
On the Security of the COPA and Marble
Authenticated Encryption Algorithms against

(Almost) Universal Forgery Attack

Jiqiang Lu

Infocomm Security Department, Institute for Infocomm Research,
Agency for Science, Technology and Research,

1 Fusionopolis Way, Singapore 138632
jlu@i2r.a-star.edu.sg,lvjiqiang@hotmail.com

Abstract. COPA is a block-cipher-based authenticated encryption mode
with a provable birthday-bound security under the assumption that the
underlying block cipher is a strong pseudorandom permutation, and its
instantiation with the AES block cipher is called AES-COPA. Marble
is an AES-based COPA-like authenticated encryption algorithm with a
full security. In this paper, we analyse the security of COPA and Mar-
ble against universal forgery attacks. We present beyond-birthday-bound
(almost) universal forgery attacks on the COPA when used with constant
or variable associate data, and present (almost) universal forgery attacks
on the Marble when used without associated data or with (variable) as-
sociate data. Our attacks on the COPA with variable associate data
have a complexity very near the birthday bound, and their applications
to AES-COPA show that the security claim of AES-COPA against tag
guessing may be not correct; and our attacks on the (newest as well as
initial version of) Marble with associate data show that Marble does not
provide a full security that the designer claimed. Like many recently pub-
lished cryptanalytic results on message authentication algorithms with a
provable birthday-bound security, our attacks on COPA do not violate
its security proofs, but provide a comprehensive understanding of its se-
curity against universal forgery attack, show that the success probability
of a universal forgery on the COPA is larger than the ideal bound 2−n

of the standard forgery-resistance, and boil down to an existing open
question: Should a message authentication algorithm with a weaker se-
curity claim than the standard forgery-resistance be regarded as a sound
design?

Key words: Authenticated encryption algorithm, COPA, Marble, Universal
forgery attack.

1 Introduction

A block cipher is an algorithm that transforms a fixed-length data block, called a
plaintext (block), into another data block of the same length, called a ciphertext

2

(block), under the control of a secret key. The main purpose of a block cipher
is to provide data confidentiality. A basic requirement on the security of a block
cipher is that: Given all the plaintext-ciphertext pairs (i.e. the entire codebook)
generated under some key, it should be not possible to recover the key faster than
exhaustive key search (without the knowledge of the key). An example of such
attacks is Ferguson et al.’s square attack [12] on 7 rounds of the Rijndael [7]
block cipher1 with a 128-bit key, that requires the entire codebook (i.e. 2128

chosen/known plaintexts) and a memory complexity of 264 bits and has a time
complexity of 2120 encryptions;2 and another similar example is Lucks’ saturation
attack [24] on 7 rounds of the Twofish [34] block cipher3 with a 128-bit key, that
requires half of the entire codebook (i.e. 2127 chosen plaintexts) and has a time
complexity of 2126 encryptions.

A message authentication code (MAC) is an algorithm that transforms an
arbitrary-length data stream (below an upper bound generally), called a message,
into a fixed-length data block, called an (authentication) tag, under the control
of a secret key. The main purpose of a MAC is to provide data authenticity and
integrity; authenticity protects from impersonation, and integrity protects data
from being modified (or at least enables modifications to be detected). There
are two types of forgery attacks on MACs [31], one is the so-called existential
forgery attack, which is to produce the correct tag for an unspecified message
whose tag is not given (under the secret key and some public nonce if any),
and the other is the so-called universal (or selective) forgery attack, which is to
produce the correct tag for any specified message whose tag is not given. In 1996,
Menezes, van Oorschot and Vanstone [25] defined forgery-resistance in terms of
computation-resistance, as follows:

Definition 1 (Forgery-Resistance interpreted from pages 325 and 335
of [25]). Given zero or more message-tag pairs, it is computationally infeasible
to compute the tag for any new message, in other words, computing the tag for
any new message should have a success probability no more than the bigger one
of 2−n and 2−k, where n is the tag bit length and k is the key bit length.

Observe that Definition 1 requires a uniform probability of 2−n or 2−k even
when there are a number of message-tag pairs available. In this sense, it is
very analogous to the aforementioned basic requirement on the security of a
block cipher. Most recently, Dunkelman, Keller and Shamir [10] stressed this
requirement from a different perspective by writing that even after choosing
a large number of messages and obtaining their corresponding tags under some
key, the adversary should not be able to compute with a high success probability
the tag for a new message in time which is substantially smaller than the time of

1 Rijndael was selected finally as the Advanced Encryption Standard (AES) [29].
2 Typically in block cipher cryptanalysis like [12, 24], encrypting chosen plaintexts is
assumed to be done by some “challenger” who holds the user key (i.e. the challenger’s
running time) and is associated with the data complexity of an attack, and is not
counted as part of the time complexity of the attack.

3 Twofish was one of the five finalists of the AES selection process.

3

exhaustive key search (or 2n verification queries).4 Besides, note that Definition
1 indicates that the time complexity for encrypting given messages should not
be counted as part of the time complexity of an attack.

