
Short Schnorr signatures require a hash function

with more than just random-prefix resistance

Daniel R. L. Brown∗

February 27, 2015

Abstract

Neven, Smart and Warinschi (NSW) proved, in the generic group
model, that full-length Schnorr signatures require only random-prefix
resistant hash functions to resist passive existential forgery.

Short Schnorr signatures halve the length of the hash function, and
have been conjectured to provide a similar level of security. The NSW
result is too loose to provide a meaningful security for short Schnorr
signatures, but Neven, Smart and Warinschi conjecture that this is
mere artefact of the proof technique, and not an essential deficiency
of the short Schnorr signatures. In particular, this amounts to a con-
jecture that short Schnorr signature are secure under the same set of
assumptions, namely random-prefix resistance of the hash function.

This report provides a counterexample to the latter conjecture, in
other words, a separation result. It finds a hash function that seems
to suggest random-prefix resistance does not suffice for short Schnorr
signatures. In other words, the loose reduction implicit in the NSW
theorem is as tight as possible.

Obviously, this result does not preclude the possibility of another
proof for short Schnorr signatures, based on different hash function
security properties such as preimage resistance.

1 Introduction

1.1 Background and Motivation

Neven, Smart and Warinschi [NSW09] proved the security of Schnorr signa-
tures in the generic group model assuming some standard model assumptions

∗Certicom/BlackBerry, dbrown@certicom.com

1



for the hash function used in the signature. The result they prove requires
that the hash function width to be twice the security level. Nonetheless, they
conjecture that the hash function really only needs to be half this length,
provided that the hash can resist the Kelsey–Kohno herding attack. In par-
ticular, they suggest using a wide-pipe hash design, by truncating a 256-bit
wide hash to 128 bits, when using Schnorr at the 128-bit security.

Neven, Smart and Warinschi mention the Kelsey–Kohno herding attack,
which shows that a 128-bit narrow-pipe Merkle–Damgard hash using with
Schnorr would only provide 96 bits of security. But this hash fails to meet
their requirement of providing random-prefix preimage resistance at the 128-
bit security level.

1.2 Other Related Work

Numerous papers prove things about the security of Schnorr signatures.
Others even find limits the provable security, that is, separation results,
that work by finding meta-reductions, reductions about reductions. I have
not reviewed all these papers.

A prudent reader might presume that one these earlier papers contains
a general result that subsumes the result of this report. When I find which
one that is, I will update this report accordingly.

For now, I wrote this report as if the Neven–Smart–Warinschi eprint
were the latest word on provable security and Schnorr signatures.

1.3 Contribution of this Report

This report describes a hash function that seems to provides 128-bit RPP
resistance, yet, when used in Schnorr signature only provides about 67-bit
security. Specifically, when instantiating the Schnorr signature scheme at
the 128-bit security level, using this report’s counterexample hash function,
passive existential forgery becomes feasible at a cost of about 267 group
operations and about 267 bits of memory, but success rate near to one. The
combined cost and success rate exceeds what one expects for 128-bit security.

Our counterexample hash can be viewed as a variant of Bellare–Micciancio
construction called AdHash. This will be defined precisely. The attack will
be described. An argument of the RPP (and tentatively RPSP) security the
hash function will be given.

Just to be clear: the counterexample does not contradict the Neven–
Smart–Warinschi theorem, because although the counterexample hash ap-
pears to provide about 128-bit security of (chosen-target) random-prefix

2



preimage (RPP) resistance, the NSW theorem provides a loose reduction
from which one can only conclude that the corresponding instantiation of
Schnorr signatures provides half the hash’s RPP security level, so 64 bits in
this case.

So, the counterexample hash suggests that, to prove short Schnorr sig-
natures fully secure, requires some additional security properties from the
hash function, beyond the RPP (and RPSP) resistance addressed in Neven–
Smart–Warinschi analysis.

2 Definitions

The notation here loosely follows the Neven–Smart–Warinschi, though is
not as precise. In particular, we use multiplicative notation, even though
we are mainly concerned with elliptic curve groups nowadays.

2.1 Schnorr Signatures

We say a pair (s, h) of integer is a valid Schnorr signature of bit string
message m under public key y (a group element), if

h = H(f(gsy−h)‖m) (1)

where g is a fixed element of the same group as y, and H is hash function
mapping bit strings to integers, and f is a function mapping group elements
to bit strings.

We may occasionally refer to arbitrary pairs (s, h) in the same form as
above as Schnorr signatures even if they are invalid with respect to a given
public key.

The size of group used is q, which is usually prime. For the sake of this
report assume that q ≈ 2256.

We further assuming that H outputs integers between 0 and 2n − 1 for
some n. If n = 256, that is q ≈ 2n, then we are using full-length Schnorr
signatures. If n = 128, that 2n ≈ √q, then we are using short Schnorr
signatures.

