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Abstract
The Network Time Protocol (NTP) is used by many
network-connected devices to synchronize device time
with remote servers. Many security features depend on the
device knowing the current time, for example in deciding
whether a certificate is still valid. Currently, most services
implement NTP without authentication, and the authenti-
cation mechanisms available in the standard have not been
formally analyzed, require a pre-shared key, or are known
to have cryptographic weaknesses. In this paper we design
an authenticated version of NTP, called ANTP, a generic
construction which protects against desynchronization
attacks. To make ANTP suitable for large-scale deploy-
ments, it is designed to minimize server-side public-key
operations and requires no server-side state. Additionally,
ANTP ensures that authenticity does not degrade accuracy.
Authentication adds no latency to server responses, by
using the fact that authentication information can arrive
in a separate, subsequent message. We define a novel
provable security framework involving adversary control
of time, and use the framework to analyze ANTP. The
framework may also be used to analyze other secure time
synchronization protocols.

Keywords: time-synchronization, Network Time Pro-
tocol (NTP), provable security, network security

1 Introduction

The Network Time Protocol (NTP) is one of the Internet’s
oldest protocols dating back to RFC 958 [17], published
in 1985. In the simplest NTP deployment, a client device
sends a single UDP packet to a server (the request), who
responds with a single packet containing the time (the
response). The response contains the time the request was
received by the server, as well as the time the response
was sent, allowing the client to estimate the network delay
and set their clock. If the network delay is symmetric, i.e.,
the travel time of the request and response are equal, then

the protocol is perfectly accurate. Accuracy means that
the client correctly synchronizes its clock with the server
(regardless of whether the server clock is accurate in the
traditional sense, e.g.,, synchronized with UTC).

The importance of accurate time for security. There
are many examples of security mechanisms which often
implicitly rely on having an accurate clock:
• Certificate validation in TLS and other protocols.

Validating a public key certificate requires confirm-
ing that the current time is within the certificate’s
validity period. Performing validation with a slow
or inaccurate clock may cause expired certificates to
be accepted as valid. A revoked certificate may also
validate if the clock is slow, since the relying party
will not check for updated revocation information.
• Ticket verification in Kerberos. In Kerberos, authen-

tication tickets have a validity period, and proper
verification requires an accurate clock, to prevent
authentication with an expired ticket.
• HTTP Strict Transport Security (HSTS) policy du-

ration. HSTS [10] allows website administrators to
protect against downgrade attacks from HTTPS to
HTTP by sending a header to browsers indicating
that HTTPS must be used instead of HTTP. HSTS
policies specify the duration of time that HTTPS
must be used. If the browser’s clock jumps ahead, the
policy may expire re-allowing downgrade attacks.

For clients who set their clocks using NTP, these secu-
rity mechanisms and more can be attacked by a network-
level attacker who can intercept and modify NTP traffic,
such as a malicious wireless access point or an insider at
an ISP. In practice, most NTP servers do not authenticate
themselves to clients, so a network attacker can intercept
responses and set the timestamps arbitrarily. Even if the
client sends requests to multiple servers, these may all be
intercepted and modified to present a consistently incor-
rect time to a victim. Such an attack on HSTS was demon-
strated by Selvi [32], who provided a tool to advance the
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clock of victims in order to expire HSTS policies.
In terms of security, a time-synchronization protocol

must authenticate server responses to the client, even in
the presence of an active network adversary. Confidential-
ity is not a concern (thus forward secrecy is not an issue),
since all time-synchronization information is public.

NTP security today. Early versions of NTP (NTP,
NTPv1 and NTPv2) had no standardized authentication
method. NTPv3 added an authentication method using
pre-shared key symmetric cryptography. An extension
field in the NTP packet added a cryptographic checksum,
computed over the packet. NTPv3 negotiation of keys
and algorithms must be done out-of-band. For example,
NIST offers a secure time server, and (symmetric) keys
are transported from server to client by postal mail [23].
Establishing pre-shared symmetric keys with billions of
client PCs and mobile phones seems impractical. NTPv4
introduced a public-key authentication mechanism called
Autokey, that did not see widespread adoption; Autokey
uses small 32-bit seeds that can be easily brute forced to
then forge packets. A more recent proposal is the Network
Time Security (NTS) protocol [33], which does not have
zero-cryptographic latency and as we show in Section 2.3
is potentially vulnerable to a downgrade attack.

Most NTP servers do not support NTP authentication,
and NTP clients in desktop and laptop operating systems
will set their clocks based on unauthenticated NTP re-
sponses. On Linux and OS X, by default the client either
polls a server periodically, or creates an NTP request when
the network interface is established. In both cases the sys-
tem clock will be set to any time specified by the NTP
response. On Windows, by default clients will synchro-
nize their clock weekly (using time.microsoft.com),
and ignore responses that would change the clock by more
than 15 hours. These two defaults reduce the opportunity
for a man-in-the-middle (MITM) attacker to change a
victim clock, and the amount by which it may be changed.
In Windows domains (a network of computers, often in
an enterprise), the domain controller provides the time
with an authenticated variant of NTPv3 [16].

1.1 Contributions
This paper presents ANTP, a protocol for authenticated

time-synchronization. ANTP protocol messages are trans-
ported in the extension fields of NTP messages. ANTP
allows a server to authenticate itself to a client, and pro-
vides cryptographic assurance that no modification of the
packets has occurred in transit. ANTP uses public-key
encryption for key exchange, and certificates to authenti-
cate the server public key. Like other authenticated time
synchronization protocols using public keys, we assume
an out-of-band method for certificate validation exists, as
certificate validation requires an accurate clock.

Protocol Auth. Security Server operations
type per time sync.

NTPv0–v2 — — —

NTPv3 sym. key sym. key no proof 1 hash

NTPv4 Autokey pub. key multiple 2
n pub. key,

flaws (§2.3) 1
n +1 sym. key

NTS [33] pub. key downgrade 3
n pub. key,

attack (§2.3) 2
n +2 sym. key

ANTP (Fig. 2) pub. key proof (§5) 1
n pub. key,

6
n +2 sym. key

Table 1: Comparison of time synchronization protocols.
a
n +b denotes a operations that can be amortized over n
time synchronizations plus b operations per time sync.

ANTP performance. Performance constraints on time-
synchronization protocols are driven by the fact that time
servers are heavily loaded, and must provide responses
promptly. To make ANTP suitable for large deployments
the design meets the following performance goals. First,
the server does not need to keep state for each client
but instead encrypts a small amount of state and stores
it with each client. Second, to generate a shared se-
cret key and authenticate the connection, the server must
only do a single public-key operation per client. Once
a shared secret key is negotiated, it can be used for mul-
tiple time-synchronization attempts by the same client,
amortizing the cost of negotiation over multiple time-
synchronizations. For example, clients may re-negotiate
a new key monthly, but synchronize daily. The cost of
the daily synchronizations is only a few symmetric-key
operations more expensive than unauthenticated NTP. A
comparison of the number of operations for ANTP and ex-
isting time synchronization protocols appears in Table 1.

Additionally, ANTP supports delayed authentication,
preventing the added latency of cryptographic computa-
tions from degrading accuracy. This works by having
the server respond immediately with an unauthenticated
response, then replying shortly after with authentication
information for the response. The client measures the
roundtrip time based on the unauthenticated response,
but does not update its clock until authenticating the re-
sponse. We refer to this throughout the paper as the
“no-cryptographic-latency” feature.

ANTP security. We include a thorough analysis of the
cryptographic security of ANTP using the provable secu-
rity paradigm. To do so, we extend existing frameworks
for key-exchange and secure channels [1, 11] to handle
protocols where time plays a central role. The adversary
in our security analysis is a network attacker capable of
deleting, reordering and editing messages between parties.
In addition, the adversary is given complete control over
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the initialization of all clocks, as well as the ability to
increment the time of parties not involved in a protocol
run. This allows us to model the ability of an adversary to
delay packet transmission: this is particularly important in
the case of NTP, where delaying packets asymmetrically
can cause the client to synchronize to an inaccurate time.
Our security model also considers the “amortized public
key operations” of ANTP where the same session is used
for multiple time-synchronizations.

We then show that ANTP satisfies these properties,
by making standard assumptions about the primitives
used to construct the protocol (public-key encryption, a
hash function, authenticated encryption, a message au-
thentication code and a key-derivation function). We use
game-hopping proof techniques commonly used in formal
security treatments of protocols such as TLS and SSH
[11, 2, 13] in order to prove authentication for ANTP, and
thus time-synchronization security.

2 Existing Network Time Protocols

Here we review the two most commonly deployed time-
synchronization protocols, NTP and SNTP. We also re-
view the security of time protocols, and discuss a recent
proposal called Network Time Security [33].

2.1 The Network Time Protocol
The Network Time Protocol (NTP) was developed by

Mills in 1985 [17], and revised in 1988, 1989, 1992 and
2010 (NTPv1 [9], NTPv2 [26], NTPv3 [18] and NTPv4
respectively [19]). NTP is designed to synchronize the
clocks of a subnet of machines directly connected to hard-
ware clocks (known as primary servers) to a network
of machines without hardware clocks (known as sec-
ondary servers). NTP protects against Byzantine traitors
by querying multiple servers, selecting a majority clique
and updating the local clock with the majority offset. This
assumes that the attacker can only influence some minor-
ity subset of the queried servers – an assumption that may
not be realistic. The clock update procedure and calcu-
lations for determining a single server’s offset is found
in Figure 1 and the NTP packet format can be found in
Appendix A. Though the format for NTP packets are iden-
tical for both client and server NTP messages, we use req
to indicate a NTP packet in client mode, and resp to
indicate a NTP packet in server mode.

2.2 The Simple Network Time Protocol
The Simple Network time Protocol (SNTP) is a

variant of NTP that uses an identical message format
but only queries a single server when requesting time-
synchronization. Windows and OSX by default synchro-
nize using a single time source (time.windows.com and

Client Server

t1← Now()

req← t1
req−→ t2← Now()

...
t3← Now()

t4← Now()
resp←− resp← t2‖t3

RTT← (t4− t1)− (t3− t2)
θ̃3←RTT/2
offset← 1

2 (t2 + t3− t1− t4)
time← Now()+offset

Figure 1: Simple Network Time Protocol (SNTP). Now()
denotes the procedure that outputs the local machine’s
current time. RTT denotes the total round-trip delay the
client observes and θ̃3 denotes the approximation of the
propagation time from server to client. The time of the
server receiving req is denoted t2 and sending resp is t3.
Note that offset = t3 + θ̃3− t4, which we will use in our
correctness analysis of ANTP.

time.apple.com respectively). Our construction lends
itself well to SNTP, as it authenticates time samples from
a single server. Security analysis is also easier as we can
avoid the more complex sorting and filtering algorithms
of NTP, and client and server behaviors are simpler. Note
that SNTP and NTP client request messages are the same.

