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Abstract. In this paper, we introduce and study a new cryptographic primitive that wpwadturable key encap-
sulation mechanistPKEM), which is a special class of KEMs that satisfy some functional and security require-
ments that, combined together, imply chosen ciphertext security (CCA security). The purpose of introducing this
primitive is to capture certain common patterns in the security proofs of the several existing CCA secure public
key encryption (PKE) schemes and KEMs based on general cryptographic primitives which (explicitly or implic-
itly) use the ideas and techniques of the Dolev-Dwork-Naor (DDN) construction (STOC’'91), and “break down”
the proofs into smaller steps, so that each small step is easier to work with/verify/understand than directly tackling
CCA security.

To see the usefulness of PKEM, we show (1) how several existing constructions of CCA secure PKE/KEM con-
structed based on general cryptographic primitives can be captured as a PKEM, which enables us to understand these
constructions via a unified framework, (2) its connection to detectable CCA security (Hohenberger et al. EURO-
CRYPT'12), and (3) a new security proof for a KEM-analogue of the DDN construction from a set of assumptions:
sender non-committing encrypti¢g8NCE) and non-interactive witness indistinguishable proofs.

Then, as our main technical result, we show how to construct a PKEM satisfying our requirements (and thus a CCA
secure KEM) from a new set of general cryptographic primitig$CEandsymmetric key encryption secure for
key-dependent messagE®M secure SKE). Our construction realizes the “decrypt-then-re-encrypt”-style validity
check of a ciphertext which is powerful but in general has a problem of the circularity between a plaintext and
a randomness. We show how SNCE and KDM secure SKE can be used together to overcome the circularity. We
believe that the connection among three seemingly unrelated notions of encryption primitives, i.e. CCA security,
the sender non-committing property, and KDM security, to be of theoretical interest.

Keywords: public key encryption, puncturable key encapsulation mechanism, chosen ciphertext security, sender
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1 Introduction

In this paper, we continue a long line of work studying the constructions of public key encryption (PKE)
schemes and its closely related primitive cakegt encapsulation mechanigkEM) that are secure against
chosen ciphertext attacks (CCA) [58, 63, 29] from general cryptographic primitives. CCA secure PKE/KEM

is one of the most important cryptographic primitives that has been intensively studied in the literature,
due to not only its implication to strong and useful security notions such as non-malleability [6,12, 61]
and universal composability [20, 24], but also its resilience and robustness against practical attacks such as
Bleichenbacher’s attack [16, 5].

There have been a number of works that show CCA secure PKE/KEMs from general cryptographic
primitives: These include trapdoor permutations [29, 35, 36] (with some enhanced property [37]), identity-
based encryption [23] and a weaker primitive called tag-based encryption [48, 45], lossy trapdoor function
[62] and trapdoor functions with weaker functionality/security properties [65, 54, 46, 67], PKE with weaker
than but close to CCA security [43,47, 26], a combination of chosen plaintext secure (CPA secure) PKE and
a hash function with some strong security [53], and techniques from program obfuscation [66, 52].

One of the ultimate goals of this line of researches is to clarify whether one can construct CCA secure
PKE only from CPA secure one (and in fact, a partial negative result is known [34]). This problem is
important from both theoretical and practical points of view. To obtain insights into this problem, clarifying
new classes of primitives that serve as building blocks is considered to be important, because those new class
of primitives can be a new target that we can try constructing from CPA secure PKE schemes (or similarly
standard primitives such as one-way injective trapdoor functions and permutations).

Our Motivation. Although differing in details, the existing constructions of CCA secure PKE schemes and
KEMs from general cryptographic primitives [29, 62, 65, 67,52, 53, 26] often employ the ideas and tech-
niques of the Dolev-Dwork-Naor (DDN) construction [29], which is the first construction of CCA secure
PKE from general primitives. The security proofs of these constructions are thus similar in a large sense, and
itis highly likely that not a few future attempts to constructing CCA secure PKE/KEMs from general crypto-
graphic primitives will also follow the DDN-style construction and security proof. Therefore, it will be useful
and helpful for future research and also for understanding the existing works of this research direction if we
can extract and abstract the common ideas and techniques behind the security proofs of the original DDN
and the existing DDN-like constructions, and formalize them as a cryptographic primitive with a few formal
functionality and security requirements (rather than heuristic ideas and techniques), so that most of the ex-
isting DDN-style constructions as well as potential future constructions are captured/explained/understood
in a unified way, and in particular these are more accessible and easier-to-understand.

Our Contributions. Based on the motivation mentioned above, in this paper, we introduce and study a new
cryptographic primitive that we capuncturable key encapsulation mechani@KEM). This is a class

of KEMs that has two kinds of decryption procedures, and it is required to satisfy three simple security
requirementsdecapsulation soundnegsunctured decapsulation soundneasd extended CPA security
which we show in Section 3.3 that, combined together, implies CCA security. The intuition of these security
notions as well as their formal definitions are explained in Section 3.2. The purpose of introducing this
primitive is to capture certain common patterns in the security proofs of the several existing CCA secure
PKE schemes and KEMs based on general cryptographic primitives which (explicitly or implicitly) use
the ideas and techniques of the DDN construction [29], and “break down” the proofs into smaller steps,
so that each small step is easier to work with/verify/understand than directly tackling CCA security. Our
formalization of PKEM is inspired (and in some sense can be seen an extension of) the nptiootafable
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tag-based encryptiofb3] (which is in turn inspired by the notion g@uncturable pseudorandom function
[66]), and we explain the difference from [53] in the paragraRlelated Workbelow.

To see the usefulness of our framework of PKEM, we show (1) how the KEM-analogue of the original
DDN [29] and several existing DDN-like constructions (e.g. [62, 65,67,52,53]) can be understood as a
PKEM in Section 3.4, (2) its connection to detectable CCA security which is a weaker security notion than
CCA security introduced by Hohenberger et al. [43] in Section 3.5, and (3) a new security proof for a KEM-
analogue of the DDN construction from a set of assumptions that are different from the one used in its
known security proofsender non-committing encryptigBNCE, see below) and non-interactive witness
indistinguishable proofs. (For the purpose of exposition, this last result is shown in Section 5.)

Then, as our main technical result, in Section 4 we show how to construct a PKEM satisfying our
requirements (and thus a CCA secure KEM) from a new set of general cryptographic pringti@Egand
symmetric key encryption secure for key-dependent mesg&ipds secure SKE) [15]. Roughly speaking,

a SNCE scheme is a special case of non-committing encryption [22] and is a PKE scheme which is secure
even if the sender’s randomness used to generate the challenge ciphertext is corrupted by an adversary. See
Section 2.1 where we define SNCE formally, explain the difference among related primitives, and how it
can be realized from the standard cryptographic assumptions such as the decisional Diffie-Hellman (DDH),
quadratic residuosity (QR), and decisional composite residuosity (DCR). The function class with respect to
which we require the building block SKE scheme to be KDM secure, is a class of efficiently computable
functions whose running time is a-priori fixed. Due to Applebaum’s result [1] (and its efficient variant [9,
§7.2]) we can realize a KDM secure SKE scheme satisfying our requirement from standard assumptions
such as DDH, QR, DCR. For more details on KDM secure SKE, see Section 2.2.

Our proposed PKEM has a similarity with the “double-layered” construction of Myers and Shelat [56]
and its variants [43, 50, 26], in which a plaintext is encrypted twice: firstly by the “inner” scheme, and sec-
ondly by “outer” scheme. Strictly speaking, however, our construction is not purely double-layered, but in
some sense is closer to “hybrid encryption” of a PKE (seen as a KEM) and a SKE schemes, much similarly
to the recent constructions by Matsuda and Hanaoka [52, 53]. Furthermore, our construction realizes the
“decrypt-then-re-encrypt”-style validity check of a ciphertext, which is a powerful approach that has been
adopted in several existing constructions that construct CCA secure PKE/KEM from general cryptographic
primitives [32, 62, 65, 56, 46, 43,52, 53, 26]. In general, however, this approach has a problem of the circu-
larity between a plaintext and a randomness, and previous works avoid such a circularity using a random
oracle [32], a trapdoor function [62, 65, 46], a PKE scheme which achieves some security which is (weaker
than but) close to CCA security [56, 43, 26], or a power of additional building blocks with (seemingly very
strong) security properties [52,53]. We show how SNCE and KDM secure SKE can be used together to
overcome the circularity. Compared with the structurally similar constructions [43, 52, 53, 26], the assump-
tions on which our construction is based could be seen weak, in the sense that the building blocks are known
to be realizable from fairly standard computational assumptions such as the DDH, QR, and DCR assump-
tions. We believe that the connection among three seemingly unrelated notions of encryption primitives, i.e.
CCA security, the sender non-committing property, and KDM security, to be of theoretical interest.

Open ProblemsWe believe that our framework of PKEM is useful for constructing and understanding the
current and the potential future constructions of CCA secure PKE/KEMs based on the DDN-like approach,
and motivates further studies on it. Our work leaves several open problems. Firstly, our framework of PKEM
actually does not capture the recent construction by Dachman-Soled [26] who constructs a CCA secure PKE
scheme from a PKE scheme that satisfies (standard model) plaintext awareness and some simulatability
property. The construction in [26] is similar to our proposed (P)KEM in Section 4 and the recent similar
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constructions [52, 53]. (Technically, to capture it in the language of PKEM, slight relaxations of some of the
security requirements will be necessary, due to its double-layered use of PKE schemes similarly to [56].)

Secondly and perhaps more importantly, it will be worth clarifying whether it is possible to construct
a PKEM satisfying our requirements only from CPA secure PKE or (an enhanced variant of) trapdoor per-
mutations in a black-box manner. Note that a negative answer to this question will also give us interesting
insights, as it shows that to construct a CCA secure PKE/KEM from these standard primitives, we have to
essentially avoid the DDN-like construction.

Finally, it would also be interesting to find applications of a PKEM other than CCA secure PKE/KEMs.

Related Work.The notion of CCA security for PKE was formalized by Naor and Yung [58] and Rackoff and
Simon [63]. We have already listed several existing constructions of CCA secure PKE/KEMs from general
primitives in the second paragraph of Introduction. In our understanding, the works [29, 62, 65, 67,52, 53,
26] are based on the ideas and techniques from the DDN construction [29].

As mentioned above, our notion of PKEM is inspired by the notiopwfcturable tag-based encryption
(PTBE) that was recently introduced by Matsuda and Hanaoka [53]. Similarly to PKEM, PTBE is a special
kind of tag-based encryption [48, 45] with two modes of decryption. (Roughly, in PKEM, a secret key can
be punctured by a ciphertext, but in PTBE, a secret key is punctured by a tag.) Matsuda and Hanaoka [53]
introduced PTBE as an abstraction of the “core” structure that appears in the original DDN construction
(informally, it is the original DDN construction without a one-time signature scheme and a non-interactive
zero-knowledge proof), and they use it to mainly reduce the “description complexity” of their proposed
construction [53] and make it easier to understand the construction. However, they did not study it as a
framework for capturing and understanding the existing DDN-style constructions (as well as potential future
constructions) in a unified manner as we do in this paper. We note that Matsuda and Hanaoka [53] also
formalized the security requirement callecPA securitywhose formalization is a PTBE-analogueeafPA
security for a PKEM (and thus we borrow the name). However, they did not formalize the security notions
for PTBE that correspond tecapsulation soundneaadpunctured decapsulation soundnésisa PKEM.

Paper Organization.The rest of the paper is organized as follows: In Section 2 (and in Appendix A), we
review the notation and definitions of cryptographic primitives. In Section 3, we introduce and study PKEM,
where in particular we show its implication to CCA security and how some of the existing constructions of
KEMSs can be interpreted and explained as a PKEM. In Section 4, we show our main technical result: a
PKEM from SNCE and KDM secure SKE, which by the result in Section 3 yields a new CCA secure KEM
from general assumptions. In Section 5, we show the CCA security of the DDN-KEM based on SNCE and
non-interactive witness indistinguishable arguments.

2 Preliminaries

In this section, we give the definitions for sender non-committing encryption (SNCE) and symmetric key
encryption (SKE) and its key-dependent message (KDM) security that are used in our main result in Sec-
tion 4. The basic definitions for standard cryptographic primitives that are not reviewed in this section are
given in Appendix A, which include PKE, (detectable) KEMs, signature schemes, non-interactive argument
systems, and universal one-way hash functions (UOWHFs). (The reader familiar with them need not check
Appendix A at the first read, and can do so when he/she wants to check the details of the definitions.)
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Basic Notation.N denotes the set of all natural numbers, andfor € N, we defingln] := {1,...,n}.
“r < y” denotes that: is chosen uniformly at random fromif y is a finite sety is output fromy if y
is a function or an algorithm, gy is assigned ta: otherwise. Ifz andy are strings, then|%|” denotes the

bit-length ofz, “z||y” denotes the concatenatianandy, and “(x L y)" is the operation which returns
if z = y and0 otherwise. “(P)PTA" stands for grobabilistic) polynomial time algorithoor a finite set
S, “|S|” denotes its size. If4 is a probabilistic algorithm theny*«— A(z;r)” denotes thatd computesy
as output by taking: as input and using as randomness. Furthermore, for an algorithm or a funaflpn
“ A" denotes an algorithmi with oracle access t6. A functione(k) : N — [0, 1] is said to benegligible
if for all positive polynomialsp(k) and all sufficiently larges € N, we havee(k) < 1/p(k). Throughout
this paper, we use the charactéf to denote a security parameter.

2.1 Sender Non-committing Public Key Encryption

Roughly, a SNCE scheme is a PKE scheme that remains secure even against an adversary who may obtain
sender’'s randomness used to generate the challenge ciphertext. This security is ensured by requiring that
there be an algorithm that generates a “fake transcpiptindc that denote a public key and a ciphertext,
respectively, so that the paipk, c¢) can be later explained as a transcript of an arbitrary messagaur
syntax of SNCE loosely follows that of sender-equivocable encryption [31, 44], but departs from it because
we need perfect correctness (or at least almost-all-keys-perfect correctness [30]) so that error-less decryption
is guaranteed, which cannot be achieved by sender-equivocable encryption. We also note that recently, Hazay
and Patra [40] introduced (among other notions) the notion that thefCalfor the SendgiNCES), which
is a notion very close to SNCE we consider here. We will discuss the correctness and the difference between
our definition and that of [40] later in this subsection.

Formally, a sender non-committing (public key) encryption (SNCE) schEneensists of the five PP-
TAs (PKG, Enc, Dec, Fake, Explain) where(PKG, Enc, Dec) constitutes a PKE scheme (where definitions
for ordinary PKE can be found in Appendix A.1), aRake andExplain are the simulation algorithms with
the following syntax:

Fake: This is the “fake transcript” generation algorithm that tak&sas input, and outputs a “fake” pub-
lic key/ciphertext pair(pk, c) and a corresponding state information(that will be used in the next
algorithm).

Explain: This is the (deterministic) “explanation” algorithm that takes a state informatiGwherew is
computed by(pk, c,w) <+ Fake(1¥)) and a plaintextn as input, and outputs a randomnesthat
“explains” the transcriptpk, c) corresponding ta. Namely, it is required thanc(pk, m;r) = ¢ hold.

SNC Security. For a SNCE schem& = (PKG, Enc, Dec, Fake, Explain) (where the randomness space of
EncisR = (Ry)ren) and an adversapt = (Ay, Az), we define th&NC- Real experimenExptf; & *** (k)
and thesNC- Sim experimenExpt% 5" (k) as in Fig. 1 (left and center, respectively).

Definition 1. We say that a SNCE scherfes SNC secure if for all PPTAsA, the advantagédv} (k) :=
| Pr[Expti %" (k) = 1] — Pr[ExptHS %" (k) = 1] is negligible.

The Difference among Non-committing Encryption and Related PrimitiVls.original definition of non-

committing encryption by Canetti et al. [22] ensures security under both the sender and receiver’s corruption.
This is ensured by requiring that the “explaining” algorithm output not only the sender’s randomness but
also receiver’s (i.e. randomness used to generate public/secret keys). The original definition in [22] (and

6



Exptio (k) : L Exptioem (k) Expti 24 (k) :
(m,st) < A (1%) © (m,st) « A;(15) (f,st) «+ A (1)
(pk, sk) < PKG(1%), (pk,c,w) < Fake(1¥)| K < Kk

7 Ri ' r <« Explain(w,m) m1 <+ f(K); mo < My
¢ < Enc(pk,m;r) ' b+ Aa(st,pk,c,r) b+« {0,1}

b+ As(st,pk,c,7) '+ Returnd’. ¢* < SEnc(K,myp)
Returnb’. 1 b Aa(st,c*)

Return(b’ < b).

