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Abstract. A serious concern with quantum key distribution (QKD)
schemes is that, when under attack, the quantum devices in a real-life
implementation may behave differently than modeled in the security
proof. This can lead to real-life attacks against provably secure QKD
schemes.
In this work, we show that the standard BB84 QKD scheme is one-sided
device-independent. This means that security holds even if Bob’s quantum
device is arbitrarily malicious, as long as Alice’s device behaves as it
should. Thus, we can completely remove the trust into Bob’s quantum
device for free, without the need for changing the scheme, and without
the need for hard-to-implement loophole-free violations of Bell inequality,
as is required for fully (meaning two-sided) device-independent QKD.
For our analysis, we introduce a new quantum game, called a monogamy-
of-entanglement game, and we show a strong parallel repetition theorem
for this game. This new notion is likely to be of independent interest and
to find additional applications. Indeed, besides the application to QKD,
we also show a direct application to position-based quantum cryptography:
we give the first security proof for a one-round position-verification scheme
that requires only single-qubit operations.

1 Introduction

Background. Quantum key distribution (QKD) makes use of quantum me-
chanical effects to allow two parties, Alice and Bob, to exchange a secret key
while being eavesdropped by an attacker Eve [5,11]. In principle, the security
of QKD can be rigorously proven based solely on the laws of quantum mechan-
ics [27,33,31]; in particular, the security does not rely on the assumed hardness
of some computational problem. However, these security proofs typically make
stringent assumptions about the devices used by Alice and Bob to prepare and
measure the quantum states that are communicated. These assumptions are not
necessarily satisfied by real-world devices, leaving the implementations of QKD
schemes open to hacking attacks [25].

One way to counter this problem is by protecting the devices in an ad-hoc
manner against known attacks. This is somewhat unsatisfactory in that the
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implementation may still be vulnerable to unknown attacks, and the fact that
the scheme is in principle provably secure loses a lot of its significance.

Another approach is to try to remove the assumptions on the devices necessary
for the security proof; this leads to the notion of device-independent (DI) QKD.
This line of research can be traced back to Mayers and Yao [28] as well as [2,1].
After some limited results [26,13], the possibility of DI QKD has recently been
shown in the most general case by Reichhardt et al. in [30]. In a typical DI QKD
scheme, Alice and Bob check if the classical data obtained from the quantum
communication violates a Bell inequality, which in turn ensures that there is
some amount of fresh randomness in the data that cannot be known by Eve.
This can then be transformed into a secret key using standard cryptographic
techniques like information reconciliation and randomness extraction.

While this argument shows that DI QKD is theoretically possible, the disad-
vantage of such schemes is that they require a loophole free violation of a Bell
inequality by Alice and Bob. This makes fully DI QKD schemes very hard to
implement and very sensitive to any kind of noise and to inefficiencies of the
physical devices: any deficiency will result in a lower observed (loophole free)
Bell inequality violation, and currently conceivable experimental parameters are
insufficient to provide provable security. Trying to find ways around this problem
is an active line of research, see e.g. [12,24,7,23].

Our Result. Here, we follow a somewhat different approach, not relying on Bell
tests, but making use of the monogamy of entanglement. Informally, the latter
states that if Alice’s state is fully entangled with Bob’s, then it cannot be entangled
with Eve’s, and vice versa. As a consequence, if Alice measures a quantum system
by randomly choosing one of two incompatible measurements, it is impossible
for Bob and Eve to both have low entropy about Alice’s measurement outcome.
Thus, if one can verify that Bob has low entropy about Alice’s measurement
during the run of the scheme, it is guaranteed that Eve’s entropy is high, and
thus that a secret key can be distilled.

Based on this idea, we show that the standard BB84 QKD scheme [5] is
one-sided DI. This means that only Alice’s quantum device has to be trusted,
but no assumption about Bob’s measurement device has to be made in order to
prove security. Beyond that it does not communicate the measurement outcome
to Eve, Bob’s measurement device may be arbitrarily malicious.

One-sided DI security of BB84 was first claimed in [38]. However, a close
inspection of their proof sketch, which is based on an entropic uncertainty relation
with quantum side information, reveals that their arguments are insufficient to
prove full one-sided DI security (as confirmed by the authors). It needs to be
assumed that Bob’s measurement device is memoryless. The same holds for the
follow up work [37,6] of [38].

One-sided DI security is obviously weaker than fully DI security (as e.g.
achieved in [30]). Still, what is interesting is that there is no need for a new
scheme—good old BB84 does it. In that sense, we obtain one-sided DI security
for free. In particular, no hard-to-implement loophole-free Bell tests are needed.



Despite the practical motivation, our result is of theoretical nature. This
is because, as in all contemporary fully DI schemes, our analysis (implicitly)
assumes that every qubit sent by Alice is indeed received by Bob, or, more
generally, whether it is received or not does not depend on the basis it is to be
measured in; this is not necessarily satisfied in practical implementations—and
some recent attacks on QKD take advantage of exactly this effect by blinding the
detectors whenever a measurement in a basis not to Eve’s liking is attempted [25].

Our analysis of BB84 QKD with one-sided DI security admits a noise level
of up to 1.5%. This is significantly lower than the 11% tolerable for standard
(i.e. not DI) security. We believe that this is not inherent to the scheme but an
artifact of our analysis. Improving this bound by means of a better analysis is
an open problem (it can be slightly improved by using a better scheme, e.g., the
6-state scheme). Nonetheless, one-sided DI QKD appears to be an attractive
alternative to DI QKD in an asymmetric setting, when we can expect from one
party, say, a server, to invest into a very carefully designed, constructed, and
tested apparatus, but not the other party, the user, and/or in case of a star
network with one designated link being connected with many other links.