SNTP has three distinct stages: the creation and trans-
mission of req by the client; the processing of req by the
server, and transmission of resp; and the processing of
resp and clock update by the client. An abstraction of
the protocol behavior can be found in Figure 1 along with
the clock update procedure.

1. The client creates a SNTP req packet, sets
transmit timestamp to Now() and sends the mes-
sage.

2. The SNTP Server creates a resp with all fields
identical to the received req, but signaling Server
mode. The server then sets originate timestamp

with the value transmit timestamp from req.
The server will also set receive timestamp to
Now() when receiving req, and will set the
transmit timestamp to Now() when sending the
message to the client.

3. Upon receiving resp, the client notes the
current time (and saves it as t4), and if
resp.originate timestamp is not equal to
req.transmit timestamp, the client aborts the
protocol run. The client sets t1, t2 and t3 to the val-
ues originate timestamp, receive timestamp

and transmit timestamp from resp, respectively.
Then the client calculates the total round-trip time
RTT and the local clock offset offset as above.
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From this, we can compute a bound of the amount of
error that is introduced to the clock update procedure via
asymmetric packet delay when the packets are unmod-
ified. Asymmetric packet delay is the scenario where
the propagation time from client to server is not equal
to the propagation time from server to client. Let θ1 be
the propagation time from client to server, θ2 the server
processing time and θ3 the propagation time from server
to client. θ3 is approximated in SNTP is approximated by
θ̃3 =

RTT
2 , where RTT = (t4− t1)− (t3− t2) = θ1 +θ3.

The actual offset is offsetactual = t3 +θ3− t4. The ap-
proximated offset is computed by offset = 1

2 (t2 + t3−
t1− t4). It is straightforward to show that when θ1 = θ3,
then o f f set = t3 + θ̃3− t4 and offset = offsetactual . In
the worst possible case, packet delivery is instantaneous,
and the entire roundtrip time is asymmetric delay. The
client approximates the offset as above, and thus the error
introduced this way is 1

2 |(θ1−θ3)| ≤ RTT.
Thus in SNTP, the error that a passive adversary with

the ability to delay packets is able to introduce does not
exceed the RTT. Clients can abort the protocol run when
RTT grows too large, giving them some control over the
worst-case error. Cryptographically speaking, the rest of
the fields in the NTP packets (see Appendix A) is irrele-
vant for calculating the local clock offset and correcting
the local clock for a single-source time-synchronization
protocol. These extra fields in the NTP packet are used
primarily for ranking multiple distinct time sources.

2.3 NTP Security and Other Related Work
In terms of security, early versions of NTP (NTP to

NTPv2) had no standardized authentication method.

NTPv3 symmetric-key authentication. NTPv3 pre-
sented a method for authenticating time synchronization –
using pre-shared key symmetric cryptography. NTPv3’s
added additional extension fields to the NTP packet, con-
sisting of a 32-bit key identifier, and a 64-bit crypto-
graphic checksum. The distribution of keys and nego-
tiation of algorithms was considered outside the scope of
NTP. NTPv4 introduced a method for using public-key
cryptography for authentication, known as the Autokey
protocol. Autokey is designed to prevent inaccurate time-
synchronization by authenticating the server to the client,
and verifying no modification of the packet has occurred
in transit. NTPv4 has additional extension fields to be
used in the Autokey protocol, and works with the key
identifier and checksum extension fields added in NTPv3.

NTPv4 Autokey public key authentication. Autokey
uses MD5 and a variety of Schnorr-like [30] identification
schemes to prevent malicious attacks, but as an analysis of
Autokey by Röttger shows [27], there are multiple weak-
nesses inherent in the Autokey protocol, including use of
small seed values (32 bits) and allowing insecure identi-

fication schemes to be negotiated. The size of the seed
allows a MITM adversary with sufficient computational
power to generate all possible seed values and use the
cookie to authenticate adversarial-chosen NTP packets.
This weakness alone allows an attacker in control of the
network to break authentication of time-synchronization,
thus NTP with the Autokey protocol is not a secure time-
synchronization protocol. Mills describes his experiments
on demonstrating reliability and accuracy of network time-
synchronization using NTPv2 implementations [20], but
does not offer a formal security analysis of NTP. Mills
does show that honest deployment of NTP in networks
can offer time-synchronization accuracy to within a few
tens of milliseconds after only a few synchronizations.
ANTP was originally intended as a means to addressing
the vulnerabilities in the Autokey protocol, but with many
changes to minimize public-key and symmetric-key oper-
ations, message bandwidth. While inspiration for ANTP
is the Autokey protocol, the design diverged significantly
enough to consider it a separate protocol design.

Network Time Security. The Network Time Security
protocol (NTS) [33] is an alternative security protocol
that uses public-key infrastructure in order to secure time-
synchronization protocols such as NTP and the Precise-
Time Protocol (PTP). However, NTS is costly in terms
of server-side public-key operations, potentially vulner-
able to downgrade attacks in the negotiation phase, and
does not have an equivalent to the zero-cryptographic la-
tency feature of ANTP. NTS has had no formal security
treatment at the time of this writing.

NTS initially inherited many design choices from the
Autokey protocol, in particular protocol flow, but has
since been updated as a three round-trip protocol. Sim-
ilarly to the Autokey protocol, NTS servers reuse the
randomness server seed used to generate a shared secret
key (referred to as a cookie) for each client by cookie =
HMAC(server seed,Hash(client public-key certificate)),
encrypting this value and a client-chosen nonce with the
client public-key, authenticating the server by digitally
signing the cookie with the server private key. Note that
the client public-key certificate in NTS serves to protect
the confidentiality and ensures uniqueness of the cookie
for each client using a different public-key certificate. It
does not serve to authenticate the client to the server. In
ANTP clients do not need a certificate, only the server.

In addition, NTS requires the server send (in the
server assoc message) a signature over the other data
in the message. The information in the server assoc is
static for each client, except the negotiated hash and en-
cryption algorithms (a finite combination of algorithms).
Then a NTS server must either store digital signatures
for each combination of supported hash and public-key
encryption algorithms, or compute costly public-key op-
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erations over these values. NTS also requires a server
encrypt the cookie value with the client public-key and
sign this value with the server private-key. As a result, a
NTS server requires two to three public-key operations
per client to establish a shared secret cookie.

NTS does not authenticate all information in the
client assoc message, specifically the list of client-
supported hash and encryption algorithms. Since the sig-
nature in the server assoc is not computed over the
client supplied lists in the client assoc message, a
MITM attacker could alter the client assoc to force
a server to select sub-optimal combinations of hash and
encryption algorithms, which would be undetectable to
the client.

Finally we note that NTS is a work-in-progress and a
future revision may be udpated to address some of these
issues. We reviewed draft version -06 for this paper, and
communicated our findings to the authors.

Provable Security. There is a small amount of litera-
ture analyzing time-synchronization protocols and secu-
rity frameworks implementing time. Schwenk recently
proposed a framework for the purposes of modeling time
in provable security analysis, very similar to our own
work but he models time as a global parameter [31]. Each
party may query a time oracle T to receive the time from
the global time counter. The security framework is sub-
sequently used to analyze one round-trip cryptographic
protocols, such as a one-time-password protocol, and a
Kerberos-like protocol. In IETF RFC 7384 [21], Mizrahi
discusses security properties time-synchronization proto-
cols such as NTP and ANTP should achieve, in particular
categorizing attackers with respect to the position of the
attacker (internal or external) and ability (MITM, Packet
Injector). Mizrahi also ranks security threats, and catego-
rizes based on impact of threat and type of attacker.

3 Authenticated Network Time Protocol

In this section we present the Authenticated Network Time
Protocol (ANTP): a new variant of NTP designed to allow
an SNTP client to authenticate a single NTP server and
output a time counter within some accuracy margin of
the server time counter. Our new protocol ANTP allows
an ANTP server to authenticate itself to an ANTP client,
as well as provide cryptographic assurances that no mod-
ification of the packets has occurred in transit. ANTP
messages, much like Autokey and NTS, are included in
the extension fields of NTP messages. We summarize the
novel features of ANTP below:
• The client is capable of authenticating the server,

and all messages from the server. Replay attacks are
explicitly prevented.
• The server does not need to keep state for each client.

• The server does only one public-key operation per
client in order to generate a shared secret key.
• The shared secret key can be used for multiple time-

synchronization attempts by the same client.
• The client has a “no-cryptographic-latency” option

to avoid additional error in the approximation of θ̃3
due to cryptographic operations.

ANTP is divided into four separate phases. A detailed
protocol flow can be found in Figure 2.
• Setup: The server chooses a long term key s the

authenticated encryption algorithm. This is used to
encrypt and decrypt server state between phases.
• Negotiation Phase: The client and server communi-

cate supported algorithms, and the server sends his
certificate, and C1, an encryption of the hash of the
message flow (using s). The value C1 will be used to
authenticate negotiation later in the protocol.
• Key-Exchange Phase: The client encrypts a premas-

ter secret with the server public-key and sends the
ciphertext and C1 to the server. The server derives
the shared key k , then encrypts it with s. Call this
value C2. The server replies with a MAC (for key
confirmation) and C2 (for use in the next phase).
• Time-Synchronization Phase: The client requests a

synchronization and sends C2. The server recovers k
from C2 and uses it to derive a fresh key to authenti-
cate the response. The client can also request a high-
accuracy time-synchronization, where the server will
immediately reply without authentication, and then
send a second message with authentication.

Appendices B and D contain excerpts of the full ANTP
specification [6], and detail the ANTP message formats
and cryptographic algorithms.

3.1 Design Rationale and Discussion
In SNTP, the accuracy is bounded by the total roundtrip

time of the time-synchronization phase. If we build a
secure authentication protocol over SNTP, then the total
accuracy of the new authenticated protocol is also bound
by the total round-trip time of the time-synchronization
phase, assuming secure authentication. Note that a client
must not pull synchronization from any NTP packets that
have not been authenticated via ANTP. Doing so would
allow downgrade attacks from ANTP to NTP and lose all
security benefits of ANTP.