An authenticated encryption algorithm is an algorithm that transforms an
arbitrary-length data stream (below an upper bound generally), called a message
or plaintext, into another data stream of the same length, called a ciphertext,
and generates an (authentication) tag for the message at the same time, under
the control of a secret key. It combines the functionalities of a symmetric cipher
and a MAC, and achieves data confidentiality, integrity and authenticity at one
pass. Since an authenticated encryption algorithm outputs ciphertexts besides
tags, the target of forgery attacks on MACs has to be revised when such attacks
apply to an authenticated encryption algorithm. It seems that there is no formal
definitions for such attacks on an authenticated encryption algorithm; anyway,
similarly to those on MAC, we can define their targets as follows:

- An existential forgery attack on an authenticated encryption algorithm is
to produce the correct ciphertext and tag for an unspecified message whose
ciphertext and tag are not given (under the secret key and some public nonce
if any). (Thus, during the decryption and tag verification phase, the message
resulted from decrypting the forged ciphertext can result in the forged tag
(under the same key and nonce if any).)

- A universal forgery attack on an authenticated encryption algorithm is to
produce the correct ciphertext and tag for any specified message whose ci-
phertext and tag are not given (under the secret key and public nonce if
any). (Thus, during the decryption and tag verification phase, the specified
message will be generated from decrypting the forged ciphertext, and result
in the forged tag (under the same key and nonce if any).)

Note that here the target of a universal forgery attack is much stronger than
the target of its counterpart on MAC, where the target is to find the correct tag
only. Thus, the seemingly only way to perform such a universal forgery attack on
an authenticated encryption algorithm is by recovering the key or some critical
internal state (if any), since the other way which guesses the ciphertext and tag
is usually less efficient because the ciphertext and tag is usually longer than the
key. Besides, Dunkelman et al. [10] introduced the notion of almost universal
forgery attack on MAC, which works for almost any specified message although
not for any.

COPA [2, 3] is a block-cipher-based authenticated encryption mode, which
was proposed at ASIACRYPT ’13 for parallel architectures such as general-
purpose Central Processing Units and dedicated hardware. COPA was proved

4 We note that there may be a subtle difference between Dunkelman et al.’s statement
and Menezes et al.’s definition: While Menezes et al.’s definition implies Dunkelman
et al.’s statement, Dunkelman et al.’s statement may have another meaning that the
adversary should produce the tag with a high probability at a time complexity less
than exhaustive key search, but Menezes et al.’s definition only requires that there
is no more advantageous forgery attack than exhaustive key search. It is unclear
whether or not this subtle difference is Dunkelman et al.’s intention.

4

by the designers to have a birthday-bound security for its privacy and integrity,
as long as the underlying block cipher is a strong pseudorandom permutation.
Marble (v1.0) [15] is an AES-based COPA-like authenticated encryption algo-
rithm, which was claimed to achieve a full security by setting its internal state
twice as long as the key or tag. The key length is equal to the tag length for
both COPA and Marble, that is n = k. In March 2014, Marble and the COPA
instantiated with the AES block cipher under 128 key bits [1] (AES-COPA for
short below) were submitted to the CAESAR competition [5] on authenticated
encryption, and shortly later the Marble designer made a revision (v1.1) [16]
to Marble. Most recently, Fuhr et al. [14] presented universal forgery and key
recovery attacks on the revised version of Marble, and then the Marble designer
made another revision (v1.2) [17] to it. The newest version of Marble is identical
to the initially submitted version, except when the last block of associated data
is not full.

In this paper, we analyse the security of COPA and Marble against universal
forgery attacks as defined above, and show that there exist (almost) universal
forgery attacks on some versions of COPA and Marble, which are more advan-
tageous than exhaustive key search (that is, the attacks are obtained under the
standard definition of forgery-resistance or unforgeability owing to Menezes et
al., namely Definition 1; more specifically, the time complexity for chosen queries
is associated with the data complexity of an attack and is not counted as part of
the time complexity of the attack. Thus, as typically in block cipher cryptanaly-
sis, when checking whether an attack is more advantageous than exhaustive key
search, we compare the success probability of the attack to the success probabil-
ity of exhaustive key search with the same time complexity, rather than to the
success probability of exhaustive key search with the same number of queries).
The attacks require only chosen queries to the message encryption and tag gen-
eration oracle of COPA or Marble, and our main attack results are:

• We present a beyond-birthday-bound (almost) universal forgery attack on
COPA when used with constant associate data (including the case without
associate data). When applied to AES-COPA, it requires about 2124 encryp-
tion queries and a memory of 2121 bytes and has a computational complexity
of about 2124 simple operations and a success probability of about 32%.

• A slight variant of the aforementioned attack requires (2ϕ + 2) encryption
queries and a negligible memory and has a computational complexity of
about 2ϕ simple operations and a success probability of about 2ϕ−n, where
n is the block bit length of the underlying block cipher as well as the tag bit
length (1 ≤ ϕ < n

2). This attack variant applies similarly to Marble when
used without associated data, with 1 ≤ ϕ < n.