Fig. 1. Security experiments for defining tis&iC security of a SNCE scheme (left and center) and that fo/R¥@TKDM security of
a SKE scheme (right).

several works [28, 33]) allows multi-round interaction between a sender and a receiver (and even the multi-
party case), but in this paper we only consider the public-key case (equivalently, the one-round two-party
protocol case). A SNCE scheme is a non-committing encryption scheme that only takes care of the sender’s
side corruption.

Sender-equivocable encryption [31, 44] is a special case of a SNCE scheme in which a sender can, under
an honestly generated public key, generate a fake ciphertext that can be later explained as an encryption of
an arbitrary message (while a SNCE scheme allows that even a public key is a fake one).

Deniable encryption [21,59, 14, 66] has an even stronger property in which an honestly generated ci-
phertext under an honestly generated public key can be later explained as an encryption of an arbitrary
message. For details on deniable encryption, we refer the reader to the papers [59, 14].

The difference among these primitives is very important in our paper, as we explain below.

On Correctness of SNCE Schemksthis paper, unlike most of the papers that treat (sender) non-committing
encryption schemes and related primitives such as sender-equivocable encryption and deniable encryption,
we require a SNCE scheme satisfy perfect correctness or at least almost-all-keys perfect correctness [30].
This is because our proposed constructions follow the Dolev-Dwork-Naor-style construction [29] which re-
quires error-less decryption (under all but negligible fraction of key pairs) for a building block PKE scheme.
Here, the non-committing property and (perfect or almost-all-keys perfect) correctness might sound con-
tradicting. This is indeed the case for ordinary (i.e. bi-) and “receiver” non-committing encryption, sender-
equivocable encryption, and deniable encryption, and thus we cannot use these primitives in our proposed
constructions. However, “sender” non-committing encryption can avoid such an incompatibility, because
the fake transcript generation algorittffake can generatépk, c) such thatpk is notin the range of the

normal key generation algorithidKG. Moreover, as we will see belo8NC secure SNCE schemes with
perfect correctness (and even practical efficiency) can be realized from standard assumptions.

Concrete Instantiations of SNCE SchemBsllare et al. [11] formalized the notion fafssy encryptiofil 1],
which is a PKE scheme that has the “lossy key generation” algorithm. It outputs a “lossy public key” which
is indistinguishable from a public key generated by the ordinary key generation algorithm, and an encryption
under a lossy public key statistically hides the information of a plaintext. Bellare et al. [11] also introduced
an additional property for lossy encryption callefficient openabilityin which the lossy key generation
algorithm outputs a trapdoor in addition to a lossy public key, and by using the trapdoor, an encryption
under the lossy public key can be efficiently “explained” as a ciphertext of any plaintext.

We note that any lossy encryption with efficient openability yielddNa secure SNCE scheme: the
algorithm Fake generates a lossy public key: as well as an encryptioa of some plaintext, and keeps
the trapdoor corresponding g asw.; the algorithmExplain on inputw and a plaintextn outputs a
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randomness that explains that = Enc(pk, m;r) holds. Hence, we can use the existing lossy encryption
schemes with efficient openability that are based on standard assumptions. These include the scheme based
on the quadratic residuosity (QR) assumption [§4,4] (which is essentially the multi-bit version of the
Goldwasser-Micali scheme [38]), the scheme based on the decisional Diffie-Hellman (DDH) assumption
[13, § 5.4] (which is the “bit-wise” encryption version of the DDH-based lossy encryption scheme [11,

§ 4.1]), and the scheme based on the decisional composite residuosity (DCR) assumption [41] (which shows
that the original Paillier scheme [60] and the DardyJurik scheme [27] can be extended to lossy encryption

with efficient openability). In particular, the DCR-based schemes [60, 27,41] have a compact ciphertext
whose size does not grow linearly in the length of plaintexts.

On the Difference from the Formalization of “NCE for the Sender” in [40The definition of NCE for

the Sender in [40] explicitly requires that the scheme have the “fake” key generation algorithm that out-
puts a “fake” public key together with a trapdoor, with which one can “equivocate” (or in our terminology,
“explain”) any ciphertext as an encryption of arbitrary plaintextTherefore, it seems to us that their for-
malization is close to lossy encryption with efficient openability [11]. On the other hand, our formalization
requires that only a paifpk, c) of public key and a ciphertext (or a “transcript” in a one-round message
transmission protocol between two parties) be explained. We can construct a SNCE scheme in our formal-
ization from NCE for the Sender of [40] (in essentially the same manner as we do so from lossy encryption
with efficient openability), while we currently do not know if the converse implication can be established.
Therefore, in the sense that currently an implication of only one direction is known, our formalization is
weaker.

2.2 Symmetric Key Encryption

A symmetric key encryption (SKE) schente with key spaceC = {Kj}reny and plaintext spacét =
{Mk}keNl consists of the following two PPTASEnc, SDec):

SEnc: The encryption algorithm that takes a kBye K and a plaintexin € M as input, and outputs a
ciphertextc.

SDec: The (deterministic) decryption algorithm that tak€se K, andc as input, and outputs a plaintext
m which could be the special symbal (which indicates that is an invalid ciphertext undek).

Correctness. We require for allk € N, all keys K € Kj, and all plaintextsn € My, it holds that
SDec(K, SEnc(K,m)) = m.

One-Time Key-Dependent Message Secullitgt £ = (SEnc,SDec) be a SKE scheme with key space
K = {Ki}ren and plaintext spacét = { My }ren. Let F = {F}ren be an ensemble (which we call
function ensembjavhere for eachi, F;. is a set of efficiently computable functions with their dom&ip
and rangeM.

For the SKE schemé’, the function ensemblé, and an adversaryl = (A, .42), we define the

JF-OTKDM experimen€Expt} "2 (k) as in Fig. 1 (right). In the experiment, it is required tifa¢ 7.

Definition 2. We say that a SKE schenigis 0TKDM secure with respect t@ (F-0TKDM secure, for short)
if for all PPTAs A, the advantagddvy$" (k) := 2 - | Pr[Expt) 'Ry (k) = 1] — 1/2| is negligible.

1 In this paper, for simplicity, we assume that the key spiicend plaintext spacé1 of a SKE scheme satisfy the following
conditions: For eack € N, (1) every element iiC;. has the same length, (2) every elementif). has the same length, (3) both
K and M, are efficiently recognizable, and (4) we can efficiently sample a uniformly random element froid patid M ;.



We would like to remark that our definition 6fKDM security is considerably weak: it is a single instance
definition that need not take into account the existence of other keys, and an adversary is allowed to make a
KDM encryption query (which is captured b only once.

Concrete Instantiations dfTKDM Secure SKE Scheme#n our proposed construction in Section 4, the
class of functions with respect to which a SKE schem8TkDM secure needs to be rich enough to be
able to compute the algorithixplain in a SNCE scheme multiple (an a-priori bounded number of) times.
Fortunately, Applebaum [1] showed how to generically convert any SKE scheme which is many-time KDM
secure (i.e. secure for many KDM encryption queries) with respect to “projections” (i.e. functions each of
whose output bit depends on at most one bit of inputs) into a SKE scheme which is many-time KDM secure
(and thusOTKDM secure), with respect to a family of functions computable in a-priori fixed polynomial time.
(We can also use a more efficient construction shown by Bellare et &l7 [].) This notion is sufficient

for our proposed construction. Since most SKE and PKE schemes KDM secure with respect to the class
of affine functions can be interpreted as (or easily converted to) “projection”-KDM secure SKE schemes
[3, §A], we can use the existing (many-time) “affine”-KDM secure SKE schemes as a building block, and
apply Applebaum’s conversion (or that of [§,.2]). Therefore, for example, one can realiZ&T&DM secure

SKE scheme with respect to fixed poly-time computable functions, based on the DDH assumption [17], the
QR assumption [19], the DCR assumption [19, 49], the learning with errors (LWE) assumption [4], and the
learning parity with noise (LPN) assumption [4, 2]. Very recently, Bellare et al. [7, 8] introduced a notion of

a family of hash function calledniversal computational extractqtJCE) which is seemingly quite strong
(almost random oracle-like) but a standard model assumption. Using a version of UCE assumption, they [8]
showed (among many other things) how to construct a SKE scheme which is non-adaptively KDM secure (in
which encryption queries have to be made in parallel) with respect to any efficiently computable functions.
OTKDM security is the special case of non-adaptive KDM security, and hence we can also use the result of
[8] in our proposed construction.

3 Chosen Ciphertext Security from Puncturable KEMs

In this section, we introduce the notion opancturable KEM(PKEM) and show several results on it.

This section is organized as follows: In Sections 3.1 and 3.2, we define the syntax and the security
requirements of a PKEM, respectively. Then in Sections 3.3 and 3.5, we show the implication of a PKEM
to aCCA secure KEM and &cCA secure detectable KEM, respectively. We also explain how a wide class of
the existing constructions @A secure KEMs can be understood via a PKEM in Section 3.4.

3.1 Syntax

Informally, a PKEM is a KEM that has additional procedures for “puncturing secret keys according to a
ciphertext” and “punctured decapsulation.” In a PKEM, one can generate a “punctured” seciiet-Kegm

an ordinarysk and a ciphertext” via the “puncturing” algorithmPunc. Intuitively, although an ordinary

secret keyk defines a map (viBecap) whose domain is the whole of the ciphertext spaég, only defines

a map whose domain is the ciphertext space that has a “hole” produced by the puncture of the ciphertext
c*. This “punctured” secret keyk.~ can be used in the “punctured” decapsulation algorithdecap to
decapsulate all ciphertexts that are “far” frefn(or, those that are not in the “hole” produceddsy, while

sk~ is useless for decapsulating ciphertexts that are “close” {or, those that are in the “hole” including

c* itself), where what it means for a ciphertext to be close to/far fedns decided according to a publicly
computable predicate, which is also a part of a PKEM.
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Expt?™% (k) : Exptoy (k) - Exptioa (k) :
(pk, sk) +— KKG(1%) (pk, sk) < KKG(1%) (pk, sk) < KKG(1%)
(¢*, K*) < Encap(pk) (¢*, K*) < Encap(pk) (¢*, K1) < Encap(pk)
d ADECBP(‘Sk")(pk,C*,K*) ske+ < Punc(sk,c*) skex + Punc(sk, c¥)
Returnl iff (&) A (b) A (€): | o gPPessp(shen) (pt o= K| K§ + {0,1}F
* 1
(@ F/(Phi ) =1 Returnl iff (a) A (b): b {0,1}
(b) " #c , (a) F(pk,c*,c) =0 b+ A(pk, skex,c*, Ky)
(¢) Decap(sk, ') # L (b) Decap(sk,c’) # Return(b’ = b).
PDecap(skcx,c')
Exptyoy (k) Expty i (k) : Definitions of Advantages:
(pk, sk) +— KKG(1%) (pk, sk) < KKG(1%) For XXX € {DSND, sDSND, PDSND, sPDSND}:
(c*, K*) + Encap(pk) (c*, K*) + Encap(pk)  AdVEY (k) = Pr[Exptiy (k) =1]
c + A(pk,sk,c*, K*) c + A(pk,sk,c*, K*) eCPA security:
Returnl iff (a) A (b) A (c): Returnt iff (a) A (b): AdviPh (k) :=
(@) F(pk,c",c') =1 (8) F(pk,c™,c') =0 2| Pr[ExptiA(k) = 1] — 5
(b) ¢’ # c* (b) Decap(sk,c’) #
(c) Decap(sk,c’) # L PDecap(Punc(sk, c*),c)

Fig. 2. Security experiments for a PKEM and the definitions of an adversary’s advantage in each experiment.

Formally, a puncturable KEM consists of the six PPTK&G, Encap, Decap, F, Punc, PDecap), where
(KKG, Encap, Decap) constitute a KEM, and the latter three algorithms are deterministic algorithms with
the following interface:

F: The predicate that takes a public ke (output by KKG(1*)) and two ciphertexts and ¢’ as input,
wherec has to be in the range &hcap(pk) (but¢’ need not), and outputsor 1.

Punc: The “puncturing” algorithm that takes a secret kéy (output by KKG(1*)) and a ciphertext*
(output byEncap(pk)) as input, and outputs a punctured secretﬁay.

PDecap: The “punctured” decapsulation algorithm that ta@@ (output byPunc(sk, c*)) and a ciphertext
c as input, and outputs a session-Keywhich could be the special symbal (meaning that ¢ cannot
be decapsulated byk.«").

The predicatd- is used to definelecapsulation soundneasdpunctured decapsulation soundngs$ich

we explain in the next subsection. Its role is very similar to the predicate used to bDefihsecurity and
unpredictability of detectable PKE in [43]. As mentioned above, intuitively, the predi¢ate c¢*, -) divides
the ciphertext space into two classes: ciphertexts that are “clogé”and those that are “far” frora*, and
for each of the classes, we expect the decapsulation algoridlenap andPDecap to work “appropriately,”
as we will see below.

3.2 Security Requirements

For a PKEM, we consider the three kinds of security noticiesapsulation soundnegsinctured decapsu-
lation soundnessandextended CPA securityhe intuition for each of the security notions as well as formal
definitions are explained below. Furthermore, for the first two notions, we consider two flavors: the ordinary
version and the strong version (where the latter formally implies the former). We only need the ordinary
notions for showing the€CA security of a PKEM, while the strong notions are usually easier to work with.

Decapsulation Soundnes3his security notion is intended to capture the intuition that the only valid ci-
phertext which is “close” ta* is ¢* itself: It requires that given the challenge ciphertext/session-key pair
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(c*, K*), itis hard to come up with another ciphertekt4 ¢* thatis (1) “close” toc* (i.e. F(pk, ¢*, ) = 1),
and (2) valid (i.eDecap(sk, ') # L).

Formally, for a PKEMI" and an adversary, consider the decapsulation soundn®sai) experiment
Expt?>’¢ (k) and the strong decapsulation soundness)D) experimentExpt?>5" (k) defined as in Fig. 2
(left- top/bottom) The adversapl’s advantage in each experiment is defined as in Fig. 2 (right-bottom).
Note that in the “strong” versiorspSND), an adversary is even given a secret key (which makes achieving
the notion harder, but makes the interface of the adversary simpler).

Definition 3. We say that a PKEM" satisfieddecapsulation soundnegesp.strong decapsulation sound-
nes$ if for all PPTAs A, the advantagédvy®’ (k) (resp.AdvS (k)) is negligible.

Punctured Decapsulation SoundneS#is security notion is intended to capture the intuition that the “punc-
tured” decapsulation bl Decap(sk.+, -) works as good as the normal decapsulatio®byap(sk, -) for all

“far” ciphertextsc’: It requires that given the challenge ciphertext/session-key(paif<™), it is hard to
come up with another ciphertextthat is (1) “far” fromc* (i.e. F(pk, ¢*, ) = 0), and (2) the decapsula-
tions under two algorithmBecap(sk, ¢) andPDecap(gEc* ,') disagree.

Formally, for a PKEMI™ and an adversary, consider the punctured decapsulation soundrressiD)
experimentExpt;>3" (k) and the strong punctured strong decapsulation soundsBBSND) experiment
Expt7 " (k) defined as in Fig. 2 (center-top/bottom). The adverséieyadvantage in each experiment is
defined as in Fig. 2 (right-bottom). Note that as in #&ND experiment, in the “strong” versios¥DSND),
an adversary is even given a secret key (which makes achieving the notion harder, but makes the interface
of the adversary simpler).

Definition 4. We say that a PKEM™ satisfiespunctured decapsulation soundnéssp.strong punctured
decapsulation soundngsfor all PPTAs A, the advantagddv®5 (k) (resp.AdvFy P (k)) is negligible.

Extended CPA Security: CPA security in the presence of a punctured secret key. Extended CPA security
(eCPA security, for short) requires that the CPA security hold even in the presence of the punctured secret
key sk~ corresponding to the challenge ciphertext

Formally, for a PKEMI" and an adversary, consider theCPA experimenExpt*{' (k) defined as in
Fig. 2 (right-top). We define the advantage of an adversary as in Fig. 2 (right- bottom).

Definition 5. We say that a PKEM is eCPA secure if for all PPTAsA, the advantageddv§ (k) is
negligible.