Of the security properties discussed in RFC 7384 [21],
ANTP achieves the following: protection against manipu-
lation, spoofing, replay and delay attacks; authentication
of the server (if ANTP is applied in a chain, implicit
authentication of primary server); key freshness; avoids
degradation time-synchronization; minimizes computa-
tional load; minimizes per-client storage requirements
of the server. The following properties from [21] are
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Client Server
supported algorithms ~algC supported algorithms ~algS

long-term secret s
certificate certS for the PKE keypair (pkS,skS)

Negotiation phase

α ← in-progress
nc←${0,1}256

m1← ~algC‖nc
m1−→ (KDF,Hash,PKE,MAC)← negotiate( ~algC, ~algS)

h← Hash(m1‖ ~algS‖certS)
C1← AuthEncs(h‖KDF‖Hash‖PKE‖MAC)

Verify certS
m2←− m2← ~algS‖certS‖C1

pkS← parse(cert)

Key exchange phase

(KDF,Hash,PKE,MAC)← negotiate( ~algC, ~algS)

h← Hash(m1‖ ~algS‖certS)

pms←${0,1}128

e← PKE.Enc(pks, pms)
m3←C1‖e

m3−→ h‖KDF‖Hash‖PKE‖MAC← AuthDecs(C1)
pms← PKE.Dec(skS,e)

k← KDF(pms) k← KDF(pms)
C2← AuthEncs(k‖KDF‖Hash‖PKE‖MAC)
τ1←MAC(k,h‖m3‖C2)

Verify τ1 =MAC(k,h‖m3‖C2)
m4←− m4←C2‖τ1

if verify fails, πs
i .α ← reject

Time synchronization phase p = 1, . . . ,n

α ← in-progress
nc2←${0,1}256

t1← Now()

m5← t1‖nc2‖C2
m5−→ t2← Now()

k‖KDF‖Hash‖PKE‖MAC← AuthDecs(s,C2)
t3← Now()[

m∗6←−
]

m∗6← t1‖t2‖t3
τ2←MAC(k,m5‖t1‖t2‖t3)

t4← Now()
m6←− m6← t1‖t2‖t3‖τ2

RTT← (t4− t1)− (t3− t2)
If RTT > E then α ← reject

Verify τ2 =MAC(k,m5‖t1‖t2‖t3)
if verify fails, πs

i .α ← reject

offset = 1
2 (t3 + t2− t1− t4)

timep← Now()+offset
α ← acceptp
If p = n, terminate

Figure 2: Authenticated NTP (ANTPE), where E is a fixed upper bound on the desired accuracy. The pre-determined
negotiation function negotiate, takes as input two ordered lists of algorithms and returns a single algorithm. n denotes
the maximum number of synchronization phases, and p denotes the current synchronization phase. [m∗6] indicates an
optional message sent based on a “no-cryptographic-latency” flag present in m5, omitted in this figure. Note that if
PKE.Dec or AuthDec fails for any ANTP server, the server simply stops processing the message and allows the client
to time-out. If certificate validation fails, the client aborts the protocol run.

6



only partly addressed by ANTP, which we explain in fur-
ther detail below: resistance against the rogue master,
cryptographic DoS and time-protocol DoS attacks.

Stateless server. A single server might provide time-
synchronization to hundreds or thousands of clients, thus
keeping state for each client may be impossible for
highly queried servers. Multiple round-trips allow for
simpler constructions, but a stateless server is a feature
ANTP achieves by allowing the server to regenerate per-
client state upon request. Thus our construction uses
authenticated-encryption (AE) schemes in a similar man-
ner to TLS Session Tickets [28], where the server authen-
ticates and encrypts its per-client state using a long-term
symmetric key, then sends the ciphertext to the client for
storage. The client responds with the ciphertext in order
for the server to decrypt and recover state. The server
periodically refreshes the long-term secret key for the
AE scheme (the intervals are dependent on the security
requirements of the AE scheme).

No-cryptographic-latency. Since cryptographic pro-
cessing adds asymmetrically to propagation time, they
can introduce error in the approximation of propagation
time θ̃3, authentication operations degrade the accuracy
of the transmit timestamp in the resp. We introduce
a method for zero additional error due to authentication:
during the Time-Synchronization Phase, at the client’s
option, the server will immediately process a resp as in
Figure 1 and sends it to the client, without authentication.
The server subsequently creates an ANTP ServerResp

message, and sends the resp with ServerResp in the
NTP extension fields of the saved resp. A client can then
use the time when receiving the initial resp and verify
authentication with the ANTP ServerResp, aborting if
authentication fails, if either message wasn’t received, or
if messages were received in incorrect order.

Efficient cryptography. Public-key operations are
computationally expensive, especially in the case of a
server servicing a large pool of NTP clients. ANTP only
requires a single public-key operation per-client to ensure
authentication and confidentiality of the premaster secret
key material. The client can reuse the shared secret key on
multiple subsequent time-synchronization requests with
that server. ANTP uses public-key encryption (PKE) for
establishing the shared premaster secret; while some pro-
tocols avoid using PKE for key exchange since it does not
provide forward secrecy, this is not a concern for ANTP
since we do not need confidentiality.

Key freshness and reuse. ANTP is also designed to
allow multiple time-synchronization phases for each ses-
sion, using a new nonce each Time-Synchronization
Phase (preventing replay attacks and ensuring unique-

ness of the protocol flow), until either the client restarts
the negotiation phase, or the server rotates public-keys or
authenticated-encryption keys.

Denial of service attacks. Against a MITM adversary,
some types of denial-of-service (DoS) attacks are unavoid-
able, as the adversary may always drop messages. Unau-
thenticated SNTP has a roughly 1:1 ratio of attacker work
to server work, in that one attack packet causes one packet
in response, and a small computational effort is required
by the server. In ANTP, the cryptographic operations do
allow some amplification of work. First, the server per-
forms a public key operation during key exchange while
a malicious client may not; but a server under attack can
temporarily stop responding to key exchange requests,
and since most honest clients will perform key exchange
infrequently, their service will not be denied. The sec-
ond amplification is caused the by the zero cryptographic
latency feature, since two response packets are sent for
each request. This feature can also be turned off during
attack, and in this case the server should indicate with a
flag that it does not support this feature. Finally, in the
negotiation phase the server’s response is also consider-
ably larger than the client request (because it may include
a certificate chain), but like the key exchange phase, the
negotiation phase may be temporarily disabled without
denying service to clients who already have established a
premaster secret. Another option is to replace the server
certificate chain with a URL where the client can down-
load it. Depending on the size of the certificate(s) this
could reduce the bandwidth amplification considerably.
This last mitigation requires detailed analysis, which we
leave to future work.

Certificate validation. When using digital certificates
to authenticate public keys, the synchronization of the
issuer and the relying party is an underlying assumption.
This serves to highlight a significant problem – how do
you securely authenticate time using public-key infras-
tructure without previously having time-synchronization
with the issuer? For our construction we assume that
the client has some out-of-band method for establishing
the trustworthiness of public-keys, perhaps using OCSP
[29] with nonces to ensure freshness of responses, or
by the user manually setting the time for first certificate
validation. Since certificate validity periods typically
range from months to years, if the user is assured of
time-synchronization with the issuer to be within range
of hours or days and that range sits comfortably within
the certificate validation period, this is a viable solution.
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4 Security Framework

In this section we introduce our new time-synchronization
provable security framework for analyzing time synchro-
nization protocols such as ANTP, NTP and the Precise
Time Protocol. It builds on both the Bellare-Rogaway
model [1] for authenticated key-exchange and the Jager
et al. framework for authenticated and confidential chan-
nel establishment [11]. Neither of those models how-
ever includes time. Schwenk [31] recently proposed a
framework for the purposes of modeling time in provable
security analysis which models time as a global param-
eter. Our framework however models time as a counter
that each party separately maintains, as the goal of the
protocol is to synchronize these disparate counters. Ad-
ditionally, the adversary in our execution environment
has the ability to initialize each protocol run with a new
time counter independent of the party’s own counter, and
controls when protocol runs can increment their counter,
effectively giving the adversary complete control of both
the latency of the network and the computation time of
the parties.

4.1 Execution Environment
There are np parties P1, . . . ,Pnp , each of whom is a

protocol participant. Each party generates a long-term
key-pair (ski, pki), and can run up to ns instances of the
protocol which are referred to as sessions. We denote the
sth session of a party Pi as πs

i . Note that each session πs
i

has access to the long-term key pair of the party Pi.

Per-Session Variables. The following variables main-
tained by each session:
• ρ ∈ {client,server}: the role of the party in the

session.
• id ∈ {1, ...,np}: the identity of the party running the

session.
• pid ∈ {1, . . . ,np}: the believed identity of the part-

ner of the session.
• α ∈{accept,reject,in-progress}: the status of

the session.
• k: the session key.
• T : the transcript of messages sent and received in

the session.
• time: a counter maintained by the session.

Adversary Interaction. The adversary schedules and
controls all interactions between protocol participants.
The adversary is in complete control of all communica-
tion, able to create, delete, reorder or modify messages
at will. The adversary can compromise long-term and
session keys. Additionally, the adversary is able to set
the clock of a party to an arbitrary time when beginning

a session and control the rate at which time progresses
during the execution of a session. The following queries
model normal execution with adversary control of time:
• Create(i,r, t): The adversary actives a new ses-

sion with party Pi, initializing it with πs
i .ρ = r and

πs
i .time = t. Note that if πs

i .ρ = client, then πs
i

responds with the first message of the protocol run.
• Send(i,s,m,~∆): The adversary sends a message m

to a session πs
i . Party Pi processes the message m

and responds according to the protocol specifica-
tion, updating per-session variables and outputting
some message m∗ if necessary. During message pro-
cessing, the party may execute multiple calls to a
distinguished Now() procedure, modeling the party
reading its current time from memory; immediately
before the `th such call to the Now() procedure, the
session’s πs

i .time variable is incremented by ∆`.
The next queries model compromise of secret data:
• Reveal(i,s): The adversary receives the session key

k of the session πs
i .

• Corrupt(i): The adversary receives the long-term
secret-key ski of the party Pi.

The following query allows additional adversary con-
trol of the clock:
• Tick(i,s,∆): The adversary increments the counter

πs
i .time by ∆.

The vector ~∆ in Send is necessary due to subtleties
in the security framework: An adversary cannot issue
Tick queries to a session during the processing of a Send
query, but a party may read its clock multiple times while
processing a message and thus expect to receive differ-
ent clock times. The vector ~∆ in the Send query allows
adversary control of this clock rate.