• We present beyond-birthday-bound (almost) universal forgery attacks on
COPA when used with variable associate data. Each attack has a complexity
that is very near the birthday bound. When applied to AES-COPA, each
attack requires nearly 263 encryption queries with the total (associated data,
message) pairs having a length of nearly 264 blocks (which is very close to
the approximate maximum length 264 that AES-COPA can process with a

5

Table 1. Main (almost) universal forgery attacks on COPA and Marble

Algorithm Data Memory Time Success Prob. Source

2θ + 2ϕ 3n · 2ϕBits 2ϕSimple operations See Sect. 3.1 Sect. 3.1

Queries (n
2
< θ, ϕ < n)

COPA 2ϕ negligible 2ϕSimple operations 2ϕ−n Sect. 3.2

Queries (1 ≤ ϕ < n
2
)

2σ + 2φ n · 2σBits 2φMemory accesses 1− e−2σ+φ−n

Sect. 3.3

Queries (1 ≤ σ, ϕ < n
2
)

AES-COPA 2124Queries 2120.6Bytes 2124Simple operations 32% Sect. 3.2

(v.1) 263Queries 266Bytes 262Memory accesses 6% Sect. 3.3

(264Blocks)

Marble (v1.1) 265Queries 268Bytes 265Memory accesses 63% [14]

Marble 2ϕ negligible 2ϕSimple operations 1−e−2ϕ−127

2
Sect. 4.1

(v1.0/1/2) Queries (1 ≤ ϕ < n)

Marble 265Queries 268Bytes 265Memory accesses 63% Sect. 4.2

(v1.0/2) (266.6Blocks)

single key), and a memory of about 266 bytes, and has a time complexity
of about 262 memory accesses and a success probability of about 6%. (Note
that the COPA designers proved its integrity as well as privacy security to be
(slightly below) the birthday bound in [2, 3]; for AES-COPA, they claimed
its integrity security to be the birthday bound, claimed its security against
key recovery to be 128-bit, and also claimed its security against tag guessing
to be 128-bit without giving a detailed explanation. We are not clear about
their security definition on tag guessing; from a general understanding, our
attacks show that this security claim on tag guessing for AES-COPA may
be not correct.)

• We present (almost) universal forgery attacks on the newest [17] (as well as
initial [15]) version of Marble that uses variable associated data, following
Fuhr et al.’s attack [14] on the second version of Marble. Each attack has
a data/memory/time complexity of about 265. (Likewise, there exists a key
recovery attack which is similar to Fuhr et al.’s key recovery attack.) Thus,
the versions of Marble do not provide a full 128-bit security that the designer
claimed for its authentication as well as confidentiality property; that is, the
newest (as well as initial) version of Marble is still not secure.

Table 1 summarises previously published and our main (almost) universal
forgery attacks on COPA and Marble, where e is the base of the natural loga-
rithm. Besides, our attacks on COPA have the following meanings:

1. Recently, many cryptanalytic results with a data complexity beyond the
birthday bound have been published on some MAC algorithms with a prov-
able birthday-bound security, for instance, those [6,9,10,13,18–20,22,23,28,

6

30,33,37–39] on the ALRED [8], HMAC and NMAC [4] constructions. The-
oretically speaking, such attacks are of little significance, for their data com-
plexities are beyond the birthday bounds on the maximum numbers of the
data that the MAC algorithms can process with a single key; but neverthe-
less, they are of academic or practical interest as mentioned in [10,19,23,28],
namely, they show that the general belief of a full security against univer-
sal forgery attack does not hold for the concerned MAC algorithms, show
the gaps between the proved security levels and the real security levels, and
remind the user not to misuse the algorithms for a full security on their
forgery-resistance. (Despite of the academic and practical interest, we would
like to express that we personally think that for a provable scheme such at-
tacks go too far beyond theory, unless they show that its security proof or
claim is not correct; if being argued like that, any result deserves being pub-
lished.) Like these recently published cryptanalytic results, our attacks do
not violate the security proofs of COPA, and give us a comprehensive under-
standing of its security against universal forgery attacks, but nevertheless,
their applications to AES-COPA show that the 128-bit security claim on tag
guessing of AES-COPA may be not correct.

2. Anyway, the attacks show that the success probability of a universal forgery
on the COPA is larger than the bound 2−n of the standard unforgeability
owing to Menezes et al. (i.e. Definition 1), and they pose a question (that
has been posed by previous work) that needs to be discussed extensively
among the cryptology community by taking the opportunity of the ongoing
CAESAR competition: Those security claims are weaker than the standard
definition of unforgeability (owing to Menezes et al.), should we continue
regarding an authenticated encryption algorithm with such a security claim
as a sound design? We note that this problem exists in many authenticated
encryption algorithms with a provable birthday-bound security, including a
few well-known ones of early days, but there are also some authenticated
encryption algorithms with/without a provable security that do not suffer
from this problem. It seems that the answers to this question are not unified
among the cryptology community, which can be illustrated by some responses
to early Ferguson’s existential forgery attack [11] and recent Huang and
Wu’s existential forgery attack [21]. Although it does not mean a falw to
these existing authenticated encryption algorithms with a provable birthday-
bound security, for a long-term perspective it seems preferable to design an
authenticated encryption algorithm with the standard unforgeability from
now on.