3.3 CCA Secure KEM from a Puncturable KEM

Here, we show that a PKEM satisfying all security notions introduced in Section 3.2 yi€lls secure
KEM. (The formal proof is given in Appendix D.1.)

Theorem 1. LetI" = (KKG, Encap, Decap, F, Punc, PDecap) be a PKEM satisfying decapsulation sound-
ness, punctured decapsulation soundness,efitd security. Then/™ = (KKG, Encap, Decap) is a CCA
secure KEM. Specifically, for any PPTA that attacks thecCA security of /™ and makes in total) =
Q(k) > 0 decapsulation queries, there exist PPT8s B,, and B such that

AdVE (k) < 2- AdVESI (k) + 2Q - AdVEPSP (k) + AdVESEA (k). 1)
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Furthermore, if" additionally satisfiestrongpunctured decapsulation soundness, we have tight secu-
rity reduction. Specifically, for any PPTA that attacks thecCA security of[™, there exist PPTAS,, B,
and B, such that

Adv%‘i"’A(kz) <2 AdvPPE (k) +2- Advff:?giND(k:) + Adv%?,%f(k:). 2

Proof Sketch of Theorem 1The proofs for the both reductions proceed almost identically.4A &g any
PPTA adversary that attacks the KEIV in the sense ofCA security. Consider the following sequence of
games:

Game 1: This is theCCA experimenExpt{™ 4 (k) itself.

Game 2: Same as Game 1, except that all decapsulation quesatisfyingF (pk, c*, ¢) = 1 are answered
with L.

Game 3: Same as Game 2, except that all decapsulation quesatisfyingF (pk, c*, ¢) = 0 are answered
with PDecap(;Ec*,c), wheresk, = Punc(sk, c*).

Fori € [3], letSucc; denote the event that in GameA succeeds in guessing the challenge bit §i.e= b
occurs). We will show thatPr[Succ;] —Pr[Succ;+1]| is negligible for eachi € [2] and thaf Pr[Succs]—1/2]
is negligible, which proves the theorem.

Firstly, note that Game 1 and Game 2 proceed identically unlessakes a decapsulation quety
satisfyingF(pk, ¢*, ) = 1 andDecap(sk,c) # L, and hencé Pr[Succ;] — Pr[Succs]| is upperbounded
by the probability of.4A making such a query in Game 1 or Game 2. Recall that by the rule dithe
experiment,A’'s queriesc must satisfyc # ¢*. But F(pk,c*,c’) = 1, ¢ # ¢*, andDecap(sk,c) # L are
exactly the conditions of violating the decapsulation soundness, and the probabifityneking a query
satisfying these conditions is negligible.

Secondly, note that Game 2 and Game 3 proceed identically udlesskes a decapsulation query
c satisfyingF(pk, ¢*,c¢) = 0 andDecap(sk,c) # PDecap(sk+,c), wheresk.~ = Punc(sk,c*). Hence
| Pr[Succs] —Pr[Succs]| is upperbounded by the probability dfmaking such a query in Game 2 or Game 3.
However, since these conditions are exactly those of violating the punctured decapsulation soundness, the
probability of 4 making a query satisfying the above conditions is negligible. (The tightness of the reduction
differs depending on whether we can assume “strong” puncutred decapsulation soundness. For the detalils,
see the explanation in Appendix D.1.)

Finally, we can upperboungPr[Succs] — 1/2| to be negligible directly by theCPA security of the
PKEM I". More specifically, angCPA adversary3., which receivegpk, Sker ,c*, K}') asinput, can simulate
Game 3 forA, whereA’s decapsulation oracle in Game 3 is simulated perfectly by L@gg so that3.'s
eCPA advantage is exactly- | Pr[Succz] — 1/2|. This shows thatPr[Succs] — 1/2] is negligible. O

3.4 Understanding the Existing Constructions ofCCA Secure KEMs via Puncturable KEM

To see the usefulness of a PKEM and the result in Section 3.3, here we demonstrate how the existing
constructions o€CA secure KEMs can be understood via a PKEM.

The Dolev-Dwork-Naor KEM.We first show how a security proof of the KEM version of the DDN con-
struction [29], which we call th®DN-KEM, can be understood via a PKEM. This is the KEM obtained
from the original DDN construction (which is a PKE scheme) in which we encrypt a random value and
regard it as a session-key.
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KKGpon (1) : Decapypy (SK,C) : Puncopn (SK,C*) :

V(i 5) € [k] x {0, 1} : ((sk);5, PK) + SK ((sk")i5, PK) < SK
(p]fl(rj)’é’k,(])) + PKG(1%) ((pkgj))iyj,CTS7Ii) «— PK ((pkgj))iyj,crs,n) + PK

crs « CRSG(1%) (vk, (¢i)i,m,0) + C (vk*, (ci)i,m*,0%) + C
Kk <+ HKG(1%) If SVer(vk, ((¢;)i,7),0) = L h* « H(vk™)
PK «+ ((pkgj))i,j,crs,n) thenreturnl.| View h* as(hil|...||h}) € {0,1}".
SK « ((sk); ;, PK) h < Hy(vk) SKc- + (h*, sk "), PK)
Return(PK, SK). View has(hi||... ||hx) € {0, 1}". ReturnSK ¢« .

Encapyy (PK) : T ((pkz(hi>)iv (ci)i) PDecapyp(SK ¢+, C) :
((pkg”)i,j, crs, k) « PK If PVer(crs,z,m) = L then returnL (h* (skoih:))- PEK) « §RC*
K+ {0,1}* Returnk <+ Dec(sk{"), c1). N v

7 ((pk;”’)ij,crs, k) < PK

T1,...,Tk < Rk FDDN(PK7C’C): (vk 7’(c-)-JTr o)« C
(vk, sigk) — SKG(1*) ((h{")ig, crs, ) & PK If S{/erl(;}c i(c')' 7),0) = L then returnL.
h + Hu(vk) (vk, (¢i)iym,0) « C h < H (vl’c) AR
View h as(hi|| ... ||hx) € {0,1}*.| (vk/, (c})i, 7', 0") + C’ If h* — B then returnl.
Vi € [k] : ci = Enc(pk{", K;r:) | Return(H,(vk) = H(vk')). View h* as(hi]|... ||hg) € {0, 1}*.
z < ((pk")i, (c:):) View h as(h1]|. .. ||hx) € {0,1}*.
w <= ((re)i, K) ¢ < min{i € [k] : h} # h}
7 < Prove(crs, z,w) T ((pkghi))i’ (c)i)
o « Sign(sigk, ((ci)i, m)) If PVer(crs,z,m) = L then returnl.
gezrﬁqélé,(;(i;“ m0). Returnk <« Dec(skél_hz), co).

”

Fig. 3. The PKEMIpny based on a PKE schenig and a non-interactive argument syst@min the figure, {r;);” and “(pk§j>)7;,j
are the abbreviations of#;);cx)" and “(pkf”)ie[k],jgm,l}”, respectively, and we use a similar notation for other values.

Let IT = (PKG, Enc, Dec) be a PKE scheme whose plaintext spacglisl }* and whose randomness
space (for security parametey is R;. Consider the NP languade= { L }ren Where each;, is defined
as follows:

Ly = { ((0ki)iems (cidiemwy) | 3(ri)ie, K) € (Rip)* x {0,1}* s.t.¥i € [K] : Enc(pki, K; 15) = ¢; }

Let P = (CRSG, Prove, PVer) be a non-interactive argument system for the languag®loreover, let
XY = (SKG, Sign, SVer) andH = (HKG, H) be a signature scheme and a UOWHF, respectively. (The defi-
nitions of an ordinary PKE scheme, a signature scheme, a non-interactive argument system, and a UOWHF,
can be found in Appendices A.1, A.3, A.4, and A.5 respectively.) Then we construct the KM=
(KKGppy, Encapppy, Decapppy, Foon, Puncppy, PDecapppy ), Which is based on the DDN-KEM, as in Fig. 3.
The original DDN-KEM I3y is (KKGppy, Encapppy, Decapppy)-

For the PKEMIpy, the three security requirements are shown as follows: (The formal proofs of Lem-
mas 1, 2, and 3 are given in Appendices D.2, D.3, and D.4, respectively.)

Lemma 1. If H is a UOWHF andY’ is aSOT secure signature scheme, then the PKEM}; satisfies strong
decapsulation soundness.

Lemma 2. If the non-interactive argument systefhsatisfies adaptive soundness, then the PKE,
satisfies strong punctured decapsulation soundness.

Lemma 3. If the PKE schemd! is CPA secure and the non-interactive argument sysiens ZK secure,
then the PKEM ppy iS eCPA secure.
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The first two lemmas are almost trivial. Specifically, (&t = (vk*, (c});, 7, o*) be the challenge cipher-
text, and letC’ = (vk/, (c});, 7', 0’) be a ciphertext output by an adversary in #%SND experiment or

the sPDSND experiment (recall that the interface of an adversary in these experiments is the same). Then, a
simple observation shows thatGf is a successful ciphertext that violates strong decapsulation soundness,
thenC’ must satisfy one of the following two conditions: #),(vk*) = H.(vk’) andvk* # vk/, or (2)
SVer(vk/, ((¢)i, 7"),0") = T, ((¢})i, m*,0%) # ((c})i, 7', o), andvk* = vk’. However, a ciphertext with

the first condition is hard to find due to the security of the UOWHFand a ciphertext with the second
condition is hard to find due to tr80T security of the signature schemg Similarly, again a simple obser-
vation shows that in order faf’ to be a successful ciphertext that violates strong punctured decapsulation
soundness;” has to satisfyPVer(crs,2’,7') = T andz’ ¢ L; wherex’ = ((pkgh;))i, (c});), and hence

the adaptive soundness of the non-interactive argument sy3tgnarantees that the probability that an ad-
versary coming up with such a ciphertext in #®DSND experiment is negligible. TheCPA security is also

easy to see. Specifically, we can first consider a modified experiment in wkicndr are respectively
generated by using the simulation algorith&is CRS andSimPrv which exist by thezK security of P. By

the ZK security, areCPA adversary cannot notice this change. Thengthesecurity of the underlying PKE
scheme directly shows that the information of a session-key does not leak, leading®®Atsecurity.

Capturing Other Existing Construction®©ur framework with a PKEM can explain other existing construc-

tions that, explicitly or implicitly, follow a similar security proof to the DDN construction. For example,

the Rosen-Segev construction based on an injective trapdoor function (TDF) secure under correlated inputs

[65], the Peikert-Waters construction [62] based on a lossy TDF and an all-but-one lossy TDF (ABO-TDF)

in which the ABO-TDF is instantiated from a lossy TDF (see this construction in§&3]). Moreover,

the construction based on CPA secure PKE and an obfuscator for point functions (with multi-bit output) by

Matsuda and Hanaoka [52] and one based on CPA secure PKE and a hash function family satisfying the

strong notion (called UCE security [7]) from the same authors [53] can also be captured as a PKEM.
Furthermore, our framework with a PKEM can also capture KEMs basatl-bat-one extractable hash

proof systemgABO-XHPS) by Wee [67] (and its extension by Matsuda and Hanaoka [51]), by introducing

some additional property for underlying ABO-XHPS. Although the additional property that we need is

quite subtle, it is satisfied by most existing ABO-XHPS explained in [67,51]. Since a number of recent

practicalCCA secure KEMs (e.g. [18, 25, 39, 42]) are captured by the framework of ABO-XHPS, our result

is also useful for understanding practical KEMs. We expand the explanation for capturing ABO-XHPS-

based KEMs in Appendix C.

3.5 DCCA Secure Detectable KEM from a Puncturable KEM

Here, we show that even if a PKEM does not have decapsulation soundness, it still ybsids secure
detectable KEM [43, 50]. Therefore, if a PKEM satisfying punctured decapsulation soundnesgpPand
security additionally satisfies thepredictability (which we recall in Appendix A.2), it can still be used as
a building block in the constructions [43, 50] to obtain fuliga secure PKE/KEM

2 Note that we treat unpredictability amdCa security of a detectable KEM as separate security notions (as opposed to treat the
former as a requirement of the latter [43]), which we believe is more convenient to understand the connection between a PKEM
and a detectable KEM.

3 As discussed in [50], it is easy to achieve a detectable PKE schem@&avithsecurity and unpredictability from a detectable
KEM satisfying the same security notions, by combining the detectable KEM with a one-time secure SKE scheme (i.e. a SKE
scheme which is secure under one-time encryption query).
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Theorem 2. LetI" = (KKG, Encap, Decap, F, Punc, PDecap) be a PKEM satisfying punctured decapsula-
tion soundness aneCPA security. Then/'T = (KKG, Encap, Decap, F) is aDCCA secure detectable KEM.

Proof Sketch of Theorem 2T he proof of this theorem is straightforward given the proof of Theorem 1 (it is
only simpler), and thus we omit a formal proof. The reason why we do not need decapsulation soundness is
that an adversary in tHECCA experiment is not allowed to ask a decapsulation quevigh F(pk, ¢*, ¢) = 1,

and we need not care the behavioiDekap for “close” ciphertexts. Thus, as in the proof of Theorem 1, the
punctured decapsulation soundness guarantee®Beatp(sk., -) works as good aBecap(sk, -) for all

“far” ciphertextsc with F(pk, ¢*, ¢) = 0, and then theCPA security guarantees the indistinguishability of a

real session-keyk; and a randond;. O

On Unpredictability of PKEMs.We note that the DDN-KEM reviewed in Section 3.4 and our proposed
KEM in Section 4 achieve strong unpredictabiilty (based on the security of the building blocks), which we
show in Appendices E.1 and E.2, respectively.

4 Puncturable KEM from Sender Non-committing Encryption and KDM Secure SKE

In this section, we show our main technical result: a PKEM that uses a SNCE scheme&isecure
SKE scheme (with respect to efficiently computable functions). By Theorem 1, this yi&lds secure
KEM. Therefore, this result clarifies a new set of general cryptographic primitives that ingpliesecure
PKE/KEM.

The construction of the proposed PKEM is as follows: Et= (PKG, Enc, Dec, Fake, Explain) be
a SNCE scheme such that the plaintext spacfig}™ (for some polynomiah = n(k) > 0) and the
randomness space Bhc is R;. Let E = (SEnc,SDec) be a SKE scheme whose key space and plaintext
space (for security parametky are ;, and My, respectively. We requir&,, C {0,1}" and (R) ! x
{0,1}¥ € My. Furthermore, lel{ = (HKG, H) be a hash function family (which is going to be assumed
to be a UOWHF). Then we construct a PKEN= (@\G, ﬁéa\p, [%Ep, ?, m:, Pﬁec\ap) as in Fig. 4.

Function Ensemble fadTKDM Security. For showing theeCPA security ofl", we need to specify a function
ensembleF = {F}ren With respect to which® is 0TKDM secure. For each € N, define a sefFj, of
efficiently computable functions as follows:

7o I K= My given by z = ((wi)iefp+1], K) whereK € {0,1}F 3)
ke f2() == ((Explain(w;, @));er11), K) | and eachw; is output fromFake(1*)

Note that each function iff;, is parameterized by, and is efficiently computable.

Security of". The three security requirements of the PKEMan be shown as follows: (The formal proofs
of Lemmas 4, 5, and 6 are given in Appendices D.5, D.6, and D.7, respectively.)

Lemma 4. If # is a UOWHF, then the PKENT satisfies strong decapsulation soundness.

Lemma 5. The PKEMI satisfies strong punctured decapsulation soundness (even against computationally
unbounded adversaries) unconditionally.