Note that our model assumes that during execution
of a session, the clocks between two parties advance at
the same rate, otherwise it does not make sense for two
parties to try to synchronize their clocks at all. This im-
plicitly assumes that the parties are in the same reference
frame. Additionally, while computer clocks may progress
at different rates, we are assuming that, over a relatively
short period of time, like the few seconds for an execu-
tion of the protocol, the difference in clock rate will be
negligible. This will be formalized in Definitions 3 and 4
with the condition that the adversary advances the time
of matching sessions symmetrically: a Tick( j, t,∑`

i=1 ∆l)
must be issued if session π t

j matching πs
i exists when

Send(i,s,m,~∆) is issued.

Security Experiment. The time-synchronization secu-
rity game is played between a challenger C who imple-
ments all np parties according to the execution environ-
ment and protocol specification, and an adversary A. Af-
ter the challenger generates the long-term key pairs, the

8



adversary receives the list of public keys and interacts
with the challenger using the queries described above.
Eventually the adversary terminates.

4.2 Security Definitions
The goal of the adversary, formalized in this section,

is to break time-synchronization security by causing any
client session to complete a session with a time counter
such that |πs

i .time−π t
j.time|> δ , (where π t

j is the part-
ner of the session πs

i such that π t
j.id = πs

i .pid, and δ is
an accuracy margin) or cause a session πs

i to accept a
protocol run without having a matching conversation with
another session π t

j. The adversary controls the initializa-
tion of the party’s clock in each session, and the rate at
which the clock advances during each session, with the
restriction that during execution of a session the adversary
must advance the party and its peer at the same rate.

4.2.1 Matching Conversations and Authentication

Authentication is defined similarly to the approach of
Bellare and Rogaway [1], by use of matching conver-
sations. We use the variant of matching conversations
employed by Jager et al. [11].

Definition 1 (Matching Conversations). We say a ses-
sion πs

i has a matching conversation with a session π t
j

if πs
i .ρ 6= π t

j.ρ and πs
i .T prefix-matches π t

j.T . For two
transcripts πs

i .T and π t
j.T , we say that πs

i .T is a prefix of
π t

j.T if |πs
i .T | 6= 0 and π t

j.T is identical to πs
i .T for the

first |πs
i .T | messages in π t

j.T . Two transcripts πs
i .T and

π t
j.T prefix-match if πs

i .T is a prefix of π t
j.T , or π t

j.T is a
prefix of πs

i .T .

Prefix matching prevents an adversary from trivially
winning the game by dropping the last protocol message
after a session has accepted.

Definition 2 (Authentication). We say that a session πs
i

accepts maliciously if:
• πs

i .α = accept;
• no Reveal(i,s) or Reveal( j, t) queries were issued

before πs
i .α ← accept and π t

j prefix-matches πs
i ;

• no Corrupt( j) query was ever issued before πs
i .α←

accept, where j = πs
i .pid;

but there exists no session π t
j such that πs

i has a unique
matching conversation with π t

j.
We define Advauth

T (A) as the probability of A forcing
any session πs

i to accept maliciously.

The Reveal query restriction stops A from trivially
winning the game by accessing the session key of the Test
session. The Corrupt query restriction also stops A from
trivially winning by decrypting the premaster secret with
the session peer’s public-key.

4.2.2 Correct and Secure Time Synchronization

The goal of a time synchronization protocol is to ensure
that the difference between the two parties’ clocks is
within a specified bound. A protocol is δ -correct if that
difference can be bounded in honest executions of the
protocol, and δ -accurate secure if that difference can be
bounded even in the presence of an adversary.

Definition 3 (δ -Correctness). A protocol T satisfies δ -
correctness if, in the presence of a passive adversary that
faithfully delivers all messages and increments in each
partner session symmetrically, then the client and server’s
clocks are within δ of each other. More precisely, in the
presence of a passive adversary, for all sessions πs

i where
• πs

i .α = accept;
• πs

i .ρ = client;

• whenever A queries Send(i,s,m,~∆) or
Send( j, t,m′,~∆′), A also queries Tick( j, t,∑`

i=1 ∆`)
or Tick(i,s,∑`

i=1 ∆′`), respectively; and
• whenever A queries Tick(i,s,∆), or Tick( j, t,∆′),
A also queries Tick( j, t,∆) or Tick( j, t,∆′), respec-
tively;

we must also have that |πs
i .time−π t

j.time| ≤ δ .

Definition 4 (δ -Accurate Secure Time-Synchronization).
We say that an adversary A breaks the δ -accuracy of a
time-synchronization protocol if whenA terminates, there
exists a session πs

i with partner id πs
i .pid = j such that:

• πs
i .α = accept;

• πs
i .ρ = client

• A did not make a Corrupt( j) query before πs
i .α ←

accept;
• A did not make a Reveal(i,s) or Reveal( j, t) query

before πs
i .α ← accept and π t

j has a matching con-
versation with πs

i ;
• while πs

i .α = in-progress and A queried
Send(i,s,m,~∆) or Send( j, t,m′,~∆′), then A also
queried Tick( j, t,∑`

i=1 ∆`) or Tick(i,s,∑∆
i=1 ∆′`), re-

spectively;
• while πs

i .α = in-progress and A queried
Tick(i,s,∆), or Tick( j, t,∆′), then A also queried
Tick( j, t,∆) or Tick( j, t,∆′), respectively; and
• |πs

i .time−π t
j.time|> δ .

The probability an adversary A has in breaking δ -
accuracy of a time-synchronization protocol T is denoted
Advtime

T ,δ (A).

4.3 Multi-Phase Protocols
Our construction in Section 3 has a single run of the ne-

gotiation and key-exchange phases, followed by multiple
time-synchronization executions reusing the negotiated
cryptographic algorithms and shared secret key. To model
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the security of such multi-phase time-synchronization pro-
tocols, we further extend our framework so that a single
session can include multiple time-synchronization phases.
The differences from the model described in the previous
section are detailed below.

4.3.1 Execution Environment

Per-Session Variables. The following variables are
added or changed:
• n ∈ N: the number of time-synchronization phases

allowed in this session.
• time p, for p ∈ {1, . . . ,n}: the time recorded at the

conclusion of phase p.
• α ∈ {acceptp,reject,in-progress}, for p ∈
{1, . . . ,n}: the status of the session. Note that, when
phase p concludes and α← acceptp is set, the party
also sets time p← time.

Adversary Interaction. The adversary can direct the
client to run an additional time-synchronization phase
with a new Resync query, and the client will respond
according the protocol specification. The Create query in
this setting is also changed:
• Create(i,r, t,n): Proceeds as for Create(i,r, t), and

also sets πs
i .n← n.

• Resync(i,s,~∆) - The adversary indicates to a ses-
sion πs

i to begin the next time-synchronization phase.
Party Pi responds according to protocol specification,
updating per-session variables and outputting some
message m∗ if necessary. During message process-
ing, immediately before the `th call to the Now()
procedure, the session’s πs

i .time variable is incre-
mented by ∆`.

4.3.2 Security Definitions

The goal of the adversary is also slightly different to ac-
count for the possibility of breaking time-synchronization
of any given time-synchronization phase: the adversary’s
goal is to cause a client session to have any phase where
its time is desynchronized from the server’s. In particular,
for there to be some client instance πs

i and some phase
p such that |πs

i .time p− π t
j.time p| > δ where π t

j is the
partner of session πs

i . Again the adversary in general
controls clock ticks and can tick parties at different rates,
however must tick clocks at the same rate when phases
have switched back to being in-progress.

Definition 5 (δ -Accurate Secure Multi-Phase Time-Syn-
chronization). We say that an adversary A breaks the
δ -accuracy of a multi-phase time-synchronization proto-
col if when A terminates, there exists a phase p session
πs

i with partner id πs
i .pid = j such that:

• πs
i .ρ = client

• πs
i .α = acceptq for some q≥ p;

• A did not make a Corrupt( j) query before πs
i .α ←

acceptp was set;
• A did not make a Reveal(i,s) or Reveal( j, t) query

before πs
i .α← acceptp was set and π t

j has a match-
ing conversation with πs

i ;
• while πs

i .α = in-progress and A queried
Send(i,s,m,~∆) or Send( j, t,m′,~∆′), then A also
queried Tick( j, t,∑`

i=1 ∆`) or Tick(i,s,∑`
i=1 ∆′`), re-

spectively;
• while πs

i .α = in-progress and A queried
Tick(i,s,∆), or Tick( j, t,∆′), then A also queried
Tick( j, t,∆) or Tick( j, t,∆′), respectively; and
• |πs

i .time p−π t
j.time p|> δ .

The probability an adversary A has in breaking δ -
accuracy of multi-phase time-synchronization protocol T
is denoted Advmulti-time

T ,δ (A).

5 Security of ANTP

In this section we present our correctness and security the-
orems for demonstrating that ANTP satisfies a E-accurate
secure time-synchronization protocol, where E represents
the maximum error an attacker can induce. We explain
our intuition by using the bound on the possible error that
an A can introduce without altering packets introduced in
Section 3. It follows then that if all messages are securely
authenticated, and the only inputs to the clock-update
procedure are either:
• authenticated via messages; or
• the round trip delay RTT,

then any attacker can only introduce at most E error
into the clock-update procedure (where E ≥ RTT). We
say that such a protocol is an E-accurate secure time-
synchronization protocol. We formalize this as Theorem
2, below:

5.1 Correctness
Theorem 1 (Correctness of ANTP). Fix E ∈ N. ANTPE

is an E-correct time-synchronization protocol as defined
in Definition 3.

Proof. When analyzing ANTP in terms of correctness,
we can restrict analysis to data that enters the clock-update
procedure as input, as the rest of the protocol is designed
to ensure authentication and does not influence the ses-
sion’s time counter. This allows us to narrow our focus to
SNTP, which is the time-synchronization core of ANTP.

We first focus on a single time-synchronization phase.
At the beginning of the time-synchronization phase of
ANTP, the client will sent an NTP request (req) which
contains t1, the time the client sent req. Note that the
adversary is restricted to delivering the messages faith-
fully as a passive adversary, and also must increment the
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time of each protocol participant symmetrically. The ad-
versary otherwise has complete control over the passage
of time. Thus θ1, θ2, θ3 are non-negative but otherwise
arbitrary values selected by the adversary (where θ1 is
the propagation time from client to server, θ2 is server
processing time and θ3 is propagation time from server
to client). Thus the client computes the round-trip time
of the protocol as: RTT = (t4− t1)− (t3− t2) = θ1 +θ3
and approximates the server-to-client propagation time as
θ̃3 =

1
2 (θ1 +θ3).