Technique. In order to prove one-sided DI security of BB84, we introduce and
study a new quantum game, which we call a monogamy of entanglement game
(or simply a monogamy game). This is a game of a specific form, played by three
parties, Alice, Bob and Charlie. Of central importance to us is the monogamy
game G×nBB84, which is as follows.

Preparation Phase: Bob and Charlie agree on and prepare an arbitrary quantum
state ρABC , where ρA consists of n qubits. They pass ρA to Alice and hold on
to ρB and ρC , respectively. After this phase, Bob and Charlie are no longer
allowed to communicate.

Question Phase: Alice chooses θ ∈ {0, 1}n uniformly at random and announces
θ to Bob and Charlie. Additionally, she measures every qubit ρAi of ρA in
the computational basis if θi = 0, and in the Hadamard basis if θi = 1. This
results in a bit string x ∈ {0, 1}n.

Answer Phase: Bob and Charlie independently form a guess of x by performing
measurements (which may depend on θ) on ρB and ρC , respectively.

Winning Condition: The game is won if both Bob and Charlie guess x correctly.

From the perspective of classical information processing, our game may appear
somewhat trivial—after all, if Bob and Charlie were to provide some classical
information k to Alice who would merely apply a randomly chosen function fθ,
they could predict the value of x = fθ(k) perfectly from k and θ. In quantum
mechanics, however, the outcome of a measurement is in general not deterministic,
and the well-known uncertainty principle [15] places a limit on how well observers
can predict the outcome of incompatible measurements. For instance, if Bob
and Charlie were restricted to classical memory (i.e., ρB and ρC are “empty”),
it is not too hard to see that the best strategy gives a winning probability of
( 1
2 + 1

2
√
2
)n ≈ 0.85n.



In a fully quantum world, however, uncertainty is not quite the end of the story,
as indeed Bob and Charlie are allowed to have quantum memory. To illustrate
the power of such a memory, consider the same game played just between Alice
and Bob. As Einstein, Podolsky and Rosen famously observed [10]: if ρAB is a
maximally entangled state, then once Bob learns Alice’s choice of measurement
θ, he can perform an adequate measurement on his share of the state to obtain
x himself. That is, there exists a strategy for Bob to guess x perfectly. Does
this change when we add the extra player, Charlie? We can certainly be hopeful
as it is known that quantum entanglement is “monogamous” [34] in the sense
that the more entangled Bob is with Alice, the less entangled Charlie can be.
In the extreme case where ρAB is maximally entangled, even if Bob can guess
x perfectly every time, Charlie has to resort to making an uninformed random
guess. As both of them have to be correct in order to win the game, this strategy
turns out to be worse than optimal (see below).

An analysis of our game thus requires a tightrope walk between uncertainty
on the one hand, and the monogamy of entanglement on the other. Writing
pwin(G×nBB84) for the maximal winning probability, maximized over the choice of
the initial state ρABC and over the measurements performed by Bob and Charlie,
we prove that

pwin(G×nBB84) =
(1

2
+

1

2
√

2

)n
. (1)

We thus see that, interestingly, monogamy of entanglement wins out entirely,
cancelling the power of Bob and Charlie’s quantum memory—the optimal
winning probability can be achieved without any entanglement at all. We also
show a generalization of (1), which upper bounds pwin(G×nBB84) for a variant of
the game G×nBB84 for which Bob and Charlie need to guess the string x only
approximately.

Our result in particular implies that pwin(G×nBB84) = pwin(GBB84)
n, i.e., strong

parallel repetition holds. This means that one cannot play n parallel executions of
the game GBB84 = G×1BB84 better than repeating the optimal strategy for one execu-
tion n times. Even classically, analyzing the n-fold parallel repetition of games or
tasks is typically challenging. In many cases, only non-strong parallel repetition
holds, meaning that pwin(G×n) ≤ εn for some ε < 1, but with ε > pwin(G).
Furthermore, proving such (strong or not) parallel repetition theorems tends to
be intriguingly difficult; examples include the parallel repetition of interactive
proof systems (see e.g. [29]) or the analysis of communication complexity tasks
(see e.g. [19]). In a quantum world, such an analysis is often exacerbated further
by the presence of entanglement and the fact that quantum information cannot
generally be copied. Famous examples include the analysis of the “parallel repeti-
tion” of channels in quantum information theory (where the problem is referred
to as the additivity of capacities), see e.g. [14], entangled non-local games [16], or
the question whether an eavesdropper’s optimal strategy in QKD is to perform
the optimal strategy for each round.

In this light, our proof of (1) is surprisingly simple. It is inspired by techniques
due to Kittaneh [18] and uses merely tools from linear algebra. At the core of the



proof is a newly derived operator norm inequality that bounds the norm ‖
∑
iAi‖

of the sum of positive semi-definite operators A1, . . . , AN via the respective norms
of the square root of pairwise products AiAj .

In the context of one-sided DI QKD, it turns out that the game G×nBB84 pretty
much captures an execution of BB84, with Eve playing the role of Charlie,
and considering a gedankenexperiment where Eve measures her quantum side
information in order to try to guess the raw key x Alice obtains. Our bound
on pwin(G×nBB84) then implies that no matter what measurement Bob’s device
performs, if the outcome of his measurement is strongly correlated to Alice’s
raw key x, then Eve has a hard time in guessing x. The latter holds for any
measurement Eve may perform, and as such it follows that x has lower bounded
min-entropy conditioned on Eve’s quantum side information. As a consequence,
a secret key can be extracted from x using standard techniques.

