
02 [
0 — I] i 1 1 1 1 1
10 12 14 16 18 20 24 28 32

Fig. 7: Success rate of list Viterbi algorithm in recovering a 16-byte unknown
plaintext for different numbers of ciphertexts, using single-sided and double-
sided biases (with 66 and 130 known plaintext bytes, respectively) and L = 26,
The z-axis shows number of ciphertexts divided by 2%7.

0.8 -

—_— =916
06 L=2

L=217

—— | =218

0.4

0.2

8 10 11 12 13 14 15 16 18 20 24 28 32

Fig.8: Success rate of beam-search algorithm in recovering a 16-byte unknown
plaintext for different numbers of ciphertexts, N, and different sizes of L, using
double-sided biases and 130 known plaintext bytes. The z-axis shows number of
ciphertexts divided by 227.

—+—— beam search (known)

beam search (unknown)

0.8

0.6 —

02

Fig.9: Success rate of beam-search algorithm in recovering a 17-byte plaintext
(first byte known) using single sided-biases with 65 known plaintext bytes com-
pared to recovering a 16-byte unknown plaintext using single-sided biases with 64
known plaintext bytes, for different numbers of ciphertexts, N, and for L = 216,
The z-axis shows number of ciphertexts divided by 227.

0.8 -

0.6 [——+— beam search (not truncated)

beam search (truncated)

04 | /.

8 10 11 12 13 14 15 16 18 20 24 28 32

Fig. 10: Success rate of beam-search algorithm without final list pruning com-
pared to use of final list pruning in recovering a 16-byte unknown plaintext for
different numbers of ciphertexts, N, using double-sided biases and 130 known
plaintext bytes, and for L = 26, The z-axis shows number of ciphertexts divided
by 227.

1+ ¥ ¥ ¥
08 [
06 - —+— list viterbi
// X beam search
/
04 [/ 7
02 /
/
// /
0 =1 1 1 1 11 1 1 1 1 1
8 10 11 12 13 14 15 16 18 20 24 28 32

Fig. 11: Success rate of list Viterbi algorithm compared to beam-search algorithm
in recovering a 16-byte unknown plaintext for different numbers of ciphertexts,
N, using double-sided biases, L = 2'®, and 130 known plaintext bytes. The
r-axis shows number of ciphertexts divided by 227.