When the client-to-server and server-to-client propaga-
tion times are equal (θ1 = θ3) then θ̃3 = θ3, and the values
t3 and t2 allow the client to exactly account for θ2. The
time counter is updated by time+ offset = t3 + θ̃3− t4,
and upon completion the client’s clock is exactly synchro-
nized with the server’s clock.

When θ1 6= θ3, we have that θ3 − θ̃3 = 1
2 (θ3 − θ1),

so the statistics t1, ..., t4 do not allow the client to ex-
actly account for client-to-server propagation time θ3;
the client’s updated time may be off by up to 1

2 (θ3−θ1).
Fortunately, we can bound this value by E: we know
that 1

2 (θ3−θ1)≤ 1
2 (θ1 +θ3), and furthermore we know

that ANTPE will only accept time-synchronization when
1
2 (θ1 + θ3) ≤ E, so in sessions that accept (assuming a
passive adversary) we have that the client’s clock is at
most 1

2 (θ3−θ1)≤ E different from the server’s clock.

Now moving to the multi-phase setting, we note that
this analysis of the correctness of ANTP applies to each
separate time-synchronization phase: since the client’s
(t1, t4) values are only used to calculate the total round-
trip time of the time-synchronization phase, thus if the
rate-of-time for both client and server during the phase
is the same, each phase is also E-accurate in the pres-
ence of a passive adversary, even if the adversary dra-
matically changes the rate-of-time for partners between
time-synchronization phases.

5.2 Security

Theorem 2 (Security of ANTP). Fix E ∈ N. Assum-
ing the public key encryption scheme PKE is IND-CCA-
secure, the message authentication code MAC is eUF-
CMA-secure, the hash function Hash is collision-resistant,
and the key derivation function KDF and authenticated
encryption scheme AE are secure, then ANTPE is a E-
accurate secure time-synchronization protocol as in Defi-
nition 4. In particular, there exist algorithms B3, . . . ,B8,
described in the proof of the theorem, such that, for all

adversaries A, we have that

Advtime
ANTPE ,E

(A)≤
n2

pn2
s

2254 +n2
pn2

s

(
Advcoll

Hash(BA3 )

+AdvAEAuthEnc(BA4 )+Advind−cca
PKE (BA5 )

+Advkdf
KDF(BA6 )+AdvAE

AuthEnc(BA7 )

+Adveuf-cma
MAC (BA8 )

)
where np and ns are the number of parties and sessions
created by A during the experiment.

The standard definitions for security of the under-
lying primitives and the corresponding advantages
AdvAuthEnc

AE (A),Advind−cca
PKE (A),Advcoll

Hash(A),Adveuf-cma
MAC

(A), and Advkdf
KDF(A) are given in Appendix C.

Proof. From Theorem 1, ANTPE is an E-correct time-
synchronization protocol in the sense of Definition 3.
Thus all passive adversaries have probability 0 of break-
ing E-accuracy of ANTPE . If we show that the advantage
Advauth

ANTPE
(A) of any adversary A of breaking authenti-

cation security (i.e., to accept without matching conversa-
tions) of ANTPE is small, then it follows that the advan-
tage of any active adversary A in breaking E-accuracy of
ANTPE is similarly small. In other words, it immediately
is the case that Advtime

ANTPE ,E
(A)≤ Advauth

ANTPE
(A).

We now focus on bounding Advauth
ANTPE

(A). In order to
show that an active adversary has negligible probability
in breaking ANTPE authentication, we use a proof struc-
tured as a sequence of games. We let Pr(breaki) denote
the probability that the adversary causes some session to
accept maliciously in game i. We iteratively change the
security experiment, and demonstrate that the changes
are either failure events with negligible probability of
occurring or that if the changes are distinguishable we
can construct an adversary capable of breaking an un-
derlying cryptographic assumption. Since the client will
only accept synchronization if all three phases are prop-
erly authenticated, the advantage of an active adversary is
negligible given our cryptographic assumptions.

Game 0. This is the original time-synchronization
game described in § 4: Advauth

ANTPE
(A) = Pr(break0).

Game 1. In this game, we add an abort rule for non-
unique nonces. Specifically, if any nonce is used by two
different sessions by client instances, we abort the sim-
ulation. This is a transition based on failure events. Re-
call that np is the number of parties, and ns is the num-
ber of sessions per party. Then there are at most 2nsnp
nonces used by client instances, each of 256 bits. The
probability that a collision occurs among these values is

(2nsnp)
2/2256, so: Pr(break0)≤ Pr(break1)+

n2
s n2

p
2254 .

11



Game 2. In this game, we try to guess which client ses-
sion will be the first to accept maliciously, and abort if we
guess in correctly. We choose a random session πs

i where
(i,s)←${1, . . . ,np}×{1, . . . ,ns}. If πs

i is not the first ses-
sion to accept maliciously, then the challenger aborts the
game. Note that from Game 2 forward, the challenger
answers Reveal(i,s) queries before πs

i .α = accept by
aborting the game, as it follows that the guessed session
cannot accept maliciously. This is a transition based on
failure events. There are at most npns client sessions, and
we guess the first session to accept maliciously with prob-
ability at least 1/npns, so Pr(break1)≤ npns Pr(break2).

Game 3. In this game, we try to guess which server
session will be the partner to the first session to accept
maliciously. We choose a random session π t

j where
( j,s)←${1, . . . ,np}× {1, . . . ,ns}. If π t

j is not the part-
ner of the first session πs

i to accept maliciously, then the
challenger aborts the game. Note that from Game 3 for-
ward, the challenger answers Corrupt( j) and Reveal( j, t)
queries before πs

i .α ← accept by aborting the game, as
it follows that the guessed session cannot accept mali-
ciously. This is a transition based on failure events. There
are at most npns server sessions, and we guess the partner
of the first session to accept maliciously with probability
at least 1/npns, so Pr(break2)≤ npns Pr(break3).

Game 4. In this game, we exclude hash collisions. We
construct a simulator BA4 that runs the security game and
computes all hash values h=Hash(m1‖ ~alg2‖ServerCert)
honestly, and maintains a list Coll where all inputs and
outputs of the hash function are stored. BA3 aborts if there
exists two entries (in,Hash(in)),(în,Hash(în)) such that
in 6= în but Hash(in) = Hash(în). Whenever the adver-
sary A wins the game, BA3 inspects Coll to see if a col-
lision occurred and if so, outputs the collision. Thus
Pr(break3)≤ Pr(break4)+Advcoll

Hash(BA3 ).

Game 5. In this game, we abort if in server session π t
j

the ciphertext received in m3 is not equal to the ciphertext
sent in m1 but the output of AuthDecs is not ⊥.

We construct an algorithm BA4 that interacts with an
AE challenger in the following way: BA4 acts exactly as
in game 4 except for sessions run by party Pj. When
Pj needs to run AuthEnc or AuthDec, BA4 uses its AE
challenger’s oracles to compute the required value. This is
a perfect simulation of game 4. In server session π t

j, when
BA4 receives a ciphertext in m3 that was not equal to the
ciphertext sent in m1 but the output of the AuthDec oracle
is not⊥, this corresponds to a ciphertext forgery, and thus
BA4 has broken the integrity of AE. Thus, Pr(break4) ≤
Pr(break5)+AdvAE

AuthEnc(BA4 ).

Game 6. In this game, sessions πs
i and π t

j compute
the session key k by applying KDF to a random secret

pms′←${0,1}128, rather than the pms that was encrypted
using PKE.Enc and transmitted in ciphertext e. Any al-
gorithm used to distinguish Game 5 from Game 6 can
be used to construct an algorithm capable of distinguish-
ing PKE encrypted values via plaintext, thus breaking
IND-CCA security of the public-key encryption scheme.

We construct a simulator BA5 that interacts with a PKE
challenger. BA5 activates party Pj with the public key pk
received from the challenger. BA5 responds identically to
queries from A as in Game 5, except as follows:
• BA5 computes the public-key encrypted premaster

secret e for the session πs
i by querying the chal-

lenger’s Encrypt oracle with (pms, pms′) where
pms′←${0,1}128.

• BA5 computes πs
i .k← KDF(pms)

• In any Pj session where m3 contains the challenge
ciphertext above, BA5 computes the session key as
k← KDF(pms).
• In any other Pj session where m3 does not contain

the challenge ciphertext above, BA5 queries the ci-
phertext to its Decrypt oracle to obtain the premaster
secret and uses that as its input to KDF to compute
the session key k.
• BA5 never needs to answer a Corrupt( j) query be-

cause of Game 3.
When the random bit b sampled by the challenger is 0,
e = PKE.Enc(pms, pk j) and BA5 perfectly simulates of
Game 5. When b = 1, e = PKE.Enc(r3, pk j), and BA5
perfectly simulates Game 6. BA5 never asks the challenge
ciphertext to its decryption oracle.

An adversary capable of distinguishing Game 5 from
Game 6 can therefore be used to break IND-CCA security,
so Pr(break5)≤ Pr(break6)+Advind−cca

PKE (BA5 ).

Game 7. In this game, we replace the secret key k in
sessions πs

i and π t
j with a uniformly random value k′ from

{0,1}lKDF where lKDF is the length of the KDF output,
instead of being computed honestly via k← KDF(pms).

In Game 6, we replaced the premaster secret value pms
with a uniformly random value from {0,1}128. Thus, any
algorithm that can distinguish Game 6 from Game 7 can
distinguish the output of KDF from random. We explicitly
construct such a simulator BA6 that interacts with a KDF
challenger, and proceeds identically to Game 6, except:
• When computing k for πs

i , BA6 queries the KDF chal-
lenger with pms.
• When computing k for π t

j, BA6 sets π t
j.k = πs

i .k.
When the random bit b sampled by the KDF challenger is
0, k = KDF(pms), and BA6 provides a perfect simulation
of Game 6. When b = 1, k←${0,1}lKDF and BA6 provides
a perfect simulation of Game 7.

An adversary capable of distinguishing Game 6 from
Game 7 can therefore distinguish the output of KDF from
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random, so Pr(break6)≤ Pr(break7)+Advkdf
KDF(BA6 ).

Game 8. In this game, in session π t
j we replace the con-

tents of the ciphertext C2 sent in m3 with a random string
of the same length, and abort if the ciphertext received in
m5 is not equal to the ciphertext sent in m3 but the output
of the AuthDecs algorithm is not ⊥.