This report focuses on short Schnorr signatures.

2.2 BadHash

Let H1 and H2 be two distinct 128-bit hash functions (again with integers
values as outputs). We can think of these as random oracles for our pur-

3



poses, but in practice these functions could be instantiated with a practical
conventional hash function like SHA-256, fixed prefixes, and truncation.

We define our “BadHash” function as:

H(R‖m) = H1(R) + H2(m) (2)

where + can be any efficiently invertible binary operation. To be concrete,
we may suppose that + is addition modulo 2128.

We may sometimes further consider H2 to be injective. This restricts
the message m to be a bit string of at most 128 bits. In this case, we will
call the function WorseHash.

Please note: I do not know of a practical way to instantiate WorseHash.
In other words, WorseHash will be used for something even weaker than just
a condtional attack: an imaginary conditional attack.

3 Random-Prefix Preimage Resistance

In this section, we attempt to argue how BadHash provides (chosen-target)
random-prefix preimage resistance.

If BadHash failed to be RPP resistant, then BadHash would just be
another example of the RPP weak hash, much like the single-width pipe
Merkle–Damgard hash. In this case, BadHash would just seem to affirm
that NSW suggestion that the looseness of their proof is indeed an artificial
figment of the proof method.

If BadHash is RPP resistant, then BadHash shows that the loose re-
duction in the relevant corollary of the NSW theorem (or proof) cannot be
improved to a tight reduction. In this case, BadHash seems to contradict
the NSW suggestion that the looseness of their proof is a mere artificial
figment of the proof method.

Aside: I speculate that this looseness of the NSW proof is not a defect
of the proof method, but rather due too weak assumptions about the hash
function. Indeed, if BadHash can be RPP resistant, then the hash assump-
tions are too weak. So, what I am speculating is that a tight reduction for
short Schnorr signatures can be found using some other assumptions about
the hash function.

So, to bolster the significance of BadHash to Schnorr signatures and its
provable security, this section tries to argue that BadHash is RPP resistant.

We also argue that WorseHash seems to provide RPSP resistance too.

4



3.1 Review of Hash Attack Definitions

This section reviews the two NSW definitions, and one other definition, for
attacks on hash functions.

3.1.1 Random-Prefix Preimage

A (chosen-target) random-prefix preimage (RPP) attacker can be viewed as
pair of algorithms (A1, A2), with the following properties.

The first algorithm A1 has no input and outputs a chosen target h. (The
NSW also outputs a state value. We ignore this, here, but one can imagine
that it is a fixed value for the purposes of this report.)

The second algorithm A2 receives h and also an input bit string R and
outputs a bit string message m.

The RPP attacker wins if h = H(R‖m).
In other words, if we fix the random tapes in a run of (A1, A2) then the

success condition is A1() = H(R‖A2(A1(), R)). More precisely, the two runs
of A1 in the success condition are identical.

3.1.2 RPSP

An RPSP attacker can be viewed as a pair of algorithms A = (A1, A2).
The first algorithm A1 has no inputs and outputs a chosen message m.

(The NSW definition also outputs a state, which will be considered a fixed
value of the purposes of this report.)

The second algorithm is given a m and a random R and outputs message
m′.

The RPSP attack wins if H(R‖m) = H(R‖m′).

3.1.3 Preimage Finder

A (random-target) preimage finder F , takes as input input and random
candidate hash value h and outputs message m. It succeeds when h = H(m).

3.2 Some Attacks Against BadHash

This subsection lists some attacks against the BadHash that I have been
able to come up with. If these turn out to be the best attacks, then these
characterize the security of BadHash.

5



3.2.1 An RPP Attack Against BadHash

My best RPP attack algorithm (A1, A2) against BadHash, has A1 choose
any h, either fixed, or at random. Then A2(h,R) works by exhaustively
searching through values mi until finding one such that H2(m) = h−H2(R).

3.2.2 An RPSP Attack Against BadHash

Let C be collision finder in H2: which finds m and m′ such that H2(m) =
H2(m

′). Then define A1 and A2 output m and m′ respecitvely.
Exisentially, this attacker is super efficient, but even allowing for the

realistic cost of C to constructing the collision, this attack costs 264 steps
against an 128-bit hash function.

In the case of WorseHash, we imagine that H2 is injective, and therefore
collision-free. That seems to thwart the RPSP algorithm above.

Note that the best one-way injective function that I know would be the
elliptic curve discrete logarithm. But a 128-bit size function H2 based on
this would take only about 264 steps to invert. In other words, I do not
know of an example of 128-bit H2 that could achieve both 128-bit preimage
resistance (need to resist the RPP attack from the previous section) and
injectiveness to resist the RPSP attack above.

3.2.3 A Preimage Attack Against BadHash

The preimage resistance of BadHash is at most about 64 bits, because of
the following attack.