The remainder of the paper is organised as follows. In the next section, we give
the notation used throughout this paper, and describe the COPA and Marble
algorithms. We present our (almost) universal forgery attacks on COPA and
Marble in Sections 3 and 4, respectively. We give some discussions on the forgery-
resistance security of authenticated encryption algorithms in Section 5. Section
6 concludes this paper.

7

EK

⊕

AD1

3
3∗L

Processing associated data Encrypting message Tag generation

EK

⊕

AD2

2∗3
3∗L

EK

⊕

ADabn−1

2
abn−2∗3

3∗L ⊕

ADabn

2
abn−1∗3

4∗L

⊕ ⊕· · ·

· · ·

⊕ EK

2
abn−1∗3

5∗L

or

ADabn||1||0∗

or

EK

⊕

M1

3∗L

EK

⊕

M2

2∗3∗L

EK

⊕

Mmbn−1

2
mbn−2∗3∗L ⊕

Mmbn

2
mbn−1∗3∗L

⊕ ⊕· · ·

· · ·

⊕⊕

EK

⊕

C1

2∗L

EK

⊕

C2

2
2∗L

EK

⊕

Cmbn−1

2
mbn−1∗L

EK

⊕

Cmbn

2
mbn∗L

EK

⊕

⊕
mbn

l=1
Ml

2
mbn−1∗3

2∗L

⊕

EK

⊕

T

2
mbn−1∗ 7∗L

EK

S

L

Fig. 1. Message encryption and tag generation of COPA

2 Preliminaries

In this section, we give the notation used throughout this paper and briefly
describe the COPA and Marble authenticated encryption algorithms.

2.1 Notation

We use the following notation.

⊕ bitwise logical exclusive OR (XOR) operation
∗ polynomial multiplication modulo the polynomial x128 ⊕ x7 ⊕ x2 ⊕ x⊕ 1

in GF(2128)
e the base of the natural logarithm (e = 2.71828 · · ·)

2.2 The COPA Authenticated Encryption Mode

The COPA [2, 3] authenticated encryption mode was published in 2013. Its in-
ternal state, key and tag have the same length. It has three phases: processing
associate data, message encryption, and tag generation. Fig. 1 illustrates the
message encryption and tag generation phase of COPA, where

– EK is an n-bit block cipher with a k-bit user key K;
– L = EK(0) is an n-bit secret internal parameter, which is called subkey

sometimes [1];
– S is an n-bit internal state;
– (AD1, AD2, · · · , ADabn) is an associated data of abn n-bit blocks;
– (M1,M2, · · · ,Mmbn) is a message of mbn n-bit blocks;
– (C1, C2, · · · , Cmbn) is the ciphertext for (M1,M2, · · · ,Mmbn); and
– T is the tag for (M1,M2, · · · ,Mmbn).

Decryption is the inverse of encryption, and tag verification is identical to
tag generation. COPA can take no associate data, by setting the output of the
processing associated data phase to zero. Please refer to [2,3] for the specification
of COPA.

In 2014, an instantiation [1] of COPA that uses AES with 128 key bits [29]
(i.e. AES-COPA) was submitted to the CAESAR competition [5], where a nonce

8

of 128 bits long is used and is appended to associate data, and the resulting value
is treated as the associate data in the COPA mode.

We noted that the COPA designers did not distinguish between a existen-
tial forgery and a universal forgery in [2, 3]; both were referred to be a forgery
simply. But for AES-COPA [1], they claimed a 64-bit security on its integrity
and privacy according to the proved integrity and privacy security from [2, 3],
and also claimed a 128-bit security against key recovery, and a 128-bit security
against tag guessing. There is no proof or explanation on the security against
tag guessing.

2.3 The Marble Authenticated Encryption Algorithm

The Marble [15] authenticated encryption algorithm is like COPA. Its internal
state is twice as long as its key or tag to achieve a full security. Marble has four
phases: initialization, processing associate data, message encryption, and tag
generation. Fig. 2 illustrates the message encryption and tag generation phase
of the newest version (i.e. v1.2) of Marble, where

– each of the operations E1,E2 and E3 is a 4-round reduced version of the
AES [29] block cipher, with four fixed round subkeys chosen from the eleven
round subkeys of the AES with 128 key bits;

– the TRANS operation is defined as TRANS(x, y) = (x⊕ y, 3 ∗ x⊕ y), where
x and y are 128-bit inputs;

– Const0, Const1 and Const2 are three 128-bit constants;
– S1 and S2 are two 128-bit internal states;
– (AD1, AD2, · · · , ADabn) is an associated data of abn 128-bit blocks;
– L and τ are 128-bit secret parameters;
– (M1,M2, · · · ,Mmbn) is a message of mbn 128-bit blocks;
– (C1, C2, · · · , Cmbn) is the ciphertext for (M1,M2, · · · ,Mmbn); and
– T is the tag for (M1,M2, · · · ,Mmbn).

(Padding is required if the bit length of the associated data or message is not
a multiple of 128.) No nonce is used in Marble, (we note that in the last two
versions [16,17] of the Marble specification the designer mentioned that one can
opt to replace Const0 with a nonce, but this option is not recommended by the
designer). Marble is allowed to take no associated data, and in this scenario τ = 0
(and an empty message is not allowed). Decryption is the inverse of encryption,
and tag verification is identical to tag generation. Please refer to [17] for the
specification of Marble.