Further Application. We expect our notion of and our results on monogamy
games to find other applications. Indeed, one additional direct application is to
position verification. Here, we consider a 1-dimensional setting where a prover
wants to convince two verifiers that he controls a certain position, pos. The
verifiers are located at known positions around pos, and they are honest and
connected by secure communication channels. Moreover, all parties are assumed
to have synchronized clocks, and the message delivery time between any two
parties is assumed to be proportional to the distance between them.

Position verification and variants thereof (like distance bounding) is a rather
well-studied problem in the field of wireless security (see e.g. the references in [9]).
It was shown in [9] that in the presence of colluding adversaries at different
locations, position verification is impossible classically, even with computational
hardness assumptions. That is, the prover can always trick the verifiers into
believing that he controls a position. The fact that the classical attack requires
the adversary to copy information, initially gave hope that we may circumvent the
impossibility result using quantum communication. However, such schemes were
subsequently broken [17,22] and indeed a general impossibility proof holds [8]:
without any restriction on the adversaries, in particular on the amount of pre-
shared entanglement they may hold, no quantum scheme for position verification
can be secure. This impossibility proof was constructive but required the dishonest
parties to share a number of EPR pairs that grows doubly-exponentially in the
number of qubits the honest parties exchange. This was reduced by Beigi and
König [3] to a single exponential amount. On the other hand, there are schemes
for position verification that are provably secure against adversaries that have no
pre-shared entanglement, or only hold a couple of entangled qubits [8,22,3].

However, all known schemes that are provably secure with a negligible sound-
ness error (the maximal probability that a coalition of adversaries can pass the
position verification test for position pos without actually controlling that specific
position) against adversaries with no or with bounded pre-shared entanglement
are either multi-round schemes, or require the honest participants to manipulate
large quantum states.



In the full version [36], we present the first provably secure one-round position
verification scheme with negligible soundness error in which the honest parties
are only required to perform single qubit operations. We prove its security against
adversaries with an amount of pre-shared entanglement that is linear in the
number of qubits transmitted by the honest parties.

Outline. In Section 2, we introduce the terminology and notation used through-
out this work, and we derive the operator norm inequality that is central to
our main result. In Section 3, we discuss the monogamy game G×nBB84, prove a
strong parallel repetition theorem, and discuss some generalizations. In Section 4,
we then make use of these results to prove one-sided DI security of BB84. The
application to position verification is given in the full version [36].

2 Technical Preliminaries

Basic Notation and Terminology. We assume the reader to be familiar with
the basic concepts of quantum information theory; we merely fix some notation
and terminology here.

Let H be an arbitrary, finite dimensional complex Hilbert space. L(H) and
P(H) denote linear and positive semi-definite operators on H, respectively. Note
that an operator A ∈ P(H) is in particular Hermitian, meaning that A† = A.
The set of density operators on H, i.e., the set of operators in P(H) with unit
trace, is denoted by S(H). For A,B ∈ L(H), we write A ≥ B to express that
A−B ∈ P(H). When operators are compared with scalars, we implicitly assume
that the scalars are multiplied by the identity operator, which we denote by 1H,
or 1 if H is clear from the context. A projector is an operator P ∈ P(H) that
satisfies P 2 = P . A POVM (short for positive operator valued measure) is a set
{Nx}x of operators Nx ∈ P(H) such that

∑
xNx = 1, and a POVM is called

projective if all its elements Nx are projectors. We use the trace distance

∆(ρ, σ) := max
0≤E≤1

tr(E(ρ− σ)) =
1

2
tr|ρ− σ|, where |L| =

√
L†L,

as a metric on density operators ρ, σ ∈ S(H).
The most prominent example of a Hilbert space is the qubit space, H ≡ C2.

The vectors |0〉 =
(
1
0

)
and |1〉 =

(
0
1

)
form the computational basis, and the vectors

H|0〉 = (|0〉+ |1〉)/
√

2 and H|1〉 = (|0〉 − |1〉)/
√

2 the Hadamard basis, where
H denotes the Hadamard matrix. More generally, we often consider systems
composed of n qubits, H ≡ C2 ⊗ · · · ⊗ C2. For x, θ ∈ {0, 1}n, we write |xθ〉 as a
shorthand for the state vector Hθ1 |x1〉 ⊗ · · · ⊗Hθn |xn〉 ∈ H.

The Schatten ∞-Norm. For L ∈ L(H), we use the Schatten ∞-norm ‖L‖ :=
‖L‖∞ = s1(L), which evaluates the largest singular value of L. It is easy to verify
that this norm satisfies ‖L‖2 = ‖L†L‖ = ‖LL†‖. Also, for A,B ∈ P(H), ‖A‖
coincides with the largest eigenvalue of A, and A ≤ B implies ‖A‖ ≤ ‖B‖. Finally,
for any block-diagonal operator A⊕B we have ‖A⊕B‖ = max{‖A‖, ‖B‖}.



We need the following fact. Note that the statement does not hold in general
if the projectors are replaced by general positive semi-definite operators.

Lemma 2.1. Let P,Q ∈ P(H) be projectors with P ≤ Q, and let L ∈ L(H).
Then, it holds that

∥∥PL∥∥ ≤ ∥∥QL∥∥ and
∥∥LP∥∥ ≤ ∥∥LQ∥∥.

Proof. ‖PL‖2 =
∥∥L†P †PL∥∥ =

∥∥L†PL∥∥ ≤ ∥∥L†QL∥∥ =
∥∥L†Q†QL†∥∥ = ‖QL‖2,

and the proof of the second statement follows analogously. ut

Applying the lemma twice, we get ‖PQ‖2 ≤ ‖P ′Q‖2 ≤ ‖P ′Q′‖2 = ‖P ′Q′P ′‖ for
any two pairs of projectors satisfying P ≤ P ′ and Q ≤ Q′.