We construct an algorithm BA7 that interacts with
an AE challenger in the following way: BA7 acts ex-
actly as in game 7 except for sessions run by party Pj.
In session π t

j, for the computation of C2, BA7 picks a
uniformly random binary string z′ of length equal to
z = k‖KDF‖Hash‖PKE‖MAC and submits (z,z′) to its
AuthEnc oracle. For all other computations that Pj in-
volving AuthEncs or AuthDecs, BA7 submits the query its
respective AuthEnc or AuthDec oracle.

When the random bit b sampled by the AE challenger
is 0, C2 contains the encryption of z, so BA7 provides a
perfect simulation of Game 7. When b = 1, C2 contains
the encryption of z′, so BA7 provides a perfect simula-
tion of Game 8. An adversary capable of distinguish-
ing Game 7 from Game 8 can therefore break the con-
fidentiality of AE and guess b. Additionally, if BA7 re-
ceives a ciphertext in m5 that was not equal to the ci-
phertext sent in m3 but the output of the AuthDec or-
acle is not ⊥, this corresponds to a ciphertext forgery,
and thus BA7 has broken the integrity of AE. Thus,
Pr(break7)≤ Pr(break8)+AdvAEAuthEnc(BA7 ).

The effect of Game 8 is that, in the target session and
its partner, the key used in the MAC computations is
independent of the values transmitted.

Game 9. In this game, we abort when the session πs
i

accepts maliciously. We do this by constructing a sim-
ulator BA8 that interacts with the MAC challenger, but
computes τ1 and τ2 for π t

j by querying h‖m3‖C2 and
m5‖t1‖t2‖t3 to the MAC challenger. BA8 verifies MAC
tags for πs∗

i∗ by again querying h‖m3‖C2 and m5‖t1‖t2‖t3
to the MAC challenger and ensuring the MAC chal-
lenger’s output is equal to the tag to be verified. Note
that now that the key k is substituted for the key main-
tained by the MAC challenger: k was already uniformly
random and independent of the protocol run, and by
Game 2 and Game 3, the simulator already responds
to Reveal queries to πs

i and π t
j by aborting the secu-

rity experiment. Thus these changes to the game are
indistinguishable. When πs

i .α ← accept, BA8 checks
Pj to see if there is a session with a matching conver-
sation. Since by Game 1 all protocol flows are unique
(by unique nonces), if Pj has no session with a matching
conversation the adversary must have produced a valid
MAC tag τ̂1 or τ̂2 such that MAC.Tag(k,h‖m3‖C2) = τ̂1
or MAC.Tag(k,m5‖t1‖t2‖t3) = τ̂2 and (by Game 8) the
key k is uniformly random. BA8 submits the appro-

priate pair (h‖m3‖C2, τ̂1), (m5‖t1‖t2‖t3, τ̂2) to the MAC
challenger and aborts. Thus, Pr(break8)≤ Pr(break9)+
Adveuf-cma

MAC (BA8 ).

Analysis of Game 9. We now show that an active ad-
versary has probability 0 of forcing a client session πs∗

i∗ to
accept maliciously in Game 9.

πs
i is a target session where: no Reveal(i,s) or

Reveal( j, t) queries were issued before πs
i .α ← accept;

no Corrupt( j) query was ever issued before πs
i .α ←

accept, where πs
i .pid = j; and πs

i only accepts if τ1 =
MAC(k,h‖m3‖C2) and τ2 = MAC(k,m5‖t1‖t2‖t3). By
unforgeability these tags cannot be generated by A and
by Game 1 the protocol flow of each session is unique.
τ1 and τ2 verification will thus only occur if πs

i .T = π t
j.T ,

as τ1 is over all messages in the negotiation and key-
exchange phase, and τ2 is over all messages in the time-
synchronization phase and thus πs

i will only accept if π t
j.T

prefix-matches πs
i .T . Thus, no client session accepts ma-

liciously in Game 9: Pr(break9)≤ 0.
Summing all of the probabilities yields the desired

bound, showing that ANTPE is a E-accurate secure Time-
Synchronization Protocol.

5.3 Proof of Multi-Phase Security of ANTP
A similar argument shows multi-phase security of

ANTPE , with minor changes to the games in the proof
to enable guessing of the first phase session to accept
maliciously.

Theorem 3 (Multi-Phase Security of ANTP). Fix E,n ∈
N. Under the same assumptions as in Theorem 2, ANTPE

is a E-accurate secure multi-phase time-synchronization
protocol as defined in Definition 5. In particular, there
exist algorithms B3, . . . ,B8 described in the proof of The-
orem 2, such that, for all adversaries A, we have that

Advmulti-time
ANTPE ,E

(A)≤
n2

pn2
s

2254 +n2
pn2

s n
(

Advcoll
Hash(BA3 )

+AdvAEAuthEnc(BA4 )+Advind−cca
PKE (BA5 )

+Advkdf
KDF(BA6 )+AdvAE

AuthEnc(BA7 )

+Adveuf-cma
MAC (BA8 )

)
where np, ns, n are the maximum number of parties, ses-
sions and phases created by A during the experiment.

Proof. The proof for Theorem 3 is identical to the proof
to Theorem 2 except as follows.

A new game is inserted between Game 3 and Game
4 that guesses the first time-synchronization phase p ∈
{1, . . . ,n} that the target session πs

i will accept mali-
ciously: by Theorem 2, we know that a session πs

i will
not accept maliciously for time-synchronization phase
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p = 1, so by this step we know that πs
i has a matching

conversation with π t
j up to and including phase p−1.

We also edit the final game (MAC challenger) so that
B aborts if πs

i accepts maliciously in phase p. We do this
by editing the final game in the following way: When pro-
cessing m5 for π t

j in the guessed phase p (we indicate this
with m5p) B will also compute τ2p by querying the MAC
challenger with m5p‖t1p‖t2p‖t3p, and verifies the τ2p for
πs

i by querying the MAC challenger with m5p‖t1p‖t2p‖t3p
and accepting only if the output from the MAC challenger
matches the τp in m6p. Following the same structure as
the proof to Theorem 2, we have that k is a uniformly
random key generated independently from the protocol
run and this change is indistinguishable. Verification of τ

will only occur if πs
i .T = π t

j.T up to phase p, as τ1 is over
all messages in the negotiation and key-exchange phase,
and τp is over all messages in phase p.

6 Discussion

In this work we introduced a new authenticated time-
synchronization protocol called ANTP, designed to se-
curely synchronize the time of a client and server, using
public-key infrastructure. Our design is efficient, allow-
ing a server to perform a single public key operation per
client, and then use only faster symmetric key operations
for each subsequent request from that client. Furthermore,
the server need not even store per-client state, instead
securely offloading storage of that state to the client.

Our ANTP protocol is accompanied by a thorough
provable security analysis showing that it provides se-
cure time synchronization within user-specified accuracy
bounds. The analysis is carried out in a new provable se-
curity framework. A novel aspect of our new framework,
when compared with the long line of work on authentica-
tion definitions, is that our framework models an adver-
sary with the ability to control the flow of time, meaning
the adversary can initialize different parties’ clocks to
different times, and even control the rate at which their
clocks are advanced. Our new security framework can be
used for the analysis of other time-synchronization proto-
cols such as the Network Time Security (NTS) protocol
and the Precise-Time Protocol (PTP).

Several interesting open problems in the area of secure
time synchronization remain. All existing time synchro-
nization protocols that rely on public keys, including ours,
need to initially validate the certificate of the time server,
specifically that it is within its validity period. While
nonces can be combined with OCSP responses to check
freshness, this cannot completely solve the “first-boot”
problem. A detailed study of denial of service attacks
against secure time synchronization protocols including
ANTP would also be worthwhile, giving detailed con-
sideration to both the cost of cryptographic operations

in practice and the bandwidth amplification afforded by
directing protocol responses to a victim.
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struct {

uint8 leap_indicator : 2;

uint8 version : 3;

uint8 mode : 3;

uint8 stratum;

int8 pollinterval;

int8 precision;

int32 root_delay;

int32 root_dispersion;

int32 reference_identifier;

int64 reference_timestamp;

int64 originate_timestamp;

int64 recieve_timestamp;

int64 transmit_timestamp;

} NtpMessage

where:
• leap indicator: An unsigned two-bit code used

to indicate leap seconds or warnings.
• version: A unsigned three-bit integer used to indi-

cate supported version of S/NTP.
• mode: A unsigned three-bit integer used to indicate

mode of operation (client, server, etc.).
• stratum: An eight-bit integer used to indicate the

stratum level of the local machine.
• pollinterval: A signed eight-bit integer used to

indicate the maximum interval of time between NTP
queries sent by the client, to the nearest power of
two.
• precision: A signed eight-bit integer n used to

indicate the resolution of the client local clock to the
nearest power of two.
• root delay: A signed 32-bit fixed-point number,

used to indicate the total round-trip time from the
client local clock to the hardware clock at the pri-
mary server.
• root dispersion: A signed 32-bit fixed-point

number, used to indicate the nominal error of the
local clock relative to the hardware clock at the pri-
mary server.
• reference identifier: A 32-bit string used to

identify the primary server used as reference.
• reference timestamp: A unsigned 64-bit NTP

timestamp in big-endian format, used to indicate the
last update of the client local clock.
• originate timestamp: A unsigned 64-bit NTP

timestamp in big-endian format, used to indicate the
time that req was sent according to the client local
clock.
• receive timestamp: A unsigned 64-bit NTP

timestamp in big-endian format, used to indicate
the time the req arrived at the server, according to

the server local clock.
• transmit timestamp: An unsigned 64-bit NTP

timestamp in big-endian format, used to indicate
the time the time the message departed the local
machine, according to the local clock.

B Authenticated Network Time Protocol
Messages

The following section contains excerpts from an imple-
mentation specification for ANTP intended for submis-
sion to the IETF. Recall that all messages are designed
to be sent in the NTP extension fields similarly to the
Autokey Protocol [8]. When the msg type of the exten-
sion field equals 0x01, 0x02, 0x03, 0x04, or 0x05 the
client MUST NOT use the information in the NTP mes-
sage fields for synchronization. If the msg type of the
extension fields equal 0x01 or 0x03 the server MAY pro-
cess the NTP message normally. When the namefield

reads 0x06 or 0x05, the client and server MUST process
the respective NTP messages as specified in the NTP
specification.