Generate a list of of 264 values mi and compute ui = h −H2(mi). For
practicality, sort this list according to ui, (or perhaps store the list using
some kind of hash-table, for some other non-cryptographic hash function).

Generate a list of 264 values of Rj and compute vj = H1(Rj). For each
j, check if vj = ui for some i. (If the (mi, ui) list is sorted, then use a binary
search to find this i). By the birthday surprise effect, one expects to find a
match.

Once a match ui = vj is found, output (Rj ,mi) as a preimage of the h.
Note the this preimage attack happens to approximately match the cost

of the forgery attack on short Schnorr signatures with BadHash. This sug-
gests that adding preimage resistance to the set of assumptions might suffice
to prove the security.

6



3.3 Informal Proofs of BadHash Security

The previous section only listed the attacks against BadHash that I was
able to devise. But perhaps, I was not able to find the best attacks, and
therefore the attacks of the previous may be well above the actual security
level of BadHash.

Therefore, I supply further heuristic arguments for the security of Bad-
Hash and WorseHash.

3.3.1 RPP Security in the Random Oracle Model

Suppose that H1 is a random oracle, specifically a re-programmable random
oracle. Supposing this makes the following argument heuristic.

Assume that H2 is one-way in the sense that a preimage-finder for H@

is infeasible. More precisely, for 128-bit security and 128-bit wide H2, we
assume that any preimage finder F taking time t with success rate s is such
that t/s ≈ 2128. In other words, the best possible preimage finder is no
better than exhaustive search. This seems to be a plausible assumption for
some hash functions.

We now describe a reduction which takes an RPP attacker (A1, A2) that
operates against BadHash even when H1 is a random oracle, and whose
success rate is defined, as probability, over the random oracle choices made
for H1. The RPP attacker may be specific to a particular hash H2. We will
convert (A1, A2) into a preimage-finder P for H2.

So, P receives an input h2 whose preimage it needs to find. First P
calls A1 with no input. Obviously A1 may query its random oracle for H1.
Algorithm P simulates a random oracle for H1 exactly per the definition of
a random oracle. At some point A1 completes, returning a chosen target h.
Next, P selects a value R uniformly at random. We note that R is negligibly
likely to one the H1 query inputs made by A1, because it is the size of R as
a bit string will be at least 256 bits.

Next P invokes the algorithm A2 with inputs (h,R). Again, A2 can call
its random oracle for H1. Now P2 continues its random oracle, but adds one
exception, which is that it prescribes H1(R) = h1 = h−h2. If A2 never calls
the H1 oracle with input R, we just let P make the call after A2. Eventually,
A2 returns a candidate message m.

If (A1, A2) is successful, then h = H(R‖m) = H1(R) + H2(m). This
implies that H2(m) = h − h1 = h − (h − h2) = h2 as desired. So P has at
least the same success rate as (A1, A2).

Note that the run-time of P is proportional to the total run-time of

7



(A1, A2). But then the memory used by P is also proportional to the rum-
time of (A1, A2). We could try to reduce the memory by simulating the
random oracle by a keyed pseudorandom function. Formally, speaking this
would also requiring assuming some properties for the pseudorandom func-
tion. Of course, H1 does not have a key itself, so this would still be a
heuristic argument.

3.3.2 Neven’s Standard Model Proof of BadHash RPP Resis-
tance

Gregory Neven ever so kindly provided me a superior argument for the RPP
resistance of BadHash. Its superiority is that it does not rely on H1 being
a random oracle. Instead it need merely be a smooth function.

As before we are trying to build a preimage finder P against the hash
function H2. Suppose that A = (A1, A2) is an RPP adversary to BadHash.
We will use A as subroutine of P .

By definition, P first receives its challenge value h2. Now we run A1

which outputs a value h.
Our next step is find an R value such H1(R) = h− h2. In the previous

argument, we did this by using an overly powerful random oracle model for
H1. But Neven points the argument also works if H1 is just some easily
invertible function with nearly equal image sizes. For example if R has size
256 bits and H1 has size 128 bits, then H1 could consist of a truncation
function.

Aside: essentially this property is what I called almost invertible in my
ECDSA security proof paper.

In other words, the function H1 does not really to need to be very secure
at all in order for BadHash to be RPP resistant.

3.3.3 Arguments for WorseHash

If H2 is actually injective, then no RPSP adversary against WorseHash
exists, because success of a RPSP adversary implies a collision in H2.

4 Passive Existential Forgery

This section describes the actual attack that arises when short Schnorr sig-
natures are used with BadHash (or WorseHash).

8



4.1 Definining Passive Forgery

By passive forgery, I mean the forger does not make any queries to a sign-
ing oracle. Two other term for passive forgery are no-message attack and
(public) key-only attack. In the notation of the NSW paper, passive forgery
is when qS = 0.