One of our main tools is the following Lemma 2.2, which bounds the Schatten
norm of the sum of n positive semi-definite operators by means of their pairwise
products. We derive the bound using a construction due to Kittaneh [18], which
was also used by Schaffner [32] to derive a similar, but less general, result.

We call two permutations π : [N ] → [N ] and π′ : [N ] → [N ] of the set
[N ] := {1, . . . , N} orthogonal if π(i) 6= π′(i) for all i ∈ [N ]. The N cyclic shifts
for instance form a set of N permutations of [N ] that are mutually orthogonal.

Lemma 2.2. Let A1, A2, . . . , AN ∈ P(H), and let {πk}k∈[N ] be a set of N
mutually orthogonal permutations of [N ]. Then,∥∥∥∥ ∑

i∈[N ]

Ai

∥∥∥∥ ≤ ∑
k∈[N ]

max
i∈[N ]

∥∥∥√Ai√Aπk(i)∥∥∥ .
Proof. We define X = [Xij ] as the N × N block-matrix with blocks given by
Xij = δj1

√
Ai. The two matrices X†X and XX† are easy to evaluate, namely

(X†X)ij = δi1δj1
∑
iAi and (XX†)ij =

√
Ai
√
Aj , respectively. As such, we see

that
∥∥∑

iAi
∥∥ = ‖X†X‖ =

∥∥XX†∥∥.
Next, we decompose XX† into XX† = D1 +D2 + . . . DN , where the matrices

Dk are defined by the permutations πk, respectively, as (Dk)ij = δj,πk(i)
√
Ai
√
Aj .

The requirement on the permutations ensures that XX† =
∑
kDk. Moreover,

since the matrices Dk are constructed such that they contain exactly one non-zero
block in each row and column, they can be transformed into a block-diagonal
matrix D′k =

⊕
i

√
Ai
√
Aπk(i) by a unitary rotation. Hence, using triangle

inequality and the unitary invariance of the norm, we get
∥∥∑

k Ak
∥∥ =

∥∥XX†∥∥ ≤∑
k ‖Dk‖ =

∑
k ‖D′k‖ =

∑
k maxi

∥∥√Ai√Aπk(i)∥∥. ut

CQ-States and Min-Entropy. A state ρXB ∈ S(HX⊗HB) is called a classical-
quantum (CQ) state with classical X over X , if it is of the form

ρXB =
∑
x∈X

px|x〉〈x|X ⊗ ρxB ,

where {|x〉}x∈X is a fixed basis of HX , {px}x∈X is a probability distribution,
and ρxB ∈ S(HB). For such a state, X can be understood as a random variable
that is correlated with (potentially quantum) side information B.



If λ : X → {0, 1} is a predicate on X , then we denote by Prρ[λ(X)] the
probability of the event λ(X) under ρ; formally, Prρ[λ(X)] =

∑
x px λ(x). We

also define the state ρXB|λ(X), which is the state of the X and B conditioned on
the event λ(X). Formally,

ρXB|λ(X) =
1

Prρ[λ(X)]

∑
x

pxλ(x)|x〉〈x|X ⊗ ρxB .

For a CQ-state ρXB ∈ S(HX ⊗HB), the min-entropy of X conditioned on B
[31] can be expressed in terms of the maximum probability that a measurement
on B yields the correct value of X, i.e. the guessing probability. Formally, we
define [20] Hmin(X|B)ρ := − log pguess(X|B)ρ, where

pguess(X|B)ρ := max
{Nx}x

∑
x

px tr(ρxBNx).

Here, the optimization is taken over all POVMs {Nx}x on B, and here and
throughout this paper, log denotes the binary logarithm.

In case of a CQ-state ρXBΘ with classical X, and with additional classical side
information Θ, we can write ρXBΘ =

∑
θ pθ |θ〉〈θ| ⊗ ρθXB for CQ states ρθXB . The

min-entropy of X conditioned on B and Θ then evaluates to Hmin(X|BΘ)ρ =
− log pguess(X|BΘ)ρ, where pguess(X|BΘ)ρ =

∑
θ pθ pguess(X|B)ρθ . An intuitive

explanation of the latter equality is that the optimal strategy to guess X simply
chooses an optimal POVM on B depending on the value of Θ.

An overview of the min-entropy and its properties can be found in [35]. We
merely point out the chain rule here: for a CQ-state ρXBΘ with classical X and
Θ, where Θ is over {0, 1}n, it holds that Hmin(X|BΘ)ρ ≥ Hmin(X|B)ρ − n.

3 Parallel Repetition of Monogamy Games

In this section, we formalize the notion of a monogamy game, and we show
strong parallel repetition for the game G×nBB84. Then, we generalize our analysis
to arbitrary projective measurements for Alice, and to the case where Bob and
Charlie are allowed to make some errors.

Definition 3.1. A monogamy-of-entanglement game G consists of a finite di-
mensional Hilbert space HA and a list of projective measurementsMθ = {F θx}x∈X
on a HA, indexed by θ ∈ Θ, where X and Θ are finite sets.

We typically use less bulky terminology and simply call G a monogamy game. Note
that for any positive integer n, the n-fold parallel repetition of G, denoted as G×n
and naturally specified by H⊗nA and {F θ1x1

⊗ · · · ⊗ F θnxn }x1,...,xn for θ1, . . . , θn ∈ Θ,
is again a monogamy game.

Definition 3.2. We define a strategy S for a monogamy game G as a list

S =
{
ρABC , P

θ
x , Q

θ
x

}
θ∈Θ,x∈X , (2)



where ρABC ∈ S(HA ⊗HB ⊗HC), and HB and HC are arbitrary finite dimen-
sional Hilbert spaces. Furthermore, for all θ ∈ Θ, {P θx}x∈X and {Qθx}x∈X are
POVMs on HB and HC , respectively. A strategy is called pure if the state ρABC
is pure and all the POVMs are projective.