The main differences between the newest version of Marble and the other
two versions are as follows: In the second version (i.e. v1.1), the mask parameter
before E1 is 2abn−1 ∗ 32 ∗L for the last block of associate data; and in the initial
version (i.e. v1.0), the mask parameter before E1 is 2abn−1 ∗ 33 ∗ L for the last
block of associate data if it is full, and is 2abn−1 ∗34 ∗L if it is not full. Thus, the
newest version of Marble is identical to the initial version when the last block of
associated data is full.

9

E1

⊕

E2

E3

⊕

M1

2∗L

3∗L

C1

E1

⊕

E2

E3

⊕

M2

2
2
∗L

2∗3∗L

C2

E1

⊕

E2

E3

⊕

⊕
mbn

i=1
Mi

2
mbn

∗7∗L

2
mbn−1

∗3∗7∗L

T

S1

τ

E1

⊕

E2

E3

⊕

Mmbn

2
mbn

∗L

2
mbn−1

∗3∗L

Cmbn

· · ·

· · ·

· · ·

E1

⊕

E2

E3

AD1

3
2
∗L

E1

⊕

E2

E3

⊕

AD2

2∗3
2
∗L

S1

S2

· · ·

· · ·

· · ·

· · ·

τ

E1

⊕

E2

E3

⊕

ADabn−1

2
abn−2

∗3
2
∗L

E1

⊕

E2

E3

⊕

ADabn

2
abn−1

∗3
3
∗L

E1

E2

E3

Const0

L

Const1

Const2

Initialization Processing associated data Encrypting message Tag generation

: the TRANS operation

S2 · · ·

Fig. 2. Message encryption and tag generation of Marble

3 Beyond-Birthday-Bound (Almost) Universal Forgery
Attacks on COPA

In this section, we first present a beyond-birthday-bound (almost) universal
forgery attack on the COPA that uses constant associated data (including the
case that does not use any associate data) to process messages, then give an at-
tack variant when there is a birthday bound on the maximum number of the data
that can be processed under a single key, and finally present a beyond-birthday-
bound (almost) universal forgery attack on the COPA that uses variable associ-
ated data to process messages and apply it to AES-COPA. Each attack is more
advantageous than exhaustive key search, and consists of two phases: recovering
the secret parameter L, followed by a forgery if L is recovered.

3.1 Beyond-Birthday-Bound (Almost) Universal Forgery Attack on
the COPA When Used with Constant Associated Data

We first show how to recover the secret parameter L of the COPA under the con-
stant associated data, in a more advantageous way than exhaustive key search.

3.1.1 Recovering the Secret Parameter L
The procedure is as follows, which is illustrated in Fig. 3-(a). Since the same
associated data is used, we will omit it in the attack description.

1. Choose randomly at uniform 2θ messages M (i) = (M
(i)
1 ,M

(i)
2) of two n-bit

blocks long (a specific value of θ will be given below, and i = 1, 2, · · · , 2θ).
Query the COPA encryption and tag generation oracle, and obtain all the

ciphertexts and tags for the 2θ messages; we denote by C(i) = (C
(i)
1 , C

(i)
2)

and T (i) the ciphertext and tag for message M (i), respectively.
2. Select a tuple of δ messages (M (i1),M (i2), · · · ,M (iδ)) such that

C
(i1)
2 = C

(i2)
2 = · · · = C

(iδ)
2 . (1)

(A specific value of δ will be given below.) This can be done efficiently by

storing (M (i), C(i), T (i)) into a table indexed by C
(i)
2 . Go to Step 1 if there

does not exist such a δ-tuple.

10

3. Choose two n-bit constants α and β such that

α ∗ (2 ∗ 32 ∗ L⊕ 22 ∗ 3 ∗ L) = β ∗ (23 ∗ L⊕ 2 ∗ 7 ∗ L). (2)

Observe that the secret parameter L cancels out in Eq. (2).

4. Choose randomly at uniform 2ϕ messages M̂ (j) = (M̂
(j)
1 , M̂

(j)
2 , M̂

(j)
3) of

three n-bit blocks long (a specific value of ϕ will be given below, and j =

1, 2, · · · , 2ϕ), such that M̂
(j)
l = M

(i1)
l for 1 ≤ l ≤ 2; that is, M̂ (j) =

(M
(i1)
1 ,M

(i1)
2 , M̂

(j)
3). Query the COPA encryption and tag generation or-

acle, and obtain all the ciphertexts and tags for the 2ϕ messages; we denote

by Ĉ(j) = (Ĉ
(j)
1 , Ĉ

(j)
2 , Ĉ

(j)
3) and T̂ (j) the ciphertext and tag for message

M̂ (j), respectively.5 Since the same user key is used, clearly Ĉ
(j)
l = C

(i1)
l for

1 ≤ l ≤ 2; i.e., Ĉ(j) = (C
(i1)
1 , C

(i1)
2 , Ĉ

(j)
3).