I_Aemma 6. If the SNCE schem# is SNC secure and the SKE scherfias F-0TKDM secure, then the PKEM
I is eCPA secure.
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KKG(1%) : Decap(SK, C) : Punc(SK,C*) :
V(i 4) € [k] x {0,1} ((sk)ij, PK) « SK ((sk¥)i;, PK) + SK
Pk, sk) = PKG*) | (kD) 1, phnsr, &) < PE (h*,(c])i, &) < C*
(pkit1, skri1) < PKG(1%) (h, (ci)i, €) + C View h* as(hi]| ... ||h;) € {0,1}.
K HKG(1") View h as(hi||. .. ||hx) € {0,1}*. SKc- + (h*, (sk ")), PK)
PK « ((pk;]))z‘,j»pkkﬂ» K) o + Dec(sk{"™) ¢) ReturnSKc-.
SK + ((sk9),;, PK) If o« = L then returnl. PDecap(SKo-, C) -
Return(PK, SK). B + SDec(a, ©) (h*, (s, PK) « SKc»
Encap(PK) : If 3 = L then returnL. (h, ’(Ci);a - C:
((PkD) 15, Pkt 1, &) < PK gi“l)tilkalc’g]zki Ba_ renn) If h* = h then returnL.
a <+ Ky + L Tt View h* as(hi||...||hL) € {0,1}*.
((r)ieen. K) e (Re)*+t x {0,213+ | 1 (&) A (b) then returf else returnl: | -y, as(i(zl|1\‘.| » ||‘l|zk])€)€ {({), 1};
B+ ((ri)ieik+1): K) (a) Vi € [k] : Enc(pk;™", a1i) = ci £ < min{i € [k] : h] # hi}
¢ < SEnc(a, ) (b) He(cr41ll) = h o Dec(sk(17h2> o
Cht1 < Enc(phii, @) FIPK, C,.C) : Run exactly;sD/ec\;p from
(L/i;;vgﬁé(sa(cle|||©. Ihe) € (0.1} EZ’((CCZZ)Z;%;_(_CC/ the sixth step and return the resuilt.
Vi€ [k] : ¢ + Enc(pk§hi),a;ri) Return(h < R').
C «+ (h, (Cq)z,a
Return(C, K).

Fig. 4. The PKEMI" based on a SNCE schenfiand a SKE schemg. In the figure, {r;);"and “(pk,gj))i,j” are the abbreviations
of “(r:)scpry” and “(plcl(”)ie[k],je{o’l}“, respectively, and we use similar notation for other values.

Here, we explain high-level proof sketches for each lemma.

Regarding strong decapsulation soundness (Lemma 4), recall thasibtiie experiment, in order for a
ciphertextC’ = (h/, (¢});, ¢) to violate (strong) decapsulation soundness, it must satighK, C*,C") =1
(which impliesh* = h'), ¢’ # C*, and @(SK, C") # L, which (among other conditions) implies
h* = He(cp,111¢") = He(ch,,1I¢) = B, where the values with asterisk are those related to the challenge
ciphertextC* = (h*, (cf)i,¢*) and¢,_, is the intermediate value calculated during the computation of
@(SK, C"). On the other hand, a simple observation shows that the above conditions also imply another
condition(cy, |, ¢*) # (¢, 41, ¢). This means that a successful ciphertext that violates (strong) decapsulation
soundness leads to a collision for the UOWHEFwhich is hard to find by the security of the UOWHE

Regarding punctured decapsulation soundness (Lemma 5), we show that for any (possibly invalid) ci-
phertextC’ = (h/,(c,);,c), if B # h*, then it always holds thdbecap(SK, C’) = PDecap(SKc+,C").
This can be shown due to the correctness of the building block SNCE schearal the validity check

by re-encryption performed at the last stepD/ﬁc?p and Pﬁeap. In particular, the validity check by re-
encryption works like a non-interactive proof with perfect soundness in the DDN construction, and hence

for any adversary, itsPDSND advantage is zero.

Finally, we explain how theCPA security (Lemma 6) is proved. Let be anyeCPA adversary. Consider
the following sequence of games:

Game 1: This is theeCPA experiment itself. To make it easier to define the subsequent games, we change
the ordering of the operations as follows (note that this does not chdsgaew):
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Game 1: v = (] )ier+, K1), © PK «+ ((pk'z(j))i,jvpk;c+17”);

oF < Kg; . & « SEnc(a*,8%); L C* (B ()i, E);
Foric [k+1]: | k< HKG(1%); | SKoe (b7, (sk "), PE);
(pki, ski) < PKG(1%); b= (k.. hg) <= Hulchalle™)il Ky« {0,1}%;
rF < Ry '+ Fori € [k] : . b« {0,1}
cf < Enc(pkl,a*;r}); o pkM) — pkl; "V« A(PK,S5Kc~,C*, K})
End For ' (pkgl_hr)7$k(1_h:)) « PKG(lk); :
Ki «{0,1}%; ' End For ‘

(Continue to the center colum) w (Continue to the right colump™)

Game 2: Same as Game 1, except that we generate each ((plpjléz),c;‘,ri*) and (pky+1, Cry1s Thp1)
by using the simulation algorithm&ke and Explain of the SNCE schemé&l. More precisely, in this
game, the step with the underline Game 1 is replaced with:(pk, cf,w;) < Fake(1%); rf «
Explain(w}, a*).”

Game 3: Same as Game 2, except that the informatiopoft= ((7});cr+1, K7) is erased fronz*. More
precisely, in this game, the step™ <+ SEnc(a*, 5*)” in Game 2 is replaced with the stepg’* «+

My; & + SEnc(a*, ).

Fori € [3], letSucc; be the event thatl succeeds in guessing the challenge bit @.e= b occurs). We will
show that Pr[Succ;] — Pr[Succ;;1]| is negligible for each € [2], and thafPr[Succs] = 1/2, which proves
the eCPA security of the PKEM.

Firstly, we can show thgtPr[Succ;] — Pr[Succy]| is negligible due to th&NC security of the(k + 1)-
repetition constructiodZ*+!, which in turn follows from thesNC security of the underlying SNCE scheme
11 by a standard hybrid argument (see Lemma 10 in Appendix B.1).

Secondly, we can show thaPr[Succs] — Pr[Succs]| is negligible due to theF-0TKDM security of the
SKE scheme. Here, the key idea in this proof is that we view the plainteXt= ((r});cr+1), K1) =
((Explain(wy, @*);er+1], K£*) which will be encrypted under the key" as a “key-dependent message” of
the keya*. More specifically, in the full proof we show how to constru@TkDM adversarys. that uses the
KDM function f € Fj, defined byf(a*) = ((Explain(w;], a)icfp+1], K*) (Where(w;);cx+1) and K7 are
viewed as fixed parameters hard-coded)ifor the challenge KDM query, and dependingly’s challenge
bit, B. simulates Game 2 or Game 3 perfectly fdiso thatAdvy ' (k) = | Pr[Succy] — Pr[Succs]].

Finally, observe that in Game 3, the challenge cipher&xis independent ok}, and the inpu{ PK,
SKc-,C*, K7) to Ais distributed identically for both € {0,1}. This impliesPr[Succs] = 1/2.

Our construction of the PKEMA“, and the combination of Lemmas 4 to 6 and Theorem 1 lead to our
main result in this paper:

Theorem 3. If there exist 88NC secure SNCE scheme and a SKE scheme tliaKigM secure with respect
to efficiently computable functions, then there exi6Ca secure PKE scheme/KEM.

Finally, it would be worth noting that our construction oA secure PKE (via a PKEM) is black-
box, in the sense that the construction uses the building blocks in a black-box manner, while our security
reductions of theCPA security is non-black-box, in the sense that our reduction algorithm needs to use the
description of theExplain algorithm as a KDM encryption query. Such a situation was encountered in [55,
26] where these constructions use the building block PKE scheme in a black-box manner, while the security
proof (reduction) is non-black-box because they need to rely on its plaintext awareness. Specifically, in the
security proofs of [55, 26], reduction algorithms need to use a “(plaintext) extractor” that is dependent on
the description of &CA adversary (and the building block PKE scheme for which plaintext awareness is
assumed).
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5 Dolev-Dwork-Naor KEM Revisited

In this section, we show that th&PA security of the DDN-PKEMI ppy (Fig. 5) that we reviewed in Sec-

tion 3.4 can be shown from different assumptions on the PKE scliéraed the non-interactive argument
systemP. More specifically, we show that iif is aSNC secure SNCE scheme aftis WI secure, then we

can still show that the PKEMppy is eCPA secure. We emphasize that this change of assumptionsndbes

affect the other assumptions used for decapsulation soundness and punctured decapsulation soundness, and
thus we see that this result is a concrete evidence of the usefulness of “breaking down” the steps in a secu-
rity proof into small separate steps. By Theorem 1, we obtain adtavwsecurity proof for the DDN-KEM

based on a SNCE scheme and a non-interactive witness indistinguishable argument system (in the common
reference string model).

We believe this new proof for the classical construction with different set of assumptions to be theoreti-
cally interesting, and another qualitative evidence of the usefulness of SNCE in the context of constructing
CCA secure PKE/KEM. In particular, compared with the original DDN-KEM, our result here shows a trade-
off among assumptions on building blocks: a stronger assumption on a PKE scheme and instead a weaker
assumption on a non-interactive argument system. Our result shows that the difference b&®wesatare
PKE scheme and&NC secure SNCE scheme is as large/small as the difference betweghgbeurity and
WI security of a non-interactive argument system.

Lemma 7. If IT is a SNC secure SNCE scheme and the non-interactive argument sy3teriiI secure,
then the PKEM ppy is eCPA secure.

The formal proof is given in Appendix D.8. Here, we explain some intuition on the proof of Lemma 7.
Recall that in the proof based on theA security of I7 and theZK security of P, we first use th&k

security of P to “cut” the relation between the componefit$); and the proofr*, and then use thepA

security of thek-repetition constructiodZ* (which in turn follows from thecPA security ofI7) to “hide”

the information of the challenge bit. The proof of Lemma 7 in Appendix D.8 uses the properties of the

building blocks in the reversed order: we first use $iNe security of thek-repetition constructiodZ* to

generate each tup(@kghr), ¢, r¥) using the simulation algorithnfsake andExplain of the SNCE scheme

II. Because now eact] can be explained as an encryption of not jiaSt but any plaintext due to the

simulation algorithmsrake andExplain, this change “cut” the relation between the componéeity; and

the proofr*. Furthermore, due to tH&NC security, areCPA adversary cannot notice this difference from the

original eCPA experiment. Then, we use thi& security of the non-interactive argument systerto “erase”

the information of the challenge Wit That eacle} can be explained as an encryption of any plaintext means

that there are many witnesses for the statemént ((pk(h:))i, (cf);) € Ly, and hence th&@I security

[ )

suffices to “hide” the information ot For more formal details, see Appendix D.8.
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A Basic Cryptographic Primitives

A.1 Public Key Encryption
A public key encryption (PKE) schem@ consists of the following three PPTABKG, Enc, Dec):

PKG: The key generation algorithm that takidsas input, and outputs a public/secret key gk, sk).

Enc: The encryption algorithm that takeg and a plaintextn as input, and outputs a ciphertext

Dec: The (deterministic) decryption algorithm that takésandc as input, and outputs a plaintextwhich
could be the special symbdl meaning ¢ is invalid under(pk, sk).”

Correctness.We require for allt € N, all (pk, sk) output byPKG(1*), and all plaintextsn, it holds that
Dec(sk, Enc(pk, m)) = m.

CPA Security. For a PKE schemé& = (PKG, Enc, Dec) and an adversamt = (A1, A2), we define thePa

experimen€xptfr’ (k) as follows:

Expt%’fé\(kz) - [ (pk, sk) < PKG(1%); (mg, mq,st) « Ay (pk); b {0,1}; ¢* < Enc(pk,my);
b+ As(st,c*); Return (b L b) ],
where it is required thding| = |m1|.

Definition 6. We say that a PKE scheni&is CPA secure if for all PPTAsA, the advantagéddvir?, (k) :=
2 - | PrExptjy (k) = 1] — 1/2] is negligible.

A.2 (Detectable) Key Encapsulation Mechanisms
A key encapsulation mechanism (KENT)consists of the following three PPTAKKG, Encap, Decap):

KKG: The key generation algorithm that taksas input, and outputs a public/secret key gak, sk).

Encap: The encapsulation algorithm that takgsas input, and outputs a ciphertext/session-key (jgaik ).

Decap: The decapsulation algorithm that takdsandc as input, and outputs a session-Ke€ywhich could
be the special symbal meaning thaté is invalid unden(pk, sk).”

For simplicity but without loss of generality, in this paper the session-key space of a KEM is assumed to be
{0,1}* whenEncap andDecap are used with keyépk, sk) output fromKKG(1%).
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Correctness We require for alk € N, all (pk, sk) output byKKG(1%), and all(c, K') output byEncap(pk),
it holds thatDecap(sk, c¢) = K.

Detectable KEM.In this paper, we will treat the KEM-analogue of a detectable PKE scheme [43], and thus
we introduce it here.

A tuple of PPTAsSI" = (KKG, Encap, Decap, F) is said to be aletectableKEM if the tuple (KKG,
Encap, Decap) constitutes a KEM, ané is a predicate that takes a public kel and two ciphertexts, ¢’
as input and outputs eithéror 1. (The interface is exactly the same as that of the predicatea PKEM
introduced in Section 3.) The predicatés used to define the security notiome{ectable CCA securignd
unpredictability for a detectable KEM.

As in the case of a PKEM, intuitively, the predicdiépk, c*, -) divides the ciphertext space into two
classes: ciphertexts that are “close” frarhand those that are “far” from*. In the spirit of [43], the
predicateF indicates whether the decapsulation of ciphertexts“dangerous”: Namely, the decapsulation
of a close ciphertext (such thafF (pk, ¢*, ¢) = 1) may help an adversary to obtain some useful information
about (the decapsulation of) the challenge ciphektext

CPA/DCCA/CCA Security. For a (detectable) KEM™ = (KKG, Encap, Decap) and an adversary, we define
theCCA experimenExpt> (k) as in Fig. 5 (left), where in the experiment,is not allowed to submit* to

the oracle. We define tHecCA experimenExpt}<3 (k) in the same way as th#€A experiment, except that

is not allowed to submit a querysatisfyingF (pk, c*, ¢) = 1. Furthermore, the€PA experimenExpt (k)

is also defined similarly to theCA experiment, except thad is not allowed to submit any query.

Definition 7. LetATK € {CPA,DCCA, CCA}. We say that a (detectable) KEMis ATK secure if for all PPTAs
A, the advantagddvi™ (k) := 2 - |Pr[ExptATK (k) = 1] — 1/2| is negligible.

Unpredictability of a Detectable KEMHere, we recall the definition of unpredictability and strong unpre-
dictability of a detectable KEM, which are straightforward KEM-analogues of those of a detectable PKE
scheme defined by Hohenberger et al. [43]. (The ordinary (i.e. non-strong) version of unpredictability of a
detectable KEM was also defined in [50].) Informally, this security notion requires that it is hard to find a
ciphertextc’ such that it is “close” to any unseen ciphertex{i.e. F(pk, c*, ') = 1).

Formally, for a detectable KENI' and an adversary, consider th&NP experlmenExthNP (k) and the
sUNP experimenExpty (k) as in Fig. 5 (center and right, respectively).
Definition 8. We say that a detectable KEMsatisfieaunpredictability(resp.strong unpredictabilityif for
all PPTAs A, the advantagldv'’y (k) := Pr[Expt}y (k) = 1] (resp.Advy (k) := Pr[Expty (k) = 1])
is negligible.

Like the security notions of a PKEM, in order to use a detectable KEM as a building block to construct

fully ccA secure PKE/KEM via the constructions of [43, 50], the ordinary unpredictability suffices. However,
the strong version is usually easier to work with.

A.3 Signature

A signature schem& consists of the following three PPTASKG, Sign, SVer):

SKG: The key generation algorithm that tak#s as input, and outputs a verification/signing key pair
(vk, sigk).

Sign: The signing algorithm that takesgk and a message as input, and outputs a signature

SVer: The verification algorithm that takes: and a message/signature pait, o) as input, and outputs
eitherT (meaning “accept”) or. (meaning “reject”).
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Expti (k) : Exptpiy (k) : Expty% (k) :

(pk, sk) < KKG(1%) (pk, sk) < KKG(1%) | (pk, sk) + KKG(1%)
(¢*, K1) < Encap(pk) ¢ APePCh) (ply | ¢« A(pk, sk)

K§ « {0,1}" (c*, K*) < Encap(pk)| (c*, K™) - Encap(pk)
b+« {0,1} ReturnF(pk, ¢*, ¢). ReturnF(pk, c*, ¢).

Y o~ ADecap(sk,-)(pk’C*’Kg)
Return(b’ = b).

Fig. 5. Security experiments for a (detectable/ordinary) KEM.

Correctness.We require for allk € N, all (vk, sigk) output bySKG(1%), and all messages, it holds that
SVer(vk, m, Sign(sigk,m)) = T.

Strong One-time UnforgeabilityHere we recall the strong unforgeability under one-time chosen message
attacks §0T security, for short).

Definition 9. We say that a signature scheme= (SKG, Sign, SVer) is strongly unforgeable under one-
time chosen message attack®T secure, for short), if for all PPTAsA = (A;, As), the advantage

Adv3Y% (k) := Pr[Expt3?% (k) = 1] is negligible, where the experimeBtpt3?" (k) is defined as follows:

ExptS0 (k) : [ (vk, sigh) < SKG(1%); (m,st) « A;(vk); o < Sign(sigk,m);
(m/,0") < As(st,o); Return 1iff SVer(vk,m’,0’) = T A (m’,0') # (m,0) ].