If S is a strategy for game G, then the n-fold parallel repetition of S, which is
naturally given, is a particular strategy for the parallel repetition G×n; however,
it is important to realize that there exist strategies for G×n that are not of
this form. In general, a strategy Sn for G×n is given by an arbitrary state
ρA1...AnBC ∈ S(H⊗nA ⊗HB ⊗HC) (with arbitrary HB and HC) and by arbitrary
POVM elements on HB and HC , respectively, not necessarily in product form.

The winning probability for a game G and a fixed strategy S, denoted by
pwin(G,S), is defined as the probability that the measurement outcomes of
Alice, Bob and Charlie agree when Alice measures in the basis determined by
a randomly chosen θ ∈ Θ and Bob and Charlie apply their respective POVMs
{P θx}x and {Qθx}x. The optimal winning probability, pwin(G), maximizes the
winning probability over all strategies. The following makes this formal.

Definition 3.3. The winning probability for a monogamy game G and a strategy
S is defined as

pwin(G,S) :=
∑
θ∈Θ

1

|Θ|
tr
(
ΠθρABC

)
, where Πθ :=

∑
x∈X

F θx ⊗ P θx ⊗Qθx . (3)

The optimal winning probability is pwin(G) := supS pwin(G,S), where the supre-
mum is taken over all strategies S for G.

In fact, due to a standard purification argument and Neumark’s dilation
theorem, we can restrict the supremum to pure strategies (cf. [36]).

Strong Parallel Repetition for GBB84. We are particularly interested in the
game GBB84 and its parallel repetition G×nBB84. The latter is given by HA = (C2)⊗n

and the projectors F θx = |xθ〉〈xθ| = Hθ1 |x1〉〈x1|Hθ1 ⊗ · · · ⊗ Hθn |xn〉〈xn|Hθn

for θ, x ∈ {0, 1}n. The following shows the exact value of pwin(G×nBB84), and in
particular it shows strong parallel repetition.

Theorem 3.4. For any n ∈ N, n ≥ 1, we have

pwin(G×nBB84) =

(
1

2
+

1

2
√

2

)n
. (4)

Proof. We first show that this probability can be achieved. For n = 1, consider the
following strategy. Bob and Charlie prepare the state |φ〉 := cos π8 |0〉+ sin π

8 |1〉
and send it to Alice. Then, they guess that Alice measures outcome 0, independent
of θ. Formally, this is the strategy S1 =

{
|φ〉〈φ|, P θx = δx0, Q

θ
x = δx0

}
. The optimal

winning probability is bounded by the winning probability of this strategy,

pwin(GBB84) ≥
(

cos
π

8

)2
=

1

2
+

1

2
√

2
,



and the lower bound in Eq. (4) follows by repeating this simple strategy n times.
To show that this simple strategy is optimal, let us now fix an arbitrary, pure

strategy Sn = {ρA1...AnBC , P
θ
x , Q

θ
x}. From the definition of the norm, we have

tr(MρABC) ≤ ‖M‖ for any M ≥ 0. Using this and Lemma 2.2, we find

pwin(G×nBB84,Sn) ≤ 1

2n

∥∥∥∑
θ

Πθ
∥∥∥ ≤ 1

2n

∑
k

max
θ

∥∥ΠθΠπk(θ)
∥∥, (5)

where the optimal permutations πk are to be determined later. Hence, the problem
is reduced to bounding the norms

∥∥ΠθΠθ′
∥∥, where θ′ = πk(θ). The trivial upper

bound on these norms, 1, leads to pwin(G×nBB84,Sn) ≤ 1. However, most of these
norms are actually very small as we see below.

For fixed θ and k, we denote by T the set of indices where θ and θ′ differ,
by T c its complement, and by t the Hamming distance between θ and θ′ (i.e.,
t = |T |). Consider the projectors

P̄ =
∑
x

|xθT 〉〈xθT | ⊗ 1T c ⊗ P θx ⊗ 1C and Q̄ =
∑
x

|xθ
′

T 〉〈xθ
′

T | ⊗ 1T c ⊗ 1B ⊗Qθ
′

x ,

where |xθT 〉 is |xθ〉 restricted to the systems corresponding to rounds with index
in T , and 1T c is the identity on the remaining systems.

Since Πθ ≤ P̄ and Πθ′ ≤ Q̄, we can bound
∥∥ΠθΠθ′

∥∥2 ≤ ∥∥P̄ Q̄P̄∥∥ using
Lemma 2.1. Moreover,

P̄ Q̄P̄ =
∑
x,y,z

|xθT 〉〈xθT |yθ
′

T 〉〈yθ
′

T |zθT 〉〈zθT | ⊗ 1T c ⊗ P θxP θz ⊗Qθ
′

y

=
∑
x,y

|〈xθT |yθ
′

T 〉|2 |xθT 〉〈xθT | ⊗ 1T c ⊗ P θx ⊗Qθ
′

y

= 2−t
∑
x

|xθT 〉〈xθT | ⊗ 1T c ⊗ P θx ⊗ 1C ,

where we used that P θxP θz = δxzP
θ
x and |〈xθT |yθ

′

T 〉|2 = 2−t. The latter relation
follows from the fact that the two bases are diagonal to each other on each qubit
with index in T . From this follows directly that ‖P̄ Q̄P̄‖ = 2−t. Hence, we find∥∥ΠθΠθ′

∥∥ ≤ √2−t. Note that this bound is independent of the strategy and only
depends on the Hamming distance between θ and θ′.