This protocol follows DTLS [25] regarding message
fragmentation. If the message requires fragmentation, the
client divides the message into a series of N contiguous
data ranges, each at least 56 bytes shorter than the max-
imum message size (to account for the NTP Packet and
the msg type, Length, Offset and FragmentLength

field lengths). Each of these N data ranges becomes a new
message, each attached to an identical NTP packet, and
with identical msg type and Length. The Offset of a
message fragment is the number of bytes in previous frag-
ments, and FragmentLength is the length of the current
message fragment. When any party receives an NTP mes-
sage with an extension field containing a msg type with
value 0x01 (ClientAssoc), 0x02 (ServerAssoc), 0x03
(ClientKey), 0x04 (ServerKey), 0x05 (ClientReq),
0x06 (ServerResp), the party checks if Length =
FragmentLength. If not, the party MUST buffer until it
has the entire message, and process as if the message were
a single NTP packet attached to a extension field with ze-
roed fragment offset field and fragment length set
to length. This fragmentation strategy is applied to each
ANTP protocol message, as required. Setting the maxi-
mum message length depends on the path MTU between
the client and server. Clients can use path MTU discovery
[22] [14]. See also Section 4.1.1.1 ”PMTU Discovery”
from [25] for information on how path MTU is set in
DTLS.

We specify the following structure to describe the
FragmentInfo structure of all ANTP packets:

struct {

uint24 length;
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uint16 offset;

uint16 FragmentLength;

} FragmentInfo

where:
• length: An unsigned 24-bit integer describing the

length of the unfragmented message
• fragment offset: An unsigned 16-bit integer de-

scribing the number of bytes contained in previous
fragments of the message. When the message re-
quires no fragmentation this value is 0.
• fragment length: An unsigned 16-bit integer de-

scribing the length of this fragment on the message.
When the message requires no fragmentation, this
value is length.

Note that since ANTP allows buffering of messages, it is
possible that multiple ANTP messages that require frag-
mentation may be received by another party interleaved.
Since each ANTP message that is fragmented is attached
to an identical NTP message, it is trivial to distinguish
fragmented ANTP messages via the NTP packet. In order
to reduce complexity however, the parties MUST NOT
send multiple ANTP messages with identical NTP pack-
ets, but instead generate a new NTP message for each
message flow.

In a similar way to TLS all values are stored in big-
endian format, and the smallest block size is a single byte.
We define variable- length vectors by specifying a range
of legal lengths and sizes of the elements in the vector as
follows:

type Name <floor,...,ceiling>

where type is the type of each element, floor is the
smallest number of elements in the vector, and ceiling

the largest. Note that for each vector the number of el-
ements in the vector is prepended to the vector as an
unsigned integer, using as many bytes as necessary to
express ceiling (the length of the largest possible vector).

We define the following structure to represent a
variable-length string of bytes:

struct {

uint32 length;

uint8 data<0, ..., 2^32 -1>

} ByteString

where:
• length: An unsigned 32-bit integer indicating the

number of bytes that follow.
• data: A sequence of bytes (octets).
Note that for the ByteString structure, the data field

is not serialized as a vector (with the length prepended),
as the length is explicitly given by the first field.

B.1 Negotiation Phase
The negotiation phase begins with the exchange of mes-

sages to negotiate the key-exchange, hash algorithms and
versions to be used throughout the protocol. In addition,
the server sends the certificate necessary to validate the
public-key of the server.

B.1.1 Client Association Message

The negotiation phase begins with the client sending
the first negotiation message, with the following structure.
The description of each field can be found below:

struct {

uint8 msg_type = 0x01;

FragmentInfo f;

uint8 client_version;

uint8 client_kdf_algs<0,...,255>;

uint8 client_hash_algs<0,...,255>;

uint8 client_kex_algs<0,...,255>;

uint8 client_mac_algs<0,...,255>;

uint256 nonce;

} ClientNegotiation

• client version: An unsigned 8-bit integer indi-
cating the highest supported version of ANTP that
the client supports.
• client kdf algs: An ordered list of unsigned 8-

bit integers representing the preferred key-derivation
functions supported by the client.
• client hash algs: An ordered list of unsigned

8-bit integers representing the preferred hash algo-
rithms supported by the client.
• client kex algs: An ordered list of unsigned 8-

bit integers representing the preferred key-exchange
algorithms supported by the client.
• client mac algs: An ordered list of unsigned 8-

bit integers representing the preferred MAC schemes
supported by the client.
• nonce: An unsigned 256-bit integer.
• msg type: A unsigned byte of value 0x01 indicating

the ClientAssoc message.

B.1.2 Server Association Message

The negotiation phase continues with the server pro-
cessing the ClientAssoc message and sending the
ServerAssoc message, with the following structure:

struct {

uint8 msg_type = 0x02;

FragmentInfo f;

uint8 server_version;

uint8 server_kdf_algs<0,...,255>;

uint8 server_hash_algs<0,...,255>;
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uint8 server_kex_algs<0,...,255>;

uint8 server_mac_algs<0,...,255>;

ByteString server_cert;

ByteString opaque1

} ServerNegotiation

• server neg: A unsigned byte of value 0x02 indi-
cating the ServerAssoc message.
• server version: An unsigned 8-bit integer indi-

cating the highest supported version of the authenti-
cation protocol that the server supports.
• server kdf algs: An ordered list of unsigned 8-

bit integers representing the preferred key-derivation
functions supported by the server.
• server hash algs: An ordered list of unsigned

8-bit integers representing the preferred hash algo-
rithms supported by the server.
• server kex algs: An ordered list of unsigned 8-

bit integers representing the preferred key-exchange
algorithms supported by the server.
• server mac algs: An ordered list of unsigned 8-

bit integers representing the preferred MAC schemes
supported by the server.
• server cert: The certificate containing the server

public-key. Note that the public-key corre-
sponds to the key-exchange algorithm negotiated
with the two ordered lists client kex algs and
server kex algs.
• opaque1 An encrypted value created by the server,

opaque to the client.

B.2 The Key-Exchange Phase
The key-exchange phase establishes secret-key mate-

rial, and implicitly authenticates both the key-exchange
and negotiation phases to the client.

B.2.1 Client Key Exchange Message

The key-exchange phase begins with the client sending
the ClientKey message, with the following structure and
description:

struct {

uint8 msg_type = 0x03;

FragmentInfo f;

uint8 neg_version;

uint8 neg_kdf;

uint8 neg_hash;

uint8 neg_kex;

uint8 neg_mac;

ByteString opaque1

ByteString kex_mat

} ClientKEX

• msg type: A unsigned byte of value 0x03 indicating
the ClientKEX message.
• neg version: unsigned 8-bit integer describing the

negotiated version of the protocol that the parties
will be using.
• neg kdf: An unsigned 8-bit integer describing the

negotiated KDF that the protocol will be using.
• neg hash: An unsigned 8-bit integer describing the

negotiated hash algorithm that the protocol will be
using.
• neg kex: An unsigned 8-bit integer describing the

negotiated key- exchange algorithm that the protocol
will be using.
• neg hash: An unsigned 8-bit integer describing the

negotiated MAC algorithm that the protocol will be
using.
• opaque1: The opaque value sent in the
ServerAssoc message.
• kex mat: The public key exchange material.

B.2.2 Server Key Exchange Message

The server now processes the ClientKEX message to
compute the shared secret key. The server then produces
a second opaque encryption, this time of the key k, and
generates a MAC tag authenticating the ClientKey and
ServerKey messages. The structure and description of
the ServerKey message is as follows:

struct {

uint8 msg_type = 0x04;

FragmentInfo f;

ByteString opaque2

ByteString mac_tag

} ServerKEX

• msg type: A unsigned byte of value 0x04 indicating
the ServerKEX message.
• opaque2: A second encrypted value created by the

server, opaque to the client.
• mac tag: The MAC of the concatenated hash value,
ClientKey, and ServerKey messages using the
agreed key. The length of the tag is known to both
parties based on the negotiated hash function, and
clients MUST check that the received mac tag has
the correct length.

B.3 Time Synchronization Phase

The Time-Synchronization Phase is for the client to
request synchronization from a server that has previously
been authenticated and established a shared secret key.

18



B.3.1 Client Request Message

The Time Synchronization phase begins with the client
computing the NTP packet as specified in the SNTP stan-
dards, and additionally completing the ClientReq exten-
sion as structured and described below:

struct {

uint8 msg_type = 0x05;

FragmentInfo f;

uint8 neg_kdf;

uint8 neg_hash;

uint8 neg_kex;

uint8 neg_mac;

uint256 nonce;

ByteString opaque2

uint8 AccuracyFlag flag

} ClientRequest

• msg type: A unsigned byte of value 0x05 indicating
the ClientRequest message.
• neg kdf: An unsigned 8-bit integer describing the

negotiated KDF that the protocol will be using.
• neg hash: An unsigned 8-bit integer describing the

negotiated hash algorithm that the protocol will be
using.
• neg kex: An unsigned 8-bit integer describing the

negotiated key- exchange algorithm that the protocol
will be using.
• neg mac: An unsigned 8-bit integer describing the

negotiated MAC algorithm that the protocol will be
using.
• nonce: An unsigned 256-bit integer.
• opaque2: The opaque value sent in the ServerKEX

message.
• flag: An unsigned 8-bit integer describing whether

the client requires high accuracy. Legal values are
0x01 (the flag is set) or 0x00 (the flag is not set).

B.3.2 Server Response Message

The server processes the client NTP request as standard-
ized, and computes the SNTP response. If the flag in
the ClientReq is 0x01, the server immediately sends the
message without a ServerResp extension. Afterwards,
the server computes the ServerResp fields as described
below, and attaches it as an extension to the previously
computed NTP packet, sending the message to the client.

struct {

uint8 msg_type = 0x06;

FragmentInfo f;

ByteString mac_tag

} ServerResponse

Encrypt(m0,m1): Decrypt(C):
C(0)←$AuthEnc(k,m0) (m)← AuthDec(k,C)

C(1)←$AuthEnc(k,m1) If m =⊥p, then return ⊥
If C(0) =⊥ or C(1) =⊥, If b = 0, then return ⊥

return ⊥
Return C(b) Return m

Figure 3: Encrypt and Decrypt oracles in the
authenticated-encryption security experiment.

• msg type: A unsigned byte of value 0x06 indicating
the ServerResp message.
• mac tag: The MAC of the concatenated ClientReq

and ServerResp messages using the derived secret-
key. The length of the tag is known to both parties
based on the negotiated hash function, and clients
MUST check that the received mac tag has the cor-
rect length.