A forger opposite to a passive forger has access to a signing oracle, and
is called an active forger, or (adaptive) chosen-message attacker. A passive
forger is generally more damaging than that active forger, because real world
signers can be careful about what they sign.

Some active forger can be considered more realistic and closer to this
report’s definition of passive forger if they have a signing oracle but have
no control over the messages signed. Arguably, these forgers could be called
passive too, because they are only observers. Anyway, the passive forger to
be constructed

4.2 Defining Existential Forgery

By existential forgery, I mean that the forger wins even if the forged message
is meaningless nonsense. In other words, no requirements are place on the
forged message.

Formally, the forged message is an output of the forger, not an input
to the forger. Therefore, the forger can choose whatever message it finds
easiest to forger. (Note: I regularly find this formalism confusing, because
it seems the forger can forge any message it wants, but actually it’s the
opposite.) The forger opposite to an existential forger must be able to forge
any message it is given (from some large set or distribution of messages),
and is called a selective or a universal forger.

4.3 The Forgery

This section describes passive and existential forger F of short Schnorr signa-
tures when used with BadHash. For sake of concreteness, assume a 128-bit
security level, with a 128-bit hash and a group size of approximately 2256.

First generate 264 random message mj . Compute vj = H2(mj). Main-
tain a list of pairs (vj ,mj), sorted (or hash-key-tabled) by value of vj .

Second, generate 264 random signatures (si, hi), where s and h are inte-
gers of the appropriate sizes for short Schnorr signatures. For each signature
compute:

ui = hi −H1(f(gsiy−hi)) (3)

9



For each ui check if it is in the list of vj . If a match ui = vj is found, then
output (si, hi) as the forgery of mj under public key y.

Because the integers ui and vj are essentially selected randomly from
sets of size 2128, we expect a match to be found. Of course, this conclusion
requires some assumptions about H1, H2 and f . In particular, they must
not be too lossy as functions.

4.4 Implicit Corollary to the NSW Theorem

In the NSW theorem, put qS = 0, and we can derive a corollary. The imme-
diate corollary has a dependency on the advantage of an RPSP adversary
against the hash function. To strictly contradict the theorem, it is necessary
to remove this dependency from the corrollary.

It may be possible to adjust the proof, somehow removing the sligh
dependency on an RPSP hash adversary only appears as a match to the
generator or the public key.

Regardless when I walk through the proof, using the forger above, I find
that the RPSP case can be avoided.

The quality of the result also depends on the number of generic group
oracle queries made. By pre-computing a handful of powers of g and of y,
we can the keep the number qG of group queries used by our forger not too
far above 264. (Maybe 267.)

This attack should be considered to faster than allowed for 128-bit se-
curity because its success rate is near to one while its runtime is not too far
above 264.

Aside: this forger uses are large amount of memory to store the list of
pairs (vj ,mj). Even more convincing would be forger with a lower, more
realistic, memory cost.

Anyway, short Schnorr signatures with BadHash demonstrate this im-
mediate corollary, which is a loose reduction, cannot be tightened. The
looseness in the reduction is due to a potential attack, and is not merely due
to a weakness in the proof technique.

5 Conclusion and Questions

One advantage of shortened Schnorr signatures, compared to DSA and
ECDSA signatures, is a smaller signature. For example, at the 128-bit
security level, a short Schnorr signature is about 384 bits long, while an
ECDSA signature is about 512 bits long.

10



The security of using short Schnorr signatures seems to be supported
mainly by conjecture, not by a reductionist security argument. In particular,
the Neven–Smart–Warinschi theorem only supports a full length hash in
Schnorr signatures.

An observation about Schnorr signatures is that the chosen-target type
attacks of the hash function seem to lead to forgeries. Chosen hash targets
appear in both the RPP attack and in our forgery against short Schnorr
with BadHash. Yet, ECDSA does not appear to be require chosen-target
type security properties for the hash function, at least for the case of passive
existential forgery. It seem as though the difference lies in the signing equa-
tion. In ECDSA, the r value is fed directly into the signing equation and
not into the hash, which seems to thwart chosen-target-type hash attackers.

This result can be viewed as an instance of the slightly prescient nature
of formalized provable security. Neven, Smart and Warinschi’s intuition was
that short Schnorr signatures would be secure provided that the hash was
RPP resistant. Yet they also understood the limitations of their formal
proof. In this case, the proof won out over intuition.

Again, it may well be that short Schnorr signatures are secure with a
double-width pipe hash function, or other types of hash function . This
report shows that any proof this conjecture will have to assume beyond
RPP and RPSP resistance.

References

[NSW09] Gregory Neven, Nigel P. Smart, and Bogdan Warinschi. Hash
function requirements for Schnorr signatures. Journal of Mathe-
matical Cryptology, 3(1):69–87, January 2009.

11