5. Select the message-ciphertext pair (M̂ (j), Ĉ(j)) such that the following two
equations hold for some t, here 1 ≤ t ≤ δ:

M̂
(j)
3 ⊕ 22 ∗ 3 ∗ L =

2⊕
l=1

M
(it)
l ⊕ 2 ∗ 32 ∗ L; (3)

Ĉ
(j)
3 ⊕ 23 ∗ L = T (it) ⊕ 2 ∗ 7 ∗ L. (4)

This can be partially done efficiently by checking whether

α ∗ M̂ (j)
3 ⊕ β ∗ Ĉ(j)

3 = α ∗
2⊕

l=1

M
(it)
l ⊕ β ∗ T (it); (5)

we denote the qualified message-ciphertext pair(s) by (M̂ (ω), Ĉ(ω)) (if any),
where 1 ≤ ω ≤ 2ϕ.

6. Recover L from Eq. (3) with respect to M̂ (ω), that is M̂
(ω)
3 ⊕ 22 ∗ 3 ∗ L =⊕2

l=1 M
(it)
l ⊕ 2 ∗ 32 ∗ L, and output the recovered L.

Step 1 requires a memory of about 5n · 2θ bits, which can be reduced to

3n · 2θ bits by storing only (
⊕2

l=1 M
(i)
l , C

(i)
2 , T (i)). It is expected that Eq. (1)

holds with probability (2−n)δ−1 = 2−n(δ−1), and the probability that there is

at lease one δ-tuple satisfying Eq. (1) is approximately 1− (1− 2−n(δ−1))(
2θ

δ) ≈
1−e−(

2θ

δ)·2
−n(δ−1)

. Eq. (1) guarantees that messages M (i1),M (i2), · · · ,M (iδ) have
the same internal state immediately before the tag generation phase.

Observe that for the correct value for L, Eq. (4) holds once Eq. (3) holds,
and vice versa. If both Eqs. (3) and (4) hold, then Eq. (5) always holds, because
from Eqs. (3) and (4) we have

M̂
(j)
3 ⊕

2⊕
l=1

M
(it)
l = 2 ∗ 32 ∗ L⊕ 22 ∗ 3 ∗ L;

Ĉ
(j)
3 ⊕ T (it) = 23 ∗ L⊕ 2 ∗ 7 ∗ L.

5 The tags for the 2ϕ chosen messages are not required in this attack.

11

EK

⊕

AD1

3
3∗L ⊕

ADabn

2
abn−1∗3

4∗L

⊕ EK

2
abn−1∗3

5∗L

or

ADabn||1||0∗

or

EK

⊕

M
(it)
1

3∗L

EK

⊕

M
(it)
2

2∗3∗L

⊕⊕

EK

⊕

C
(it)
1

2∗L

EK

⊕

C
(it)
2

2
2∗L

EK

⊕

⊕2

l=1
M

(it)
l

2∗3
2 ∗L

⊕

EK

⊕

T
(it)

2∗ 7∗L

EK

⊕

AD1

3
3∗L ⊕

ADabn

2
abn−1∗3

4∗L

· · ·

⊕ EK

2
abn−1∗3

5∗L

ADabn||1||0∗

or

EK

⊕

M̂
(j)
1 = M

(i1)
1

3∗L

EK

⊕

M̂
(j)
2 = M

(i1)
2

2∗3∗L ⊕

M̂
(j)
3

2
2∗3∗L

⊕ ⊕⊕

EK

⊕

Ĉ
(j)
1 = C

(i1)
1

2∗L

EK

⊕

Ĉ
(j)
2 = C

(i1)
2

2
2∗L

EK

⊕

Ĉ
(j)
3

2
3∗L

EK

⊕

⊕3

l=1
M̂

(j)
l

2
2∗3

2∗L

⊕

EK

⊕

T̂
(j)

2
2∗ 7∗L

EK

S

S
· · ·

⊕

AD
(i)
1

3
4∗L

EK

EK

⊕

M1

3∗L

⊕

EK

⊕

C
(i)
1

2∗L

EK

⊕

M1

3
2 ∗L

⊕

EK

⊕

T
(i)

7∗L

⊕

EK

3
5∗L

ÂD
(j)

1

EK

⊕

M1

3∗L

⊕

EK

⊕

Ĉ
(j)
1

2∗L

EK

⊕

M1

3
2 ∗L

⊕

EK

⊕

T̂
(j)

7∗L

(a): the case with constant associated data (b): the case with variable associated data

L

L

L

L

Fig. 3. State recovery attacks on COPA

Then, we can obtain Eq. (5) after applying α and β to the above two equations
and XORing the resulting two equations.

Note that once we obtain the ciphertext-tag pair for a message in Step 4, we
can discard it if it does not meet Eq. (5), and thus we only need to store the
qualified message-ciphertext-tag tuples in Step 4. Particularly, if we choose α = 1
or β = 1, then Eq. (5) can be checked with one ∗ operation and one ⊕ operation
(which is negligible compared with one ∗ operation) for a message-ciphertext
pair, since the right-hand side of Eq. (5) is one-off.