A SOT secure signature scheme can be built from any one-way function [57, 64].

A.4 Non-interactive Argument Systems

Let L = {Ly}ren be an NP language (for simplicity, we assume thatonsists of setd.;, parameterized
by the security parametéf). A non-interactive argument systef for L consists of the following three
algorithms(CRSG, Prove, PVer):

CRSG: The common reference string (CRS) generation algorithm that tikes input, and outputs a
common reference strings. We assume that s implicitly contains the information ok, and specifies
the setl;, of statements whose validity can be proved and verified by the following algorithms.

Prove: The prover algorithm that takess, a statement € L;, and a witnessv for the fact thate € L,
as input, and outputs a proof

PVer: The verification algorithm that takess, and a statement/proof pdir, 7) € {0,1}* x {0,1}* as
input, and outputs eithér (meaning “accept”) or. (meaning “reject”).

Correctness.We require perfect correctness for non-interactive argument systems: foedll, all crs <
CRSG(1*%), and all statement/witness paits, w) € L x {0,1}* (wherew is a witness for the fact that
x € Ly), it holds thatPVer(crs, z, Prove(crs, x,w)) = T.

Security Definitions of Non-interactive Argument SysteHere, we recall the basic security definitions for
a non-interactive argument systeattaptive soundneswitness indistinguishabilityandzero-knowledge

We first recall the definition ohdaptive soundnesgVe note that in our proposed construction, we need
the adaptive soundness in which the (false) statemenitput by an adversary can depend on a common
reference stringrs.
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Expts i (k) : Exptp 4 (k) : Expth 1** (k) : | Expth §'% (k) :

crs + CRSG(1F) (z, wo,w1,st) + A1 (1%)| (z,w,st) + A1 (1%) L (@, w, st) +— A (17)

(z,7) + Alcrs) crs < CRSG(1%) crs < CRSG(1%) ' (ers, td) < SimCRS(1%)
Returnl iff (&) A (b): b+« {0,1} 7 < Prove(ers, z, w) ! < SimPrv(td, )

(@) x ¢ Ly 7 < Prove(crs, z, ws) Returnd’ < Asx(st, crs, ). Returnd’ < As(st, crs, 7).

(b) PVer(crs,z,m) = T| b < Ax(st,crs,m)
Return(b’ = b).

Fig. 6. Security experiments for a non-interactive argument system.

Definition 10. We say that a non-interactive argument sysfefior a languagel. satisfiesadaptive sound-
nessif for all PPTAs A, the advantagddvis§* (k) := Pr[Expt}4% (k) = 1] is negligible, where th8ound
experimentxpty i (k) is defined as in Fig. 6 (leftmost).

We next recall the definition afitness indistinguishabilit¢WI security, for short). We note that unlike
soundness, we dwotneed a version of thel security in which a statement (and witnesses) may depend on
a common reference string.

Definition 11. We say that a non-interactive argument sysf@nfor an NP languagel. satisfieswitness
indistinguishability(WI security, for short) if for all PPTAsA = (A, As), the advantage!\dv%{A(k) is
negligible, where th&T experimenExpt";{A(k) is defined as in Fig. 6 (second-left), and it is required that
x € Ly, and bothwy andw, are witnesses for the fact thate L in thewI experiment.

Finally, we recall the definition of theero-knowledge properzk security, for short). Again as iwI
security, in this paper we do not need “adaptive” version ofzkesecurity in which a statement (and a
witness) dependent on a common reference string is taken into account.

Definition 12. We say that a non-interactive argument sysferfor an NP languagd. satisfies theero-
knowledgeproperty €K secure, for short) if there exists a pair of PPT8s= (SimCRS, SimPrv) satisfying
the following properties:

— (Syntax) (SimCRS, SimPrv) has the following interface:
SimCRS: This algorithm is the “simulated common reference string” generation algorithm that takes
1* as input, and outputsrs and a corresponding trapdoatl.
SimPrv: This algorithm is the “simulated proof” generation algorithm that takégoutput bySimCRS)
and a statement € {0, 1}* (which may not belong th) as input, and outputs a “simulated proof”
.
— (Zero-Knowledge) For all PPTASA = (A1, As), the advantagddvy' s 4(k) := | Pr[Expth [ (k) =
1] — PrExptp & (k) = 1] is negligible, where theK- Real experimentExpt? f°*'(k) and the
ZK- Sim experimenExpt%fzgf’jm(k) are defined as in Fig. 6 (second-right and rightmost, respectively),
and furthermore it is required that € L, andw is a witness for the fact that € L, in both of the
experiments.

A.5 Universal One-Way Hash Functions

Here, we recall the definition of a universal one-way hash function (UOWHF) [57].

Definition 13. We say that a pair of PPTAE = (HKG, H) is a universal one-way hash function (UOWHF)
if the following two properties are satisfied:

24



— (Syntax:)On input1*, HKG outputs a hash-key. For any hash-key: output fromHKG(1%), H defines
an (efficiently computable) function of the fokn : {0, 1}* — {0, 1}*.

— (Universal One-waynessfjor all PPTAsA = (A1, A;), the advantagédvyy" (k) := Pr[Expt} " (k)
= 1] is negligible, where the experimeBtpt};", (k) is defined as follows:

Exptip (k) : [ (m,st) A1(1%); & HKG(1%); m’ « A (st, k);
Return 1iff Hy(m') = He(m) Am/ #m].

A UOWHF can be built from any one-way function [57, 64].

B Some Useful Facts

In this section, we review several useful facts used in this paper.

B.1 Useful Facts on (Sender Non-committing) Public Key Encryption

Extending the Plaintext Space by Concatenatidhe plaintext space of a SNCE scheme can be extended
by considering a simple contatenation.

Formally, let/l = (PKG, Enc, Dec, Fake, Explain) be a SNCE scheme whose plaintext spacgid }
and whose randomness space Fat for security parametek) is Ry, and letn = n(k) be a positive
polynomial. Then a simple-wise “concatenation” constructiofl|” = (PKG!”, Encl”, Decl”, Fakel™,
Explain|™) given in Fig. 7 (left) is a SNCE scheme whose plaintext spa¢e,is}”.

The security of the:-wise concatenation construction is guaranteed by the following lemmas (which
can be proved by applying a standard hybrid argument, and thus omitted).

Lemma 8. Let n be a positive polynomial. If the SNCE schefdeis SNC secure, then so is the-wise
concatenation constructioff I, In particular, for any positive polynomial and any PPTA4, there exists

a PPTAB such thatAdvyt, (k) < n - Advi§(k).

Repetition Constructionlt is a well-known fact that théPA security of a PKE scheme is preserved even if

we encrypt a same plaintext under multiple independently generated public keys. Simila8NG $ecurity

of a SNCE scheme is preserved even if we encrypt a same plaintext under multiple independently generated
public keys.

Formally, letII = (PKG, Enc, Dec, Fake, Explain) be a SNCE scheme whose randomness space (of
Enc for security parametet) is Ry, and letn = n(k) be a positive polynomial. Then therepetition
constructionI™ = (PKG", Enc", Dec”, Fake™, Explain™) based o7 is as in Fig. 7 (right). (For an ordinary
PKE scheme, we do not consider simulation algorittale: andExplain.)

The security of thex-repetition construction is formally stated by the following lemmas (which can be
proved by applying a standard hybrid argument, and thus omitted).

Lemma 9. Letn be a positive polynomial. lff is a CPA secure PKE scheme, then so is theepetition
construction/I™. In particular, for any positive polynomial and any PPTAA, there exists a PPTA such
thatAdePA alk) <n- AdvcPA B(k).

Lemma 10. Letn be a positive polynomial. lff is a SNC secure SNCE scheme, then so isithepetition
construction/I™. In particular, for any positive polynomial and any PPTAA, there exists a PPTA such
tha'[AdeNC alk) <n- Advs'NC 5(k).
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PKGI™(1%) :

Vi € [n] : (pki, ski) — PKG(1F) PKG™(1F) :

PK + (pki)icn] Vi € [n] : (pki, ski) + PKG(1%)

SK « (ski)ien) PK «+ (pki)icin)

Return(PK, SK). SK <+ (ski)ien)
Enc™(PK, m; R) : Return(PK, SK).

(pki)iem) < PK Enc"(PK,m;R) :

Parsen as(mi,...,my) € {0,1}". (Pki)icin) < PK

ParseR as(ri,...,rs) € (Re)™. ParseR as(r1,...,mn) € (Ri)™.

Vi € [n] : ¢; + Enc(pk:, mi;r;) Vi € [n] : ¢; < Enc(pks,m;r;)

ReturnC' = (¢i)ie[n]- ReturnC' + (¢:)iefn)-
Dec™(SK,C) : Dec"(SK,C) :

(Ski)ie[n] +— SK (Ski)ie[n] +— SK

(Ci)ie[n] «~—C (Ci)ie[n] «~—C

Vi € [n] : m; < Dec(ski, c;) Vi € [n] : m; < Dec(sk;, ¢;)

If 3¢ s.t.m; = L then returnlL. fmi=---=my

Returnm < (m4]| ... ||mn»). then returnm; else returnL.
Fakel™(1F) : Fake™ (1) :

Vi € [n] : (pki, ci,w;) + Fake(1¥) Vi € [n] : (pki, ci,w;i) < Fake(1%)

PK + (pki)ig[n] PK + (pki)ie[n]

C «+ (Ci)ie[n] C «+ (Ci)ie[n]

W« (wi)ie[n] W « (Wi)ie[n]

Return(PK,C,W). Return(PK,C,W).
Explain™ (W, m) : Explain™ (W, m) :

(Wi)iem) < W (Wi)iepm) < W

Parsem as(mi, ..., my) € {0,1}". Vi € [n] : 7 < Explain(w;, m)

Vi € [n] : 7 < Explain(w;, m;) ReturnR < (ri)ic(n)-

ReturnR <+ (Ti)ie[n]-

Fig. 7. The n-wise concatenation constructidi!™ (left) and then-repetition constructiodI™ (right) of a PKE/SNCE scheme
based on a base PKE/SNCE schefhe

B.2 Statistical Properties of Basic Primitives

To show the strong unpredictability of the PKEMs in Appendix E, we use the following simple statistical
properties of &80T signature scheme and a UOWHF (where the formal definitions of these primitives and
their security can be found in Appendices A.3 and A.5, respectively).

Statistical Property of &80T Secure Signature Schem&he following lemma states that if a signature
scheme iS0T secure, then it is information-theoretically hard to guess an “unseen” verification key.

Lemma 11. Let X = (SKG, Sign, SVer) be aS0T secure signature scheme. Then, the following quantity
(which we call thesmoothnessf verification keys of):

Smthy (k) := 20X Pr((vk, sigk) + SKG(1¥) : vk = h]

is negligible.

Proof of Lemma 11.Fork € N and astring: € {0, 1}*, let Py(h) = Pr[(vk, sigk) < SKG(1¥) : vk = h].
Furthermore, leb; be a string such thadg, (h;) > P, (h) for any stringh € {0, 1}*. (If there are more than
one such;, then choose the lexicographically smallest.) Note $natth s>(k) = Py (hj).

Consider &80T adversaryd = (A1, .A,) againsty that is defined as follows:
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A1 (vk) : A; picks any message, and runs(vk’, sigk’) < SKG(1%). If vk’ = vk, then A; setsst <«
(A;’s entire view. Otherwise (i.evk’ # vk), thenA; prepares a state informatienthat tells.A; that
A, has given up. Finally4; terminates with outputm, st).

As(st, o) : A, firstchecks whethed; has given up by looking at, and aborts if this is the case. Otherwise,
A picks any message’ # m, runso’ «+ Sign(sigk’,m’), and terminates with outputn’, o’).

The above completes the descriptiondfNote that4 is a PPTA, and if (and only ifyk’ = vk occursA
succeeds in outputting a forged message/signature pair due to the correctness of the signatur&' scheme
Therefore,A’s SOT advantage can be calculated as follows:

AdvSY (k) = Pr(vk, sigh), (vK', sigh!) « SKG(1¥) : vk = vk]
> Pr((vk, sigk), (vk', sigk’) < SKG(1¥) : vk = h}, A vk’ = h}]
= ( Prl(vk sigh)  SKG(1*) : vk = hj] )’
= Py(h})? = Smthx(k)?,

Therefore, we have

Smths(k) < \/AdvET (k).

Since A is a PPTA andY is SOT secure, the right hand side of the above inequality is negligible. This
completes the proof of Lemma 11. a

Statistical Property of a UOWHFThe following lemma says that if the input of a UOWHF is chosen
according to a distribution with high min-entropy, then it is information-theoretically hard to guess the
evaluation result, even if a hash index is given in advance.

Lemma 12. Let X = (HKG,H) be a UOWHF, and letX be an efficiently samplable distribution such
that Hoo (X) € w(logk). Let F;, be the set of all functions of the form : [HKG(1%)] — {0, 1}* (where

“ [HKG(1%)]” denotes the support ¢iKG(1*) and F' may not be efficiently computable). Then, the following
guantity (which we call the smoothnesstof

Smthy (k) := max Pr[k < HKG(1%); 2 < X : He(z) = F(r)]
FeFy

is negligible. (Here, two functions i#;, having the same input-output behavior are identified as a single
function.)

Proof of Lemma 12. For eachk € N andF € Fy, let Py(F) = Pr[s + HKG(1¥);2 + X : Hy(2) =
F(k)]. Furthermore, let}’ € F;, be a function such tha®, (F}) > Py (F) for any functionF' € F,. (If
there are multiple such functions that maximizg F},), choose the “first” one in some canonical ordering
of the functions inF;,.) Note thatSmthy; (k) = Py (F}).
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Consider ajow adversaryd = (A, .A2) against{ such that eachl; picksz; <— X and simply outputs
z;. SinceX is efficiently samplabled is a PPTA. ThenA’s U0W advantage can be calculated as follows:

AdVUOW W(k) = Prlzi, 20 + X5k HKG(1k) Hu(21) = Hye(m2) A 21 # 9]
= Prlzy, 20 + Xk HKG(lk) Hi(z1) = He(x2)] — Prlzy, @0 + X : 21 = 9]
> Pr[z1, 20 + X; 5 < HKG(1%) : Hy(21) = Hy(22)] — 27 He ()
> Prlzy, #g ¢ Xk < HKG(1%) : He(z1) = F} (k) A Hu(z2) = Fjf (1)] — 27 Hoe(X)
_ Prizy, 22 + X : Hy(z1) = Fji (k) A Hy(x2) = F]:(Iﬁ})]:| _ 9—Hu(X)

m—HKG(ﬂv)[
() . _ 21 o-H(X)
S [ ( Prlz + X : Ha(z) —Fk(n)]> ] 2

M
>

2
> (WHEG(M[ Prlz + X : Hu(z) = F} (k)] } 2

2
= ( Pr[k < HKG(1¥);2 « X : Hi(z) = F,:(@]) — 927 Heo(X)
= Py(Fp)? = 27 =)
= Smthy (k)% — 27 Hee(X),

where the inequality (*) follows from the fact that the evenith.{x1) = F}' (k)" and “H,(z2) = Fji (k)"
become independent ongss fixed, and the inequalityt) is due to the Jensen’s inequafityrherefore, we
have

Smths, (k \/AdvUDW ) 4 2~ Hoo(X),
SinceH is a UOWHF, A is a PPTA, ancHoo( ) € w(log k), the right hand side of the above inequality is
negligible. This completes the proof of Lemma 12. O

C On Capturing ABO-XHPS-Based KEMs via Puncturable KEM

Recall that an ABO-XHPS [67] is a special kind of a designated-verifier zero-knowledge proof of knowledge
system for a family of “one-way” relations (one-way relation famiR/)defined over some sét x S such

that givenu € U, it is hard to finds € S (where we can generate a proof such that “I know the answer

to the problemy”). Proofs produced from ABO-XHPS are “tag-based.” An ABO-XHPS has a normal mode
(called “extraction mode” in [67]) and a simulation mode (called “all-but-one” mode in [67]), where the
former is used for normal operations of a KEM and the latter is used in the security proof, and each mode
has its own key generation to generate a public/secret key pair. A normal kéy/paik) can be generated if

one knows a private parameter of a one-way relation family with which ABO-XHPS is associated s&iven

an instance: of a one-way relation, and a valid proothat proves that “| know the answercorresponding

tow”, one can extract. (In the ABO-XHPS-based KEM [67], a ciphertext consists@ndr, ands is used

as a “seed” of a session-key.) Even if one does not know a private parameter of a one-way relation family,
one can generate a “simulated” public/secret key Qair sk..g+) for any tagtag*, so thaipk is statistically

indistinguishable from one in the normal mode. The simulation secret/kgy- can be used to extract an
answers from an instance/proof paifu, 7), except that it cannot extrastfrom proofs generated under

*If X is a random variable anflis a convex function, theE[f(X)] > f(E[X]). We usef(z) = z°.
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tag™®, while EEtag* can be used to generate a fake prodfvhich looks like a valid proof undeng* for any
instanceu.