C Cryptographic Definitions

C.1 Authenticated-Encryption Scheme
An authenticated-encryption (AE) scheme is a pair of

algorithms AE= (AuthEnc,AuthDec) described in Fig-
ure 3. Security of a AE scheme is defined via the follow-
ing security game played between a challenger C and a
polynomial-time adversary A.

1. The challenger picks b←${0,1} and k←${0,1}κ .
2. The adversary may adaptively query the encryption

oracle Encrypt and decryption oracle Decrypt which
respond as shown in Figure 3.

3. The adversary outputs a guess b′ ∈ {0,1}.
The advantage of A in breaking the AE scheme AE is

AdvAE
AuthEnc(A) =

∣∣Pr(b = b′)− 1
2

∣∣. Note that in our use
of an AE scheme, the purpose is to allow the server to
regenerate per-client-state in an authenticated way. The
length of all inputs to the AE scheme in each phase is
public information and thus the length-hiding security
property (introduced by Paterson, Ristenpart and Shrimp-
ton [24]) is not necessary .

C.2 Public-Key Encryption Schemes
A public-key encryption (PKE) scheme is a tuple of

algorithms PKE = (PKE.KeyGen,PKE.Enc, PKE.Dec)
where: KeyGen is a probabilistic key generation algo-
rithm taking security parameter (1k) as input and return-
ing a valid public-key/secret-key pair (pk,sk); Enc is an
encryption algorithm taking a message and public-key
(m, pk) as input and returning a ciphertext c; and Dec is a
deterministic decryption algorithm, taking a ciphertext c
as input, and returning plaintext m. IND-CCA security of
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Encrypt(m0,m1): Decrypt(c):
If length.m0 6= length.m1, m← Dec(sk,c)

then return ⊥ If c ∈ ~list,
c(0)←$PKE.Enc(pk,m0) then return ⊥
c(1)←$PKE.Enc(pk,m1) Return m
~list← c(b)

If C(0) =⊥ or C(1) =⊥,
return ⊥

Return c(b)

Figure 4: Encrypt and Decrypt oracles in the IND-CCA
PKE security experiment.

a PKE scheme is defined via the following security game
played between a challenger C and a polynomial-time
adversary A.

1. The challenger picks b←${0,1} and uses
PKE.KeyGen(1k) to compute (pk,sk) and sends pk
to A.

2. The adversary may adaptively query the encryption
oracle Encrypt and decryption oracle Decrypt which
respond as shown in Figure 3.

3. The adversary outputs a guess b′ ∈ {0,1}.
The advantage of A in breaking IND-CCA security of
PKE is AdvPKEind-cca(A) =

∣∣Pr(b = b′)− 1
2

∣∣.
C.3 Collision-Resistant Hash Functions

A collision-resistant hash function is a determinis-
tic algorithm Hash which given a key k ∈ KHash (with
log(|KHash|) polynomial in κ) and a bit string m outputs
a hash value w = Hash(k,x) in the hash space {0,1}χ

(with χ polynomial in κ). We say that the advantage of
a polynomial-time adversary A breaking the collision-
resistance of the hash function Hash is AdvHash

coll (A) =
|Pr(Hash(in) = Hash(in′))| with in 6= in′.

C.4 Message Authentication Codes
A message authentication code (MAC) scheme is a pair

of algorithms MAC= (MAC.KeyGen, MAC.Tag) where:
MAC.KeyGen is a probabilistic key generation algorithm
taking input security parameter 1λ and returning a random
key k in the keyspace K of MAC and MAC.Tag is a deter-
ministic algorithm that takes as input a secret key k and a
arbitrary message m and returns a MAC tag τ . Security
is formulated via the following game that is played be-
tween a challenger C and a probabilistic polynomial-time
adversary A.

1. The challenger samples k←$K.
2. The adversary may adaptively query the challenger;

for each query value mi, the challenger replies with
τi = Tag(k,mi).

3. The adversary outputs a pair of values (m∗,τ∗) such

that m∗ /∈ {m0, ...,mi}.
The adversary A wins the game if Tag(k,m∗) = τ∗, pro-
ducing a MAC forgery. We define the advantage of
A in breaking the unforgeability security property of
a MAC scheme MAC under chosen-message attack is
AdvMAC

eu f -cma(A) = Pr(Tag(k,m∗) = τ∗).

C.5 Key-Derivation Function
A key-derivation function (KDF) is a deterministic al-

gorithm KDF, which takes input: a source of randomness
σ ; optional salt s; optional context c; and output length L,
will output a bit string k of length L. Security of a KDF
is formulated via the following security game (we follow
the KDF assumption as defined by Krawczyk [12] with
simplified notation), played between a challenger C and a
polynomial-time adversary A.

1. C queries a source of key material algorithm Σ to
produce (σ ,α), where σ is random sample and α is
auxiliary information about the distribution of σ

2. C chooses a random salt value s from salt distribution
defined by KDF, if necessary.

3. A is given (α,s).
4. A can now arbitrarily query a KDF oracle

KDF with input (ci,Li), and receives output k =
KDF(σ ,s,ci,Li)

5. A at some point queries a Test oracle with input
(c,L) such that c /∈ {c1, ...,ci}.

6. C samples a random bit b ∈ {0,1}, and computes
k0 = KDF(σ ,s,c,L) and k1←${0,1}L.

7. C returns kb to A.
8. A can again arbitrarily query a KDF oracle KDF

with input (ci,Li)such that c /∈ {c1, ...,ci}, and re-
ceives output k = KDF(σ ,s,ci,Li)

9. A outputs a bit b′.
The A wins the game if b′ = b. The advantage of A in
breaking a key-derivation function KDF is AdvKDF

kd f (A) =∣∣Pr(b = b′)− 1
2

∣∣.
D Cryptographic Algorithms

The following section contains excerpts from an imple-
mentation specification for ANTP intended for submis-
sion to the IETF.

D.1 Authenticated-Encryption Scheme
This section discusses the functions AuthEnc and

AuthDec functions described in Section 3. No interop-
erability is required from the authenticated encryption
algorithm, as the value is entirely opaque to the client.
It is critical for security, as a malicious party who can
decrypt client Alice’s opaque2 value may masquerade as
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the server and create valid ServerResp messages for Al-
ice. Therefore, the server MUST use one of the following
algorithms:

• AES-GCM as specified [7].
• AES-CCM as specified [34].
• AES-CBC combined with HMAC-SHA, as specified

[15]

Note that AES-GCM requires an explicit counter that is
never reused, and thus the server MUST generate a nonce
for each new opaque value to be encrypted, and attach
the nonce to the end of the encrypted opaque value. The
security level (determined by the key length and algorithm
choice) SHOULD meet or exceed the security level of
the negotiated hash function. An additional consideration
is key-lifetime. Each authenticated encryption algorithm
has a maximum amount of data that can be encrypted with
a key. To avoid exceeding this limit, servers SHOULD
generate a new authenticated encryption key every two
months (or sooner, depending on the amount of NTP
traffic) and update the key. This also serves to force
clients to renegotiate a new key, as the opaque2 value will
no longer decrypt correctly, forcing the server to reject
time-synchronization. Additionally, a server SHOULD
generate a new key whenever a new certificate is used.

Servers may also choose to gradually ”phase in” use
of a new key, since when the opaque2 value in the
ClientReq message is rejected, the client will restart
the key exchange phase. If a large number of clients si-
multaneously begin key exchange the computational costs
may overwhelm the server. Servers may include a small
amount of metadata (like a key identifier) as part of the
opaque2 value to allow them to identify which key was
used to create the opaque value. This allows the server to
continue using the first key, while migrating clients over
to the new key. After a fixed period of time (such as a
day) the server should delete the first key.

D.2 Hash Algorithms
Following the direction set by Network Time Security

[33], it is required that all parties MUST support SHA-
256, MAY support SHA-384, SHOULD support SHA-
512 and MUST NOT support SHA-1, MD5 or “weaker”
hash algorithms. We recommend HMAC as a MAC
scheme when computing mac tag, which is HMAC-H,
where H is the negotiated hash function. Note that the
length of the mac tag field is dependent on the size of
the output of the hash algorithm negotiated. We use
the assumption that the HMAC constructing utilizing
SHA-256, SHA-384 and SHA512 form a PRF. Each
Hash function represented in the client hash algs and
server hash algs fields is assigned an unsigned 8-bit
ID for negotiation:
• 0x00: SHA-256

• 0x01: SHA-384
• 0x02: SHA-512

D.3 Key-Exchange Algorithms
We note that in our protocol, the key-exchange algo-

rithms are required to provide both authentication and con-
fidentiality of the secret key material without the server
using a signature algorithm. The RSA-OAEP option is
an encryption-based key transport, i.e., the client chooses
a random key and encrypts it with the server’s public
key. The ECDH (elliptic-curve Diffie-Hellman) option
has the client generate an ephemeral public key, and the
server’s long term public key is used for key agreement.
The parameters (kex params) in the case of RSA-OAEP
kex params is the modulus size are forced by the server
certificate. The client may abort if the server parameters
are deemed too weak.

For interoperability, implementations MUST support
RSA-OAEP with modulus size ≥ 2048 and MUST not
support smaller modulus sizes. ECDH MUST be sup-
ported with the named curve secp256r1 [3]. Other curves
MAY be supported, but they must provide 128-bits of
security or above. Servers MUST implement the point
validation steps before operating on received points (as
specified for ECDH [4]).

Each key-exchange algorithm represented in the ANTP
message fields is assigned an unsigned 8-bit ID for nego-
tiation:
• 0x00: RSA-OAEP
• 0x01: ECDH
Our description of ANTP uses public key encryption

of a premaster secret, which maps directly to RSA-OAEP.
For ECDH, the premaster secret is the shared secret com-
puted from the client secret and the static server public
key (on the client side) or the server secret and the client
ephemeral public key (on the server side).

D.4 Key Derivation Function
The ANTP protocol uses a Key-Derivation Function

in the key-exchange phase to derive a shared secret-key.
The KDF in ANTP is the KDF in Counter Mode defined
in NIST SP 800-108 [5, §5.1], implemented with HMAC
and the negotiated hash function. We have used the no-
tation: KDF(Z) where Z is the shared secret, and omit-
ted (for simplicity) other the inputs context, label and L
where context and labels are additional input strings, and
L is the output length of the KDF. Our detailed imple-
mentation specification includes these fields. Each Key-
Derivation function represented in the ANTP message
fields is assigned an unsigned 8-bit ID for negotiation:
• 0x00: SP800-108 KDF in Counter Mode
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