For a random message-ciphertext pair (M̂ (j), Ĉ(j)), it is expected that Eq.
(5) holds for a given it with a probability of 2−n × 1 + (1− 2−n)× 2−n ≈ 21−n,
assuming that Eq. (5) holds randomly at uniform when at least one of Eqs. (3)
and (4) does not hold. On the other hand, for a given it the probability that
both Eqs. (3) and (4) hold when Eq. (5) holds is

Pr.(Eqs. (3) and (4) hold when Eq. (5) holds)

=
Pr.(Eq. (5) holds when Eqs. (3) and (4) hold)× Pr.(Eqs. (3) and (4) hold)

Pr.(Eq. (5) holds)

=
1× 2−n

21−n

=
1

2
.

Since there are 2ϕ message-ciphertext pairs (M̂ (j), Ĉ(j)), the expected num-
ber of qualified message-ciphertext pairs satisfying Eq. (5) for an it is approx-
imately 2ϕ × 21−n × δ = δ · 2ϕ−n+1. The probability that there is at least one
message-ciphertext pair satisfying Eq. (5) for an it is approximately 1− (1− δ ·

12

21−n)2
ϕ ≈ 1− e−δ·2ϕ−n+1

, and the probability that the recovered L is correct is
1
2 · (1− e−δ·2ϕ−n+1

).
Therefore, the state recovery attack requires 2θ +2ϕ encryption queries (the

tags for the 2ϕ chosen messages are not required) and a memory of approxi-
mately 3n · 2θ bits, and has a computational complexity of about 2ϕ simple ∗
operations,6 with a success probability of approximately 1

2 · (1−e−(
2θ

δ)·2
−n(δ−1)

) ·
(1−e−δ·2ϕ−n+1

). (However, if one would treat the time complexity for encrypting
chosen messages as part of the time complexity of the attack, the resulting time
complexity would be about λ · (2θ + 2ϕ) + 2ϕ+1 block cipher encryptions, (2ϕ

simple ∗ operations are negligible compared with the block cipher encryptions),
where λ is the number of block cipher encryptions for one of the 2θ messages.)

3.1.2 Making an (Almost) Universal Forgery
Once the correct n-bit secret parameter L is recovered by the above state recov-
ery attack, we can make a universal forgery attack on the COPA with a single
query at a one-hundred-percent success probability. Below we assume a target
(associated data of abn n-bit blocks long, message of mbn n-bit blocks long)
pair (AD,M) = (AD1, AD2, · · · , ADabn,M1,M2, · · · ,Mmbn), where abn ≥ 0
and mbn > 0.

1. Query the COPA encryption and tag generation oracle with the (the same

associated data, message of (mbn + 1) n-bit blocks long) pair (AD, M̃) =
(AD1, AD2, · · · , ADabn,M1,M2, · · · ,Mmbn, 2

mbn ∗ 3 ∗ L⊕ 2mbn−1 ∗ 32 ∗ L⊕⊕mbn
i=1 Mi), and obtain its ciphertext C̃ = (C1, C2, · · · , Cmbn, C̃mbn+1).

2. The ciphertext for (AD,M) is C = (C1, C2, · · · , Cmbn), and the tag for

(AD,M) is C̃mbn+1 ⊕ 2mbn+1 ∗ L⊕ 2mbn−1 ∗ 7 ∗ L.

In summary, the universal forgery attack that includes the phase of recovering
L requires approximately 2θ + 2ϕ encryption queries (the tags for 2ϕ chosen
messages are not required actually) and a memory of approximately 3n · 2θ bits,
and has a computational complexity of about 2ϕ simple ∗ operations, with a

success probability of approximately 1
2 ·(1−e−(

2θ

δ)·2
−n(δ−1)

)·(1−e−δ·2ϕ−n

). (Note
that if one would treat the time complexity for encrypting chosen messages as
part of the time complexity of the attack, the resulting time complexity would
be about λ · (2θ + 2ϕ) + 2ϕ+1 block cipher encryptions, where λ is the number
of block cipher encryptions for one of the 2θ messages.)

In particular, for AES-COPA [1], (which has n = k = 128), when we set
θ = 115, δ = 8 and ϕ = 124, the attack requires about 2124 encryption queries
and a memory of approximately 2120.6 bytes, and has a computational complexity
of about 2124 simple ∗ operations, with a success probability of about 32%.

6 Here, as typically in block cipher cryptanalysis as well as indicated by Definition 1,
encrypting chosen messages is associated with the data complexity of an attack and is
not counted as part of the time complexity of the attack. The same statement applies
to subsequent attacks, although we do not make any further explicit statements.

13

3.2 A Variant of the Above Attack on the COPA

When there is a birthday bound on the number of data available, the above
attack becomes somewhat less advantageous than exhaustive key search, as θ <
n
2 . Anyway, we can revise it slightly to make it still more advantageous than
exhaustive key search by modifying the first two steps of the above state recovery
attack as follows:

1. Choose a message M (1) = (M
(1)
1 ,M

(1)
2) of two n-bit blocks long. Query the

COPA encryption and tag generation oracle, and obtain its ciphertext and

tag, and we denote them by C(1) = (C
(1)
1 , C

(1)
2) and T (1), respectively.