In [67], Wee showed how to use an ABO-XHPS and its associated one-way relation to constuct a
secure KEM. The security proof in [67] (and the other proof with slightly different assumptions on one-way
relation family and ABO-XHPS in [51]) follows a line very similar to the security proof @fca security
of a PKEM.

Here, the obstacle that prevents Wee's KEM to be interpreted as a PKEM is that two different modes
in an ABO-XHPS, namely the normal mode and the simulation mode, have separate setups. Thus, if an
ABO-XHPS has the additional property that enables us to generate a simulation secret,keyor any
tagtag™ from a normal secret keyk in such a way that (1) the public key: corresponding tak is not
changed, and (2%~ generated fronsk and that generated by the “conventional” simulation set up as
defined in the original ABO-XHPS are statistically close, and if ABO-XHPS has the computational security
property callecomputational soundnegdefined in [51]), then we can capture an ABO-XHPS-based KEM
and itsCCA security as a PKEM having the three properties introduced in Section 3.2. (Specifically, strong
decapsulation soundness will follow from the security of a building block UOWHF (or, equivalently, the
security of a target collision resistant hash function), the (ordinary) decapsulation soundness will follow
from the computational soundness of an ABO-XHPS (with the above mentioned additional property), and
the eCPA security will follow from the security of a one-way relation family.) Interestingly, as far as we
know, all existing ABO-XHPS defined/explained in [67, 51] with computational soundness have (or can be
modified to have) the above mentioned additional property, and hence we believe that this property is quite
natural.

Formalizing the above discussion requires some effort and is beyond our scope (the main purpose in this
paper is to show new generic construction€0f secure KEMs from general cryptographic assumptions),
and hence we would like to leave it as our future work.

D Postponed Proofs

D.1 Proof of Theorem 1:CCA Security of a PKEM

In the following we show the first part of the proof of Theorem 1 (i.e. the equation (1)). The proof for the

second part (i.e. the tight version in the equation (2) using strong punctured decapsulation soundness) is

almost the same as that of the first part, and thus we only explain the difference at the end of this subsection.
Let A be any PPTA adversary that attacks ¢t security of the KEMI™ and makes in total) =

Q(k)(> 0) decapsulation queries. Then, consider the following sequence of games:

Game 1: This is the experimerfxpt7* 4 (k) itself.

Game 2: Same as Game 1, except that all decapsulation quesatisfyingF (pk, c*, ¢) = 1 are answered
with L.

Game 3: Same as Game 2, except that all decapsulation quesatisfyingF (pk, ¢*, ¢) = 0 are answered
with PDecap(sk.«, ¢), wheresk.- = Punc(sk, c*).
Fori € [3], let Succ; denote the event that in GameA succeeds in guessing the challenge bit (i.e.

b = b occurs). Using the above notatigA’s CCA advantage can be calculated as follows:

Advi (k) =2 - | Pr[Succi] — %| <2- Z | Pr[Succ;| — Pr[Succiyi]| + 2 - | Pr[Succs] — %| 4)
1€(2]

In the following, we show an upperbound of each term in the right hand side of the above inequality.
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Claim 1 There exists a PPTBy such thatAdv>s> (k) > | Pr[Succ;] — Pr[Succy]|.

Proof of Claim 1. Fori € {1, 2}, letValid; be the event that in Gamie.A submits at least one decapsulation
queryc satisfyingF(pk, ¢*, ¢) = 1 andDecap(sk, ¢) # L. Gamel and Game proceed identically unless
A makes such a query, and hence we have

| Pr[Succy] — Pr[Succs]| < Pr[Valid;] = Pr[Valida].

Now we show that we can construct a PPTA adverdayryhat attacks the decapsulation soundness of
the PKEMI" with advantagé\dv}*s’ (k) = Pr[Valid,], which, combined with the above inequality, proves
the claim. The description @, is as follows:

B2e2Plk) (1 o K*): By setsK; « K*, picks K € {0,1}* andb € {0,1} uniformly at random,
and rungy « APeP(sk:) (p ¢*, K}), whereB,y usesBs's own decapsulation oracle to answerAts
decapsulation queries. Whet terminates/534 checks whetherd has submitted a query satisfying
F(pk,c*,c) = 1 andDecap(sk,c) # L, which can be checked b§y’s oracle and using. If A has
submitted such a query, théfy outputs one of such queries and terminates. OthenBissimply gives
up and aborts.

The above completes the descriptiori3af It is easy to see th#t, perfectly simulates Game 1 fot. There-
fore, the probability thatd submits a decapsulation quergatisfyingF (pk, ¢*, ¢) = 1 andDecap(sk, ¢) #
1 is exactlyPr[Valid;]. Moreover, recall thai’s queriesc must be different frome* according to the rule
of the CCA experiment. Thus, if4's queryc satisfies the conditions d&falid;, then the query additionally
satisfiexc # ¢*. This means that all conditions that maRgs DSND experiment returii are satisfied. Fur-
thermore, whenever submits such a querf, can always find such a query by using its oracle &nd

Hence, we havadv®s’(k) = Pr[Valid]. This completes the proof of Claim 1. O

Claim 2 There exists a PPTE, such thatAdvi*3"" (k) > (1/Q) - | Pr[Succy] — Pr[Succs]|.

Proof of Claim 2. Fori € {2, 3}, let Diff; be the event that in Ganie.4 submits at least one decapsulation
query ¢ satisfyingF(pk, c¢*,c¢) = 0 and Decap(sk,c) # PDecap(sk.x,c). Game2 and Game3 proceed
identically unless4 makes such a query, and hence we have

| Pr[Succy] — Pr[Succs]| < Pr[Diffy] = Pr[Diff3].

Now we show that we can construct a PPTA adverdaythat attacks the punctured decapsulation
soundness of the PKENT with advantageAdviPz."(k) > (1/Q) - Pr[Diffs], which, combined with the
above inequality, proves the claim. The descriptio#8pfs as follows:

pEPecaplsker ) (1 % K*): B, setsKi « K*, picks K¢ € {0,1}* andb € {0, 1} uniformly at random,
and runst’ « A(pk, c*, K;), whereB, answers tad’s decapsulation queries as Game 3 does, which
is possible becaud®, has access to the oraéP@ecap(;Ec*, -) andF is publicly computable. Whesl
terminates)3, picks one of4’s queries uniformly at random, outputs it, and terminates.

The above completes the description&). SinceB, perfectly simulates Game 3 fod, the probability
that.4 submits a decapsulation quergatisfyingF (pk, ¢*, ¢) = 0 andDecap(sk, ¢) # PDecap(sk.+,c) is
exactly Pr[Diff3]. Furthermore, sinc#, picks one ofA’s queries randomly, conditioned on the event that
A submits a query satisfying the conditionsiffs, B, can output such a query with probability at least
1/Q. Therefore, we havadvi’3"° (k) > (1/Q) - Pr[Diffs]. This completes the proof of Claim 2. O
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Claim 3 There exists a PPTA, such thatAdv§'3* (k) = 2 - | Pr[Succs] — 1/2].

Proof of Claim 3. We show how to construct a PPTA advers#iythat attacks theCPA security of the
PKEM I" with the claimed advantage. The descriptior3gfis as follows:

Be(pk,gEc*,c*,Kg): Be runsbt’ « A(pk,c*, K}), whereB. answers tad’s decapsulation queries as
Game 3 does, which is possible becallsgpossessesk.« andF is publicly computable. Finallyi3,
outputsh’ and terminates.

The above completes the description/ff Note thatB. perfectly simulates Game 3 fod so thatA’s
challenge bit is that 0B.’s. SinceB. outputsA’s output as it is, the probability that = b occurs is exactly
Pr[Succs]. Therefore, we havAdvis! (k) = 2| Pr[t/ = b] —1/2| = 2-| Pr[Succs] — 1/2]. This completes
the proof of Claim 3. O

Claims 1 to 3 and the inequality (4) guarantee that there exist PBFAS,, and B, satisfying the
inequality (1), as required.

Tight Reduction with Strong Punctured Decapsulation Soundnesthe equation (1), the reason why we
have the facto) (the number of a&CA adversaryA's decapsulation queries) in front of the advantage
AdvP3 (k) of the reduction algorithn, attacking punctured decapsulation soundness, is that the reduc-
tion algorithm B, cannot check whether a ciphertextsatisfies the condition (b) of violating punctured
decapsulation soundness, i.e. the condibenap(sk, ¢’) # PDecap(sk.+, ). However, if we instead use a
PKEM with strongpunctured decapsulation soundness, then, when proving security, a reduction algorithm
attackingstrong punctured decapsulation soundness is given the secretkkag input, which enables it
to check whether the conditiddecap(sk, ¢’) # PDecap(ngC*,c’) is satisfied. Therefore, the reduction al-
gorithm need not pick one of the decapsulation queries randomly, but can find a ciphethattviolates
the conditions of strong punctured decapsulation soundness whenever the advesisiisysuch a cipher-
text as a decapsulation query. A bit more formally, we can construct a reduction algdtitisonch that
Advi 5" (k) > | Pr[Succo] — Pr[Succs]| and use this as an alternative of Claim 2. Since the description of
B is easily inferred from the explanation here, we do not write down it.

This completes the proof of Theorem 1. O

D.2 Proof of Lemma 1: Strong Decapsulation Soundness dfpy

Let A be a PPTAsDSND adversary. Le{ PK, SK,C*, K*) be a tuple that is input tod in the sDSND
experiment, wher®@K = ((pk\”); ;, crs, k), SK = ((sk?), ;, PK), andC* = (vk*, (c});, 7%, o).

Let us callA’s outputC’ = (vk/, (c});, 7', ¢") in the sDSND experimentsuccessfuif C’ satisfies the
conditions that violate the strong decapsulation soundned$mf i.e. (&) Fppn(PK,C*,C") = 1, (b)
C" # C*, and (c)Decappyy(SK,C’) # L. Note that the condition (a) implied,(vk') = H.(vk*).
Furthermore, the condition (c) impli€Ver(vk/, ((¢});,7"),0’) = T. Therefore, taking into account the
conditions (a) to (c) and additionally whethe®’ = vk* holds or not, any successful ciphertéxtcan be

classified into the following two types:

Type 1: vk’ # vk* A H,(vE') = H, (vE*)
Type 2: vk’ = vk* A SVer(vk', ((c})i,7'),0") =T A ((c})i, 7', 0") # ((¢])i, %, 0%)
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It is easy to see that the probability thdtsucceeds in outputting a ciphertext of type 1 is negligible due to

the security of the UOWHF{, and the probability thatl succeeds in outputting a ciphertext of type 2 is

negligible due to th€0T security of the signature schemé& We can easily describe reduction algorithms

for both cases, and we omit them because they are straightforward. This completes the proof of Lemma 1.
O

D.3 Proof of Lemma 2: Strong Punctured Decapsulation Soundness @hpy

Let A be a PPTAsPDSND adversary. Le{PK, SK,C*, K*) be the tuple input to4 in the sPDSND exper-
iment, wherePK = ((pki(j))i,j,crs,li), SK = ((skgj))i,j,PK), andC* = (vk*, (c});, 7", 0"). Further-
more, letSK ¢ = (h*, (sk!" ™);, PK) = Puncopy(SK, C*), whereh* = (bt ... ||ht) = H,(vk*).
Let us callA’'s outputC’ = (vk’, (c});, ', 0’) in the sPDSND experimentsuccessfulf C’ satisfies the
conditions that violate the strong punctured decapsulation soundn&gsg; pfiamely (aFppy (P K, C*, C")
= 0 (whichimpliesh* # 1’ = (h!|| ... ||h},) = Hx(vk’)) and (b)Decappyy (SK, C”) # PDecapypy (SK ¢+, C").
We first confirm that ifA’s output is successful, then it must be the case $vat (vk’, ((¢});, 7’), o”)
= T, PVer(ers,a’,n') = T, anda’ ¢ Ly wherez’ = ((pkgh;))i,(c;),-). To see this, consider the op-
posite:SVer(vk/, ((¢})i, 7'),0’) = L, PVer(ers,2’,n") = L, ora’ € Ly. Either of the first two condi-
tions makes botBDecappp; andPDecapypy output_L, which contradicts the conditioDecapypy (SK, C7) #
PDecapDDN(gf\(c*, C"). Moreover, ifSVer(vk’, ((¢});, 7"),0") = T andPVer(crs,z’,n') = T hold, then

we have thaDecapppy (SK,C’) = Dec(skzghll),c’l) and PDecapDDN(g_F\(C*7C’) = Dec(sk‘él_h;),c@ =

Dec(skéhz), ¢,), where the latter equality is becausg= 1 — h;. However, ifz’ € L;, then every compo-
nentc, is an honestly generated ciphertext of a same plaink&xe {0, 1}*, and thusDec(skYLl), d) =

Dec(sk:éhé), ¢y) holds, but this again contradicts the conditioetappp,y (SK, C') # PDecapDDN(S/*I\{C* ,C7).

Now, we have seen that.’s output is successful, then it holds tifer(crs, 2/, 7') = T andz’ ¢ L.
However, this is exactly the conditions that violate the adaptive soundness of the non-interactive argument
systemP. More specifically, using an adversadythat outputs a successful ciphertext with non-negligible
advantage in thePDSND experiment, we can construct another adverdayyhat has non-negligible ad-
vantage in breaking the adaptive soundness of the non-interactive argument Byst@me the reduction
algorithm is straightforward (which rund using acrs that it receives, and checks whethéroutputs a
successful ciphertext), we omit the details. This completes the proof of Lemma 2. O

D.4 Proof of Lemma 3:eCPA Security of I'ppy

Let S = (SimCRS, SimPrv) be the simulation algorithms for the non-interactive argument sy&tejuar-
anteed by itZK security.

Let A be any PPTA adversary that attacks &@®A security of Ippy. Consider the following sequence
of games:

Game 1: This is theeCPA experiment itself.

Game 2: Same as Game 1, except that we use the simulation algor&hm{SRS andSimPrv to gener-
atecrs andr*, respectively. More precisely, in this game, the steps “— CRSG(1%)” and “r* <
Prove(crs, z*,w*)” in Game 1 are replaced with the step®@*s,td) < SimCRS(1¥)” and “n* «
SimPrv(td, =*),” respectively.
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Game 3: Same as Game 2, except that the informatiod¢fis erased from the ciphertexts’);. More
precisely, in this game, each steg@ “« Enc(pkz(h’?),Kf;r;*)” in Game 2 is replaced with the step
“cf Enc(pk‘(h:), Ok; r¥)”

%
Fori € [3], letSucc; be the event thatl succeeds in guessing the challenge bit §i.e= b occurs) in Game
1. By definition,.A’s eCPA advantage can be calculated as follows:

AdviiTt 4 (k) =2 - | Pr[Succy] — %] <2- Z | Pr[Succ;] — Pr[Succiy1]| + 2 - | Pr[Succs] — %\ (5)
i€[2]

In the following we upperbound each term in the right hand side of the above inequality.
Claim 4 There exists a PPTA, such thatAdv' s 5. (k) = | Pr[Succi] — Pr[Succy]|.

Proof of Claim 4. We show how to construct a PPTA advers#tythat attacks th&K security of the
non-interactive argument systef with the claimed advantage. The description®f = (B,1, B,2) as
follows:

B (1%): Forevery(i, j) € [k] x {0, 1}, Byy runs(pk?, sk?) < PKG(1¥). Next, B, picks K7 € {0, 1}*
and(r}); € (R)* uniformly at randomB,; then executegvk*, sigh*) < SKG(1¥), k + HKG(1%),
andh* = (hi]|...||h;) < Hx(vk*). Then, for everyi € [k], B, runsc; <« Enc(pkgh;‘k),Kf;rj).
Finally, B,; setsz* <« ((pk:z(hf))i, (c)i), w* « ((r})i, KY), andstg « (B,1’s entire view), and termi-
nates with outpufz™, w*, stg).