To minimize the upper bound in (5), we should choose permutations πk
that produce tuples (θ, θ′ = πk(θ)) with the same Hamming distance as this
means that the maximization is over a uniform set of elements. A complete
mutually orthogonal set of permutations with this property is given by the
bitwise XOR, πk(θ) = θ ⊕ k, where we interpret k as an element of {0, 1}n.
Using this construction, we get exactly

(
n
t

)
permutations that create pairs with

Hamming distance t, and the bound in Eq. (5) evaluates to

1

2n

∑
k

max
θ

∥∥ΠθΠπk(θ)
∥∥ ≤ 1

2n

n∑
t=0

(
n

t

)( 1√
2

)t
=

(
1

2
+

1

2
√

2

)n
.

As this bound applies to all pure strategies, we conclude the proof. ut



Arbitrary Games, and Imperfect Guessing. The above upper-bound tech-
niques can be generalized to an arbitrary monogamy game, G, specified by an
arbitrary finite dimensional Hilbert space HA and arbitrary projective measure-
ments {F θx}x∈X , indexed by θ ∈ Θ, and with arbitrary finite X and Θ. The
only additional parameter relevant for the analysis is the maximal overlap of the
measurements, c(G) := max ‖F θxF θ

′

x′ ‖2, where the max is over all θ 6= θ′ ∈ Θ and
all x, x′ ∈ X . c(G) satisfies 1/|X | ≤ c(G) ≤ 1 and c(G×n) = c(G)n. This is in
accordance with the definition of the overlap as it appears in entropic uncertainty
relations, e.g. in [21]. Note also that in the case of GBB84, we have c(GBB84) = 1

2 .
In addition to considering arbitrary monogamy games, we also generalize

Theorem 3.4 to the case where Bob and Charlie are not required to guess perfectly
but are allowed to make some errors. The maximal winning probability in this
case is defined as follows, where we again restrict to pure strategies.

Definition 3.5. Let Q = {(πqB , π
q
C)}q be a set of pairs of permutations of X ,

indexed by q, with the meaning that in order to win, Bob and Charlie’s respective
guesses for x must form a pair in {(πqB(x), πqC(x))}q. Then, the optimal winning
probability of G with respect to Q is

pwin(G;Q) := sup
S

∑
θ∈Θ

1

|Θ|
tr(ΠθρABC) with Πθ :=

∑
x∈X

F θx ⊗
∑
q

P θπqB(x)⊗Q
θ
πqC(x)

where the supremum is taken over all pure strategies S for G.

We find the following upper bound on the guessing probability, generalizing
the upper bound on the optimal winning probability established in Theorem 3.4.
The proof closely follows the proof of the upper bound in Theorem 3.4, and is
deferred to the full version [36].

Theorem 3.6. For any positive n ∈ N, we have

pwin(G×n;Q) ≤ |Q|
(

1

|Θ|
+
|Θ| − 1

|Θ|
√
c(G)

)n
.

Recall that in case of GBB84, we have |Q| = 1, |Θ| = 2, and c(GBB84) = 1
2 , leading

to the bound stated in Theorem 3.4.
One particularly interesting example of the above theorem considers binary

measurements, i.e. X = {0, 1}, where Alice will accept Bob’s and Charlie’s
answers if and only if they get less than a certain fraction of bits wrong. More
precisely, she accepts if d(x, y) ≤ γ n and d(x, z) ≤ γ′ n, where d(·, ·) denotes
the Hamming distance and y, z are Bob’s and Charlie’s guesses, respectively. In
this case, we let Qnγ,γ′ consist of all pairs of permutations (πqB , π

q
C) on {0, 1}n of

the form πqB(x) = x⊕ k, πqC(x) = x⊕ k′, where q = {k, k′}, and k, k′ ∈ {0, 1}n
have Hamming weight at most γ and γ′, respectively. One can upper bound
|Qnγ,γ′ | ≤ 2nh(γ)+nh(γ

′), where h(·) denotes the binary entropy. We thus find

pwin(G×n;Qnγ,γ′) ≤
(

2h(γ)+h(γ
′) 1 + (|Θ| − 1)

√
c(G)

|Θ|

)n
.



4 Application: One-Sided Device-Independent QKD

In the following, we assume some familiarity with quantum key distribution
(QKD). For simplicity, we consider an entanglement-based [11] variant of the
BB84 QKD scheme [5], where Bob waits with performing the measurement until
Alice tells him the right bases. This protocol is impractical because it requires
Bob to store qubits. However, it is well known that security of this impractical
version implies security of the original, more practical BB84 QKD scheme [4].
It is straightforward to verify that this implication also holds in the one-sided
device-independent setting we consider here.

The entanglement-based QKD scheme, E-QKD, is described in Figure 1. It
is (implicitly) parameterized by positive integers 0 < t, s, ` < n and a real number
0 ≤ γ < 1

2 . Here, n is the number of qubits exchanged between Alice and Bob, t
is the size of the sample used for parameter estimation, s is the leakage (in bits)
due to error correction, and ` is the length (in bits) of the final key. Finally, γ is
the tolerated error in Bob’s measurement results.

State Preparation: Alice prepares n EPR pairs 1√
2

(
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉

)
. Then,

of each pair, she keeps one qubit and sends the other to Bob.
Confirmation: Bob confirms receipt of the n qubits. (After this point, there cannot

be any communication between Bob’s device and Eve.)
Measurement: Alice chooses random Θ ∈ {0, 1}n and sends it to Bob, and Alice

and Bob measure the EPR pairs in basis Θ to obtain X and Y , respectively.
(Remember: Bob’s device may produce Y in an arbitrary way, using a POVM
chosen depending on Θ acting on a state provided by Eve.)

Parameter Estimation: Alice chooses a random subset T ⊂ {1, . . . , n} of size t,
and sends T and XT to Bob. If the relative Hamming distance, drel(XT , YT ),
exceeds γ then they abort the protocol and set K = ⊥.

Error Correction: Alice sends a syndrome S(XT̄ ) of length s and a random
universal2 hash function F : {0, 1}n−t → {0, 1}` to Bob.

Privacy Amplification: Alice computes K = F (XTc) and Bob K̂ = F (X̂Tc),
where X̂Tc is the corrected version of YTc .

Fig. 1. An entanglement-based QKD scheme E-QKD.

A QKD protocol is called perfectly secure if it either aborts and outputs an
empty key, K =⊥, or it produces a key that is uniformly random and independent
of Eve’s (quantum and classical) information E+ gathered during the execution
of the protocol. Formally, this means that the final state must be of the form
ρKE+ = Prρ[K 6=⊥] · µK ⊗ ρE+|K 6=⊥ + Prρ[K =⊥] · |⊥〉〈⊥|K ⊗ ρE+|K=⊥, where
µK is a 2`-dimensional completely mixed state, and |⊥〉〈⊥|K is orthogonal to µK .



Relaxing this condition, a protocol is called δ-secure if ρKE+ is δ-close to the
above form in trace distance, meaning that ρKE+ satisfies

Pr
ρ

[K 6=⊥] ·∆(ρKE+|K 6=⊥, µK ⊗ ρE+|K 6=⊥) ≤ δ . (6)

It is well known and has been proven in various ways that E-QKD is δ-secure
(with small δ) with a suitable choice of parameters, assuming that all quantum
operations are correctly performed by Alice and Bob. We now show that the
protocol remains secure even if Bob’s measurement device behaves arbitrarily
and possibly maliciously. The only assumption is that Bob’s device does not
communicate with Eve after it received Alice’s quantum signals. This restriction
is clearly necessary as there would otherwise not be any asymmetry between Bob
and Eve’s information about Alice’s key. Note that the scheme is well known to
satisfy correctness and robustness; hence, we do not argue these here.

Theorem 4.1. Consider an execution of E-QKD, with an arbitrary measure-
ment device for Bob. Then, for any ε > 0, protocol E-QKD is δ-secure with

δ = 5e−2ε
2t + 2−

1
2

(
log(1/β◦)n−h(γ+ε)n−`−t−s+2

)
where β◦ =

1

2
+

1

2
√

2
.

Note that with an optimal error correcting code, the size of the syndrome for
large n approaches the Shannon limit s = nh(γ). The security error δ can then
be made negligible in n with suitable choices of parameters if log(1/β◦) > 2h(γ),
which roughly requires that γ ≤ 0.015. Hence, the scheme can tolerate a noise
level up to 1.5% asymptotically.3

The formal proof is given below. The idea is rather simple: We consider a
gedankenexperiment where Eve measures her system, using an arbitrary POVM,
with the goal to guess X. The execution of E-QKD then pretty much coincides
with G×nBB84, and we can conclude from our results that if Bob’s measurement
outcome Y is close to X, then Eve must have a hard time in guessing X. Since
this holds for any measurement she may perform, this means her min-entropy on
X is large and hence the extracted key K is secure.

Proof. Let ρΘTABE = ρΘ ⊗ ρT ⊗ |ψABE〉〈ψABE | be the state before Alice and
Bob perform the measurements on A and B, respectively, where system E is held
by the adversary Eve. Here, the random variable Θ contains the choice of basis for
the measurement, whereas the random variable T contains the choice of subset on
which the strings are compared (see the protocol description in Fig. 1.) Moreover,
let ρΘTXY E be the state after Alice and Bob measured, where— for every possible
value θ—Alice’s measurement is given by the projectors {|xθ〉〈xθ |}x, and Bob’s
measurement by an arbitrary but fixed POVM {P θx}x.

As a gedankenexperiment, we consider the scenario where Eve wants to guess
the value of Alice’s raw key, X. Eve wants to do this during the parameter
estimation step of the protocol, exactly after Alice broadcast T but before she
broadcasts XT .4 For this purpose, we consider an arbitrary measurement strategy
3 This can be improved slightly by instead considering a six-state protocol, where the
measurement is randomly chosen among three mutually unbiased bases on the qubit.

4 Note that the effect of Eve learning XT is taken into account later, in Eq. (8).



of Eve that aims to guess X. Such a strategy is given by— for every basis choice,
θ, and every choice of sample, τ—a POVM {Qθ,τx }x. The values of θ and τ have
been broadcast over a public channel, and are hence known to Eve at this point
of the protocol. She will thus choose a POVM depending on these values to
measure E and use the measurement outcome as her guess.

For our gedankenexperiment, we will use the state, ρΘTXY Z , which is the
(purely classical) state that results after Eve applied her measurement on E. Let
ε > 0 be an arbitrary constant. By our results from Section 3, it follows that for
any choices of {P θx}x and {Qθ,τx }x, we have

Pr
ρ

[drel(X,Y )≤γ+ε ∧ Z=X] ≤ pwin(G×nBB84;Qnγ+ε,0) ≤ βn

with β = 2h(γ+ε) · β◦, where drel denotes the relative Hamming distance. This
uses the fact that Alice’s measurement outcome is independent of T , and T can
in fact be seen as part of Eve’s system for the purpose of the monogamy game.

We now construct a state ρ̃ΘTXY E as follows.