Bao(stp, crs, m*): By firstrunse™ « Sign(sigk*, ((¢});, 7)), and setsP K ((pkzgj))i’j, crs, k), C*

(vk*, (cf)i, 7, 0%), andSK - (h*, (skgl_hf))i,PK). ThenB,; picks K € {0,1}* andb € {0,1}

uniformly at random, rung + A(PK, SKcx, C, K7), and terminates with outpyt < (o L b).

The above completes the description8)f. Note thatB3,, outputs1 only whend’ = b occurs.B,’s ZK
advantage can be estimated as follows:

AdVE s 5, (F) = | Pr[Expt™ (k) = 1] - Pr[ExptZSif (k) = 1]
= | Pr[Expth 5ot (k) : ' = b] — Pr[Expth gt (k) : b = b]].

Consider the case whef}, runs inExpt55°*! (k). It is easy to see that in this cad®, perfectly sim-
ulates Game 1 for. In particular, the common reference stringg and the proofr* are generated from
CRSG andProve, respectively, which is exacly how they are generated in Game 1. Under this situation, the
probability that’’ = b occurs is exactly the same as the probability thatucceeds in guessing its challenge
bitin Game 1, i.e.Pr[Expth 5% (k) : b' = b] = Pr[Succy].

WhenB, runs inExpt 4" (k), on the other handy s andr* are genearted fro®imCRS andSimPrv,
respectively, as done in Game 2. Since this is the only change from the above, with a similar argument to
the above, we haver[Expth &5t (k) : b’ = b] = Pr[Succy].

In summary, we hav8dvZ's 5, (k) = | Pr[Succi] — Pr[Succy]|. This completes the proof of Claim 4.

0

Claim 5 There exists a PPTA; such thatAdv{r: ,; (k) = | Pr[Succs] — Pr[Succs]|.
»Op
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Proof of Claim 5. We show how to construct a PPTA advers#tythat attacks th€PA security of the
k-repetition constructiodl* with the claimed advantage. The descriptioBgf= (By1, Bp2) is as follows:

Bo1 (PK' = (pk}):): Bp1 picksK; € {0, 1} uniformly at random, set§\, M;) < (0%, K7) andstg
(Bp1's entire view, and terminates with outpyf\/o, M, stg).

Bpa(stg, O = (c})i): By runs (vk*, sighk*) < SKG(1%), k + HKG(1%), andh* = (hi|...||h}) «
H,.(vk*). Next, for everyi € [k], Bpa setSpkghf) « pk} and runs(pkfl_h:),skgl_hf)) — PKG(1%).
B,y then setse™ < ((pkghf>),~,(c;<)i), runs (crs,td) < SilmCRS(lk), ™ <« SimPrv(td,z*), and
o* < Sign(sigk™, ((¢])i,7)). Then,By, setsPK < ((pk§]))i7j,crs,n), C* « (vk*, (c})i, ™", 0%),
andSK¢- (h*,(skfl_hz))i,PK). Finally, By picks K € {0,1}* andb € {0,1} uniformly at
random, rung’ + A(PK, SK ¢, C*, Kj), and terminates with outpat < (¢’ Z b).

The above completes the description&f Lety € {0,1} be B,’s challenge bit3,’s CPA advantage is
estimated as follows:

1
Advirt s, (k) = 2| Prly’ =] = 5| = [Pr]y’ = 1|y = 1] = Prly/ = 1|y = 0]|
= |Pr[t) = bly = 1] — Pr[t) = b]y = 0]].

Consider the case when= 1, i.e. eachc] is an encryption of\/; = K7. Itis easy to see that in this
case, the challenge ciphertext is generated in exactly the same way as that in Game 23as@nulates
Game 2 perfectly ford. Under this situation, the probability th&lt = b occurs is exactly the same as the
probability that4 succeeds in guessing the challenge bit in Game 21§’ = b|y = 1] = Pr[Succy).

Next, consider the case when= 0. In this case, eactf is an encryption 0b”*, which is exactly how
it is generated in Game 3. Since this is the only change from the above, with a similar discussion, we have
Pr[t/ = by = 0] = Pr[Succs].

In summary, we havAdv??,ﬁva(k) = | Pr[Succy] — Pr[Succs]|. This completes the proof of Claim 5.
O

Claim 6 Pr[Succs] = 1/2.

Proof of Claim 6. In Game 3" is independent ok} In particular, each of the componerfsin C* is an
encryption ofo*. Since bothk; and K are chosen uniformly at randomd;s view is identically distributed
regardless of the challenge bite {0, 1}. This must mean that the probability thatsucceeds in guessing
the challenge bit is exactlyl /2. This completes the proof of Claim 6. a

Claims 4 to 6 and the inequality (5) guarantee that there exist PBJAsd 3, such that
AR 4 () < 2+ (AdvEs s, (k) + AdVEEE o (K))

which, due to our assumptions on the building blocks and Lemma 9 (see Appendix B.1), implies that
Adv%ﬁlﬁ’lﬁA(k) is negligible. Recall that the choice of the PP&8PA adversary4 was arbitrarily, and thus
for any PPTAeCPA adversary4d we can show a negligible upperbound va{fﬁA(k) as above. Hence,

the PKEM I ppy is eCPA secure. This completes the proof of Lemma 3. O
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D.5 Proof of Lemma 4. Strong Decapsulation Soundness dat

Let A be a PPTAsDSND adversary. Le{ PK, SK,C*, K*) be a tuple that is input tod in the sDSND

experiment, wher®@K = ((pk\?); ;, pkrs1, k), SK = ((sk?); ;, PK), andC* = (h*, (c});, ).

Let us calld’s outputC’ = (1/, (c});, ) in thesDSND experimensuccessfuf C’ satisfies the conditions
that make the experiment outle,ti.e.F(PK, C*,C") = 1 (which is equivalent td/’ = h*), C' # C*,
and D/eo?p(SK, C’") # 1. Below, we use asterisk (*) to denote the values generated/chosen during the
generation of”*, and prime ) to denote the values generated during the calculaticﬁb/eo?p(SK, ).

We first confirm that a successful ciphertéxt must additionally satisf;(ckﬂ, d) # (Ck:+17~ ). To
see this, assume the opposite, (&, ,,¢) = (Ck+1’ ¢*). Here,c ., = ¢, impliesa’ = o* (due to the
correctness of the SNCE scheifig. This and” = ¢* imply (;);ck+1] = (77)icr+1] (due to the correctness
of the SKE schemé”), which in turn implies(c l) = (c});. Hence, it holds tha®’ = (', (c);,¢) =
(h*, (c});, ¢*) = C*, but this contradict§” # C*.

So far, we have seen that a successful ciphe€tertust satisfjH,;(c;, , [|¢') = b’ = h* = Hy(c}[Ic")
and(c,q,¢) # (¢4q,¢"), which means thatc;,,, [|¢') and(c;, , [|¢*) constitute a collision pair foH,.
Using this fact, we now show that we can construct a PBJAvhose advantage in tH#W experiment
regarding? is exactly the probability thatd outputs a successful ciphertext in teBSND experiment,
which combined with the security of the UOWHE, proves the lemma.

The description of3, = (By1, Bu2) is as follows.

Bu1(1%) : By picksa* € Kr andB* = ((r))iefe+1], K*) € (Ry)* x {0, 1}* uniformly at random, and
runs (pky1, skpr1) < PKG(1%), cpyq < Enc(pkpyr, i, ), andc® < SEnc(a”, 8*). ThenBy;
setsstg < (Bu1's entire view), and terminates with outputcy  , [[c*), stg)-

Bua(st, k) : Bpo runs (pkfj),skz(j)) +— PKG(1¥) for every (i,j) € [k] x {0,1}, and then setPK <«
((pk)i 5, phii1, k) andSK « ((sk), ;, PK). ThenBy, executes* = (hi|... |h}) < Ha(ch,,|[@)
andc; «+ Enc(pkghf),a*;r;‘) for everyi € [k], setsC* < (h*, (¢})i,¢*), and runC’ = (K, (c})i, &)

+— A(PK,SK,C*, K*). ThenBy, executeﬂc?p(SK, C’) until it calculates:), . If D/ea)(SK, )

returnsL before it calculates)  ,, thenBy, simply gives up and aborts. Otherwig, terminates with
output(c_, [|¢).

The above completes the descriptior3gf It is easy to see thd#, simulates theDSND experiment perfectly
for A, and thusB;’s advantage in th&0w expriment for# is exactly the probabality thatl outputs a
successful ciphertext, as required. This completes the proof of Lemma 4. O

D.6 Proof of Lemma 5: Strong Punctured Decapsulation Soundness @t

Let(PK, SK) be the key pairoutputh/K\G(l’“),wherePK = ((pk:l(j))i,j,pkkﬂ, k) andSK = ((sk; ])) i
PK).LetC* = (h*, (c})i, c¥) beaciphertextoutputhil/n@(PK), and letSK ¢« = (h*, (sk( —h ))Z,PK)
be the punctured secret key generatecfbﬁ(SK, C*). We show that for any ciphertekt = (h, (¢;);, ¢)
(which might be outside the range E/ﬁc?p(PK)) satisfyingf(PK, C*,C) = 0 (i.e. h # h*), it holds
thattic?p(SK, C) = P@p(ﬁ(c*,C). Note that this implies that there exists no ciphertext that vio-
lates (strong) punctured decapsulation soundness of the PKEMd thus for any (even computationally
unbounded}PDSND adversaryA, Advsflf‘fND(k) = 0, which will prove the lemma.

To show the above, fix arbitrarily a cipherte&t = (h, (c;);, ¢) satisfyingf(PK, C*,C) = 0 (and
henceh* # h) and let! = min{i € [k] : h} # h;}, where each oh; and i} are thei-th bit of h
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andh*, respectively. For notational convenience,dgt= Dec(skzghl),cl) anday = DeC(SkélihZ),Cg> =

Dec(sk:éhé), ce), Where the latter equality is becauge# h, implies1 —h; = h,. We consider the following
two cases, and show that the results from both of the algorim and Pﬁec\ap always agree.

Casea; = ay: Both D/ec;p and Pﬁeap proceed identically after they respectively compuateand oy,

and thus the outputs from these algorithms agree.
Casea; # ay: In this case, botlbecap andPDecap return L. Specifically,o.; # a, and the correctness
of the SNCE schemé& imply that there does not exigt such thalEnc(pkéhZ), aq; 1) = ¢g, and thus

Decap returns_L in its last step at the latest (it may retutnearlier if «; = L or SDec(ay,¢) = 1).

Symmetrically, there does not existsuch thaEnc(pkghl), ag;r1) = ¢1, and thusPﬁeap returns.L in
its last step at the latest (it may retutnearlier as above).

This completes the proof of Lemma 5. O

D.7 Proof of Lemma 6:eCPA Security of I

Let A be any PPTA adversary that attacks #@PA security ofI". Consider the following sequence of
games:

Game 1: This is theeCPA experiment itself. To make it easier to define the subsequent games, we change
the ordering of the operations as follows (note that this does not chésgaew):

Game 1: : ﬁ — (( )LE[k+l]aK1); : PK «+ ((pkz(]))z,j7pk;€+l7ﬁ)u

o — Ki; ¢* « SEnc(a”*, 8*); C* « (h*,(¢])s, C);

Fori € [k+1]: L K+ HKG(1%); | SKc + (h*, (k")) PK):;
(pki, skf) « PKG(1*); = (] IBE) e He(ehn @) K {0, 135
i < Ri; \ Fori € [k] : L b+ {0,1};
¢t < Enc(pkl,a*;r}); o pkM) — pkl; "V « A(PK,S5Kc~,C*, K})

End For ! (pkfl_h:)7sk(1_h:)) « PKG(lk); :

Ki +{0,1}%; End For :

(Continue to the center CO|UTUVT‘) (Continue to the right colump)

Game 2: Same as Game 1, except that we generate each ([pbﬁ ,cr, ) and (pkk+1,ck+1,rk+1)
by using the simulation algorithnfsake and Explain of the SNCE schemél. More precisely, in this
game, the step with the underline Game 1 is replaced with:(pk}, c;,w}) < Fake(1%); r¥ «
Explain(w}, a*).”

Game 3: Same as Game 2, except that the informatiopot= ((7});cr+1, K7) is erased fronz*. More
precisely, in this game, the step*“« SEnc(a*, 5*)” in Game 2 is replaced with the stepg’*«+
My; ¢ < SEnc(a*, 8').

Fori € [3], let Succ; be the event thatl succeeds in guessing the challenge bit (i.\e= b occurs). By
definition, A’s eCPA advantage can be calculated as follows:

. 1 1
Adv Fcif( ) =2 |Pr[Succy] — 5\ <2 Z | Pr[Succ;] — Pr[Succ;1]| + 2 - | Pr[Succs] — 5]. (6)
1€[2]

In the following we upperbound each term in the right hand side of the above inequality.

Claim 7 There exists a PPTA; such thatAdv%’,“EH’Bp(k) = | Pr[Succy] — Pr[Succs]|.
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Proof of Claim 7. We show how to construct a PPTA advers#tythat attacks th&NC security of the
(k + 1)-repetition constructiod/*+! of the SNCE scheme with the claimed advantage. The description of
By = (Bp1, By2) as follows:

Bp1(1%): By picksa* € Ky uniformly at random. Thet,; setssts < (Bp1’s entire view), and terminates
with output(a*, stg) (Wherea™ is regarded a8;’s challenge message).

BPQ(S'EB,PK/ = (pk;‘)ie[k+1], o = (C;)ie[k+1]’ R* = (T;‘k)ie[k+1}): Bpg picks Kik — {0, 1}k uniformly
at random, set$” < ((r])ick+1), K1), and runsc* « SEnc(a™, 8%), k « HKG(1%), andh* =
(B3]l |B%) < Ha(chy, 7). For eachi € [k], By setspk!") « pk{ and runs(pk!' ™" skl %))

« PKG(1%). Next Bps setsPK « ((pk\7), ;,pkl,, 1, %), C* « (h*,(c});, @), andSK o= « (h*,

(skgl_hf))i,PK). Then By, picks K¢ € {0,1}* andb € {0,1} uniformly at random, rung’ <

A(PK, §f\f0*, C*, K}), and terminates with outpt’ - b).

The above completes the descriptionR). Note thatB,, outputsl only whend’ = b occurs.B,’'s SNC
advantage can be estimated as follows:

Adv??,fﬂﬁp(k) = ]Pr[Exptﬁfﬁfgj(k) =1]— Pr[Expt%q,fﬁfgp(k) =1]|
= ]Pr[Expt%‘Eﬁfg:(k) Y =0 — Pr[Exptﬁ,S;f’igp(k) Y =]

Consider the case whefi, runs in Expt?}“f;‘ffgj(k). It is easy to see that in this case, perfectly

simulates Game 1 fadl. In particular, everygkl(j) andpki1 in PK are generated honestly by running
PKG(1%), and every; in C* is generated asf « Enc(pk‘(h:), a*;r}) wherea* € K and each of} ¢

i
Ry are chosen uniformly at random, as done in Game 1. Under this situation, the probabiliy that
occurs is exactly the same as the probability thatucceeds in guessing its challenge bit in Game 1, i.e.,

Pr[Exptﬁy,S;‘{‘fg}}(k) : b = b] = Pr[Succy].

WhenB, runs inExpt%“,Sﬁfgp(k), on the other hand, each of pa{yﬂcghf), cf) and eachr} are generated
by using the simulation algorithnake andExplain of the underlying SNCE schenié, in such a way that
the plaintext corresponding tg is “explained” asa* € Ky, that is chosen uniformly at random, as done in
Game 2. The rest of the procedures remains unchanged from the above case. Therefore, the probability that
b = b occurs is exactly the same as the probability tAaucceeds in guessing its challenge bit in Game 2,
i.e.,Pr[Expt%f;f,igp(k) : b = b] = Pr[Succy].

In summary, we havAdv%“,SHﬁp(k) = | Pr[Succ;] — Pr[Succy]|. This completes the proof of Claim 7.

O

Claim 8 There exists a PPTE, such thatAdvy 2 (k) = | Pr[Succo] — Pr[Succs]|.

Proof of Claim 8. We show how to construct a PPTA adversBpthat attacks the=-0TKDM security of the
underlying SKE schem& with the claimed advantage. The description5ef= (Be1, Be2) is as follows:

Be1(1%): Foreveryi € [k+ 1], Be runs(pk,, ¢, w?) < Fake(1¥). Then,Be; picks K € {0, 1}* uniformly
at random. Next3.; specifies the functiorf : £, — M}, which is used as an encryption query in the

OTKDM experiment, defined by J, (Explain(w}, a);crt1), K1), Wwhere each; and K are treated as
fixed parameters hard-coded fin(Note thatf € Fj.) Finally, Be; setsstz < (Be1’s entire view), and
terminates with outputf, stg).
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Bea(stp, ¢): Bea tunsek < HKG(1%) andh* = (h1]|.. . ||h}) « Hy(cji[¢*). Next, for everyi € [k], Bes
setqﬂfghf) + pk} and runs(pkgl_hz),skgl_h:)) + PKG(1%). Then,Be; setsPK <+ ((pkgj))ivj,pkfﬁl, K),
O (h*,(c)s, @), andSKcw < (h*, (sk"");, PK). Bey picks K¢ € {0,1}* andb € {0,1}
uniformly at random, rung’ + A(PK, SK ¢, C*, K7), and terminates with outpyt < (o L b).

The above completes the description®f Lety € {0,1} be5.'s challenge bit5.’s F-0TKDM advantage
is estimate as follows:

1
AdVERE (k) =2+ |Prly = 9] = 5| = [Prly = 1]y = 1] = Pr[y’ = 1|y = 0]]
= | Pr[t) = bly = 1] = Pr[t’ = by = 0]|.

Let o* € Kj be the key, and\/; = f(«a*) and My € M, be the plaintexts calculated/chosen in
B.'s OTKDM experiment. Consider the case when= 1, i.e. ¢* is an encryption ofM; = f(a*) =
((r})iefe+1], K7). Note that by the definition of the experimebitpty ‘£, (k), if we regard the key* €
Kr and M} = f(a*) in Expty 2% (k) asa* and 3* in Game 2, then each’ is generated by «
Explain(w], a*), so that the plaintext corresponding to eaglis o*, which is how these values are gen-
erated in Game 2. Moreover, the public keys, the values(c;);cx41) used in the challenge ciphertext

C*, and the punctured secret kEy\(c* are distributed identically to those in Game 2. Herfgesimulates
Game 2 perfectly ford. Under this situation, the probability thalt = b occurs is exactly the same as the
probability thatA succeeds in guessing the challenge bit in Game 2i¢" = b|y = 1] = Pr[Succs).

Next, consider the case when= 0. In this case¢* is an encryption of a random messag € M
that is independent of any other values. Then, if we regard thenkegnd the random messagdé, in
Expt%ﬁM(k) asa™ andp’ in Game 3, respectively, thed's challenge ciphertex@* is generated in such a
way that they are distributed identically to those in Game 3, andfhssmulates Game 3 perfectly fot.
Therefore, with a similar argument to the above, we Hawé' = b|y = 0] = Pr[Succ].

In summary, we havAdv}*2' (k) = | Pr[Succy] — Pr[Succs]|. This completes the proof of Claim 8.

O

Claim 9 Pr[Succs] = 1/2.

Proof of Claim 9. In Game 3, the challenge cipherteXt is made independent of the “real” session key
K7, and bothK} and K; are distributed identically (uniformly at random{f, 1}*). Hence, the challenge
bit b is information-theoretically hidden from the view df This means that the probability thdtsucceeds

in guessing the challenge bit is exactly2 (even if A is computationally unbounded). This completes the
proof of Claim 9. O

Claims 7 to 9 and the inequality (6) guarantee that there exist PBJAsd 3. such that

Adv ;01:\(14;) <2. (-Adv?&rlﬁp(k‘) + Adv“Ef}}P%e(k)) ,
which, due to our assumptions on the building blocks and Lemma 10, |mpI|<=Jétdim?fj4 ) is negligible.

Recall that the choice of the PPBEPA adversaryA was arbitrarily, and thus for any PPBEPA adversary
A we can show a negligible upperbound kﬂvecif(k) as above. Hence, the PKEMIs eCPA secure. This
completes the proof of Lemma 6. a
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D.8 Proof of Lemma 7:eCPA Security of Ity from Different Assumptions

Let A be any PPTA adversary that attacks #@A security of/ppy. Consider the following sequence of
games:

Game 1: This is theeCPA experiment itself. To make it easier to define the subsequent games, we change
the ordering of the operations as follows (note that this does not chdsgeew):

Game 1: Cors CRSG(1%); . PK « ((pkgj))i7j, crs, K);

Ki + {0,1}%; ot Prove(crs, z*, w™); L O (vk™, (¢})sy 7", 0%);

Fori € [k] : L (vk*, sigk™) «— SKG(1%); | SKoe (b7, sk "), PE);
(pk}, sk}) < PKG(1%); . 0%« Sign(sigk™, ((¢})i,®)); LKL {0, 1}*;
i < Ri; |k HKG(1%); b {0,1};
¢i < Enc(pki, Ki;77); Wt = (Rl hE) = He(RT)s Ly o A(PK, SK e, CF, KY)

End For + Fori € [k] : ‘

2" ((pk?)i (60)0); Pk ki ‘

W (i), KT): R kM) e PRG (1)

(Continue to the center columA) . End For
(Continue to the right colump®)

Game 2: Same as Game 1, except that we generate each ((pbj@,cj,rj) by using the simulation
algorithmsFake and Explain of the SNCE schemél. More precisely, in this game, the step with the
underlinein Game 1 is replaced with(pk!, cf, w?) « Fake(1¥) andr} < Explain(w}, K7).”

Game 3: Same as Game 2, except that the informatioff pis erased from the witness'. More precisely,
in this game, the steps: < Explain(w}, K7)" and “w* < ((r});, K{)" in Game 2 are replaced with
the steps# < Explain(w}, 0¥)” and “w’ < ((r});, 0%),” respectively.

Fori € [3], let Succ; be the event thatl succeeds in guessing the challenge bit @i'le= b occurs). By
definition, A’'s eCPA advantage can be calculated as follows:

AdvSSA (k) = 2 - | Pr[Sucey] — %| < 2.3 | Pr[Suce;] — Pr[Succi1]] +2 - | Pr[Suces] — %|. )
1€[2]

In the following we upperbound each term in the right hand side of the above inequality.
Claim 10 There exists a PPTA, such thatAdv}}¢ 5, (k) = | Pr[Succi] — Pr[Succ,]].

Proof of Claim 10. We show how to construct a PPTA advers&tythat attacks th&NC security of the
k-repetition constructiodZ* of the SNCE scheme with the claimed advantage. The descriptidh of
(Bp1, Bp2) as follows:

Bo1(1%): By picks K7 € {0,1}* uniformly at random. ThemB,; setsstg < (Bp1’s entire view), and
terminates with outputk, stg) (whereK is regarded a8,’s challenge message).

Bpa(stg, PK' = (pk})icih C™ = (¢} )icir), B™ = (1] )icin): Bp2 S€tse™ < ((pk7)i, (cf)i) andw™ < ((r7)s,
K7), and runscrs < CRSG(1%) and * < Prove(crs,z*,w*). Next, By runs (vk*, sigh*) <
SKG(1%), o* « Sign(sigk*, ((c})i, 7)), k + HKG(1%), andh* = (h}|...||h}) <+ H,(vk*). For
eachi € [k], By setSka(h:) + pk} and generate@a/-cglfh:),skglfh:)) + PKG(1%). Then, By, sets
PE « ((pk);j, ers, k), CF « (vk*, (c})i,n*,0%), andSK ¢ « (h*, (sk!' ")), PK). Finally,

Bys picks K € {0,1}* andb € {0, 1} uniformly at random, rung’ « A(PK, §I\(C*,C*,K§), and
terminates with outpu’ « (V/ s b).
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The above completes the description&. Note thatB,, outputsl only whend’ = b occurs.By’s SNC
advantage can be estimated as follows:

AdviE 5 (k) = | PrlExptyy 522 (k) = 1] — Pr[Exptind g™ (k) = 1]|

= | Pr[ExptSNC Real(k) Y =0 — Pr[Expt%q,S:Bspim(k) =0
Consider the case whef, runs in Expt%“f‘lg“:al(k). It is easy to see that in this cad8, perfectly
simulates Game 1 fod. In particular, everypk:z(j) in PK is generated honestly by runnirRKG(1%),
and everycf in C* is generated ag; <« Enc(pkghi),Kf;r;*) where K € {0,1}* and each of} ¢
Ry are chosen uniformly at random, as done in Game 1. Under this situation, the probabilty that

occurs is exactly the same as the probability thagucceeds in guessing its challenge bit in Game 1, i.e.,
Pr[ExptSNC Real(/f) : b = b] = Pr[Succy].

WhenB, runs inExptﬁ,S:g’pim(k), on the other hand, each of pa{yﬂcghf), cf) and each; are generated
by using the simulation algorithnfake andExplain of the underlying SNCE scheni, in such a way that
the plaintext corresponding t§ is K} € {0, 1}* that is chosen uniformly at random, as done in Game 2.
The rest of the procedures remains unchanged from the above case. Therefore, the probability that
occurs is exactly the same as the probability thatucceeds in guessing its challenge bit in Game 2, i.e.,
Pr[Exptf}{ Slm(k) : b = b] = Pr[Succs).

In summary, we havAdv%’Bp(k) = | Pr[Succ;] — Pr[Succy]|. This completes the proof of Claim 10.
O

Claim 11 There exists a PPTA, such thatAdvif 5 (k) = | Pr[Succy] — Pr[Succs]].

Proof of Claim 11. We show how to construct a PPTA adversBythat attacks th@I security of the under-
lying non-interactive argument systefhwith the claimed advantage. The description3af= (By1, By2)
is as follows:

B.1(1%): For everyi € [k], B, runs(pk,, c;,w?) < Fake(1¥). Next, By picks K5 € {0, 1}* uniformly at
random, and for every € [k], B,; computes <« Explain(w}, K;) andr! + Explain(w}, 0). Then,
B setsz* < ((pklh)i, (¢2)i), w1 < ((r}):, K7), andwg < ((r4);, 0%). Note that bothug andw; are
witnesses to the fact that* € Lj. Finally, B, setsstg < (By1's entire view, and terminates with
output(x*, wo, w1, stg).

Baa(stp, crs, m): Bya runs (vk*, sigk*) <+ SKG(1¥), o* <« Sign(sigk*, ((c})i, 7)), k + HKG(1%),
andh* = (hi||...||h;) < H.(vE*). Next, for eachi € [k], Buo setSpk(hr) + pk! and generates

(pk(khf) sk(khf)) + PKG(1%). B,o then setsP K < ((pk(]))”,crs k), C* < (vk*,(cf)i, 7", 0%),

K3 ? (2

andSK¢- « (h*, (ski(l_hz))i,PK). B2 picks K¢ € {0,1}* andb € {0,1} uniformly at random,
runst’ < A(PK, SKc-,C*, K}), and terminates with outpyt < (b’ L b).

The above completes the description&f. Lety € {0,1} be B;,’s challenge bit.3,;’s WI advantage is
estimated as follows:

1
Advipp, (k) = 2+ [Pr[y' =] = 5| = |Prly = 1|y = 1] = Pr[y/ = 1]y = 0]
= | Pr[b’ = by = 1] — Pr[t' = b|y = 0]|.
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Consider the case when= 1, i.e.w; = ((r});, K7) is used as a witness for generatitig It is easy to
see that in this case, the val(é is generated in exactly the same way as that in Game 2Basdnulates
Game 2 perfectly ford. Under this situation, the probability thalt = b occurs is exactly the same as the
probability thatA succeeds in guessing the challenge bit in Game 218’ = b|y = 1] = Pr[Succs).

Next, consider the case when= 0. In this casew, = ((r});, 0%) is used as a witness for generatitig
which is exactly how it is generated in Game 3. Since this is the only change from the above, with a similar
discussion, we havBr[l = b|y = 0] = Pr[Succs].

In summary, we havAdvs 5 (k) = | Pr[Succy] — Pr[Succs]|. This completes the proof of Claim 11.

O

Claim 12 Pr[Succz] = 1/2.

Proof of Claim 12. In Game 3" is independent of;. (In particular,7 is generated by using a witness
((r’*);, 0%), and each! is generated by* < Explain(w}, 0%).) Since both; andK are chosen uniformly
atrandom,A’s view is identically distributed regardless of the challengé kit{0, 1}. This must mean that
the probability that4 succeeds in guessing the challengebbg exactlyl/2. This completes the proof of

Claim 12. O

Claims 10 to 12 and the inequality (7) guarantee that there exist PBJAsd,, such that
AQVITE (k) < 2 (AQVSIE 5 (K) + AdviEgs, (K) )

which, due to our assumptions on the building blocks and Lemma 10, impIie@dhﬁﬁA(k) is negligible.
Recall that the choice of the PPBEPA adversary4 was arbitrarily, and thus for any PP BEPA adversary
A we can show a negligible upperbound fuv$r* (k) as above. Hence, the PKEMpy is eCPA secure.

This completes the proof of Lemma 7. a

E Unpredictability of the Proposed PKEMs

E.1 Strong Unpredictability of Ippy

Lemma 13. If the signature schemg is SOT secure and is a UOWHF, then the detectable KER],, =
(KKGppy, Encapppy, Decapppy, Foon) (Which is obtained naturally from the PKENpy in Fig. 3) satisfies
strong unpredictability.

Proof of Lemma 13. Let A be a PPTA adversary that attacks the strong unpredictability of the detectable
KEM FDTDN. Let (PK = ((pk:gj))i,j,crs,n),SK) be a key pair input tod, C’' = (vk/, (), n’,0") be A’s
output, andC* = (vk*, (c});, 7*, 0*) be a ciphertext computed in t®NP experiment.

Let us callA’s output ciphertext’ successfuf C’ makes theUNP experiment outpuit, i.e. it holds that
Foon(PK,C*,C") = 1, which impliesH,; (vk*) = H,(vk’). Consider two casesk* # vk’ andvk* = vk’
It is easy to see that an adversatwhich outputs a successful ciphertéXtwith vk* # vk’ can be used to
attack the UOWHFH. (Since this is trivial to see, we omit describing a reduction algorithm). Furthermore,
with an information-theoretic argument, we can bound the probability of the advetsauyputting a (even
unsuccessful) ciphertext’ containingvk* to be negligible by theS0T security of ¥ and Lemma 11 (in
Appendix B.2), because it corresponds to guessing an “unseen” verificationkkeyhis completes the
proof of Lemma 13. a
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E.2 Strong Unpredictability of r

Lemmal4. If Hisa UOWHF, then the detectable KEM = (K/K\G, ﬁc?p, [fca\p, ?) (which is obtained
naturally from the PKEMI" in Fig. 4) satisfies strong unpredictability (even against computationally un-
bounded adversaries).

Proof of Lemma 14.Let A be any (possibly computationally unbounded) adversary that attacks the strong
unpredictability of the detectable KEWI'. Fix all randomness in theUNP experiment except for and K*,
so that they maximizel's sUNP advantage. Let4 be .4’s random coin fixed in this step.

Let F' : [HKG(1%)] — {0, 1}* be the function that takes € [HKG(1¥)] as input, sets upPK, SK)
usingx and the key materials that are already fixed as above,Gtirs (7', (¢});, @) + A(PK,SK;r.4),
and outputs’.

Let X be the distribution in whichk* € {0,1}* is picked uniformly at random, calculatés <
SEnc(a*, (7] )icfe+1], K*); ') wherea®, (r});cir41), @andr’ are the values that have been already fixed.
Then, X outputs(cy ,[[c*), wherecy | = Enc(pkgr1, a™;77).

Due to the correctness @, SEnc(a*, -; 1) is injective for anya* € K; and any randomness, and
thus the min-entropy ok is exactly that of*, i.e. H (X) > k € w(log k). FurthermoreX is efficiently
samplable becausgEnc is efficient.

Recall thatF(PK,C*,C") = 1if and only if »* = H(c;,|lc*) = F(x) = h'. Therefore, by the
definitions of F', X, and thesUNP experiment regardingA“T, we have

Adv}?ﬁ(kz) < Prlk + HKG(1%); (cfiq][€%) + X : He(chin|I€) = F(K)].

Then, by Lemma 12 (in Appendix B.ZAdvjﬂNi(k) is negligible. Note that this holds evenif is compu-
tationally unbounded, because Lemma 12 holds also for inefficient fundfiofikis completes the proof of
Lemma 14. O
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