ρ̃ΘTXY E = Pr
ρ

[Ω] · ρΘTXY E|Ω +
(
1− Pr

ρ
[Ω]
)
· σΘTXY E ,

where Ω denotes the event Ω = {drel(X,Y ) ≤ drel(XT , YT ) + ε}, and we take
σTΘXY E to be an arbitrary state with classical Θ, T , X and Y for which
drel(X,Y ) = 1, and hence drel(XT , YT ) = 1. Informally, the event Ω indicates
that the relative Hamming distance of the sample strings XT and YT determined
by T was representative of the relative Hamming distance between the whole
strings, X and Y , and the state ρ̃ΘTXY E is so that this is satisfied with certainty.
By construction of ρ̃ΘTXY E , we have ∆(ρΘTXY E , ρ̃ΘTXY E) ≤ 1− Prρ[Ω], and
by Hoeffding’s inequality,

1− Pr
ρ

[Ω] = Pr
ρ

[drel(X,Y ) > drel(XT , YT ) + ε] ≤ e−2ε
2t.

Moreover, note that the event drel(XT , YT ) ≤ γ implies drel(X,Y ) ≤ γ + ε under
ρ̃ΘTXY E . Thus, for every choice of strategy {Qθ,τx }x by the eavesdropper, the
resulting state ρ̃ΘTXY Z , obtained by applying {Qθ,τx }x to E, satisfies

Pr
ρ̃

[drel(XT , YT )≤γ ∧ Z=X] ≤ Pr
ρ̃

[drel(X,Y )≤γ+ε ∧ Z=X] (7)

≤ Pr
ρ

[drel(X,Y )≤γ+ε ∧ Z=X] ≤ βn.

We now introduce the event Γ = {drel(XT , YT ) ≤ γ}, which corresponds to the
event that Bob does not abort the protocol. Expanding the left hand side of (7)
to Prρ̃[Γ ] · Prρ̃[Z = X|Γ ] and observing that Prρ̃[Γ ] does not depend on the
strategy {Qθ,τx }x, we can conclude that

∀ {Qθ,τx }x : Pr
ρ̃

[Z=X|Γ ] ≤ β(1−α)n

where α ≥ 0 is determined by Prρ̃[Γ ] = βαn. Therefore, by definition of the
min-entropy, Hmin(X|ΘTE, Γ )ρ̃ ≥ n(1−α) log(1/β). (This notation means that



the min-entropy of X given Θ, T and E is evaluated for the state ρ̃ΘTXY E|Γ ,
conditioned on not aborting.) By the chain rule, it now follows that

Hmin(X|ΘTXTSE, Γ )ρ̃ ≥ Hmin(XXTS|ΘTE, Γ )ρ̃ − t− s (8)
≥ n(1− α) log(1/β)− t− s .

Here, the min-entropy is evaluated for the state ρ̃XΘTXTSE that is constructed
from ρ̃XΘTE by calculating the error syndrome and copying XT from X as done
in the prescription of the protocol. In particular, ∆(ρ̃XΘTXTSE , ρXΘTXTSE) ≤
e−2ε

2t. Finally, privacy amplification with universal2 hashing applied to the state
ρ̃XΘTXTSE ensures that the key K satisfies [31]

∆(ρ̃KFΘTXTSE|Γ , µK ⊗ ρ̃FΘTXTE|Γ ) ≤ 1

2

√
β(1−α)n 2`+t+s .

And, in particular, recalling that Prρ̃[Γ ] = βαn, we have

Pr
ρ̃

[Γ ] ·∆(ρ̃KFΘTXTSE|Γ , µK ⊗ ρ̃FΘTXTE|Γ ) ≤ 1

2

√
βn 2`+t+s .

Using β = 2h(γ+ε)β◦ and applying Lemma 4.2 below concludes the proof. ut

Lemma 4.2. Let ρXB , ρ̃XB ∈ S(HX ⊗HB) be two CQ states with X over X .
Also, let λ : X → {0, 1} be a predicate on X and Λ = λ(X), and let τX ∈ S(HX)
be arbitrary. Then

Pr
ρ

[Λ] ·∆(ρXB|Λ, τX ⊗ ρB|Λ) ≤ 5∆(ρXB , ρ̃XB) + Pr
ρ̃

[Λ] ·∆(ρ̃XB|Λ, τX ⊗ ρ̃B|Λ) .

Proof. We set δ := ∆(ρXB , ρ̃XB). From ∆(ρXB , ρ̃XB) = δ it follows in particular
that the two distributions PX and P̃X are δ-close, and thus that the state

σXB := Pr
ρ

[Λ] · ρ̃XB|Λ + Pr
ρ

[¬Λ] · ρ̃XB|¬Λ

is δ-close to ρ̃XB, and hence 2δ-close to ρXB, where ¬Λ is the negation of the
event Λ. Since Λ is determined by X, we can write

∆(ρXB , σXB) = Pr
ρ

[Λ] ·∆(ρXB|Λ, ρ̃XB|Λ) + Pr
ρ

[¬Λ] ·∆(ρXB|¬Λ, ρ̃XB|¬Λ) ,

from which it follows that Prρ[Λ] ·∆(ρXB|Λ, ρ̃XB|Λ) ≤ 2δ, and, by tracing out
X, also that Prρ[Λ] ·∆(ρB|Λ, ρ̃B|Λ) ≤ 2δ. We can now conclude that

Pr
ρ

[Λ] ·∆(ρXB|Λ, τX ⊗ ρB|Λ) ≤ 4δ + Pr
ρ

[Λ] ·∆(ρ̃XB|Λ, τX ⊗ ρ̃B|Λ)

≤ 5δ + Pr
ρ̃

[Λ] ·∆(ρ̃XB|Λ, τX ⊗ ρ̃B|Λ) ,

which proves the claim. ut
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