2. Subsequently, treat M (1) as the M (i1) in the above beyond-birthday-bound
attack (and thus δ = t = 1).

A similar analysis reveals that recovering L requires (2ϕ + 1) encryption
queries and a negligible memory, and has a computational complexity of about 2ϕ

simple ∗ operations, with a success probability of approximately 1−e−2ϕ−n+1

2 ≈
2ϕ−n, where 1 ≤ ϕ < n

2 .
Once L is recovered, it is identical to the above attack to make a universal

forgery. As a result, when it is possible to obtain a sufficient number of chosen
message-ciphertext pairs, one may trade messages for time and memory to per-
form a universal forgery attack on the COPA when used with constant associated
data, at a negligible cost of memory.

3.3 Beyond-Birthday-Bound (Almost) Universal Forgery Attack on
the COPA When Used with Variable Associated Data

In this subsection, we first describe how to attack the COPA that uses variable
associated data, and then apply it to AES-COPA. The attack is based on Fuhr
et al.’s universal forgery attack [14] on Marble.

3.3.1 Recovering the Secret Parameter L
The procedure is as follows, which is illustrated in Fig. 3-(b).

1. Choose 2σ (associated data of one n-bit block long, fixed message of one

n-bit block long) pairs (AD
(i)
1 ,M1) = (i,M1), where 0 < σ ≤ n

2 and i =
0, 1, · · · , 2σ − 1. Query the COPA encryption and tag generation oracle, and
obtain all the ciphertexts and tags for the 2σ (associated data, message)

pairs; we denote by C
(i)
1 and T (i) the ciphertext and tag under associated

data AD
(i)
1 , respectively. Store C

(i)
1 into a table indexed by C

(i)
1 .

2. Choose (2φ − ρ) (associated data of less than n bits long, the same fixed
message of one n-bit block long) pairs such that the (padded associated

data, message) pairs (ÂD
(j)

1 ,M1) = (j × 2
n
2 ,M1), where 0 < φ ≤ n

2 , j =
1, 2, · · · , 2φ−1; if φ = n

2 , then j ̸= 2
n
2 −1 and ρ = 2; and if φ ̸= n

2 , then ρ = 1.
(The padded associated data are possible by the padding rule for associated

14

data of COPA, namely, first a one then as many zeros as required to reach
a multiple of the block size n. ρ represents the number of impossible values
for the last block of padded associated data, that is 0 or 2n−1.) Query the
COPA encryption and tag generation oracle, and obtain all the ciphertexts

and tags for the (2φ−ρ) (associated data, message) pairs; we denote by Ĉ
(j)
1

and T̂ (j) the ciphertext and tag under associated data ÂD
(j)

1 , respectively.

3. Check whether Ĉ
(j)
1 matches one of the set {C(i)

1 |i = 0, 1, · · · , 2η − 1} for

j = 1, 2, · · · , 2φ − 1, j ̸= 2
n
2 −1. We denote the match(es) by (Ĉ

(ω)
1 , C

(µ)
1) if

any, that is Ĉ
(ω)
1 = C

(µ)
1 .

4. For the match (Ĉ
(ω)
1 , C

(µ)
1), we have AD

(µ)
1 ⊕ 34 ∗L = ÂD

(ω)

1 ⊕ 35 ∗L by the
structure of COPA. Thus, we can recover L from this equation.

The reason that we use padded associated data in Step 2 is that an input mask
(i.e. 35∗L) different from the one (i.e. 34∗L) used in Step 1 will be introduced for
the first block of (padded) associated data. This state recovery attack requires
approximately 2σ + 2φ encryption queries, a memory of approximately n · 2σ
bits (as we do not need to store Ĉ

(j)
1), and has a time complexity of about

2φ memory accesses (from Step 3) and a success probability of approximately

1−
(
2η·(2φ−ρ)

0

)
· (2−n)0 · (1− 2−n)2

η·(2φ−ρ) ≈ 1− e−2η+φ−n

.

3.3.2 Making an (Almost) Universal Forgery
If the secret parameter L is recovered by the above state recovery attack, we
have two ways to make a universal forgery attack on COPA with a single query
at a one-hundred-percent success probability. One way is based on modifying
message and is similar to that described in Section 3.1.2, and the other way
is based on modifying associated data and is similar to Fuhr et al.’s universal
forgery attack [14] on Marble, which we briefly describe below. Assume a target
(associated data of abn n-bit blocks long, message of mbn n-bit blocks long)
pair (AD,M) = (AD1, AD2, · · · , ADabn,M1, M2, · · · ,Mmbn), where abn > 0
and mbn ≥ 0.

1. Query the COPA encryption and tag generation oracle with the (associ-

ated data of (abn + 2) blocks long, the same message) pair (ÃD,M) =

(AD1, AD2, · · · , ADabn−1, ÃDabn, ÃDabn⊕2abn∗33∗L⊕2abn−1∗33∗L,ADabn⊕
2abn−1 ∗ 34 ∗L⊕ 2abn+1 ∗ 34 ∗L,M1,M2, · · · ,Mmbn), where ÃDabn is an ar-

bitrary block. Obtain its ciphertext and tag, denoted respectively by C̃ =
(C̃1, C̃2, · · · , C̃mbn) and T̃ .

2. The ciphertext for (AD,M) is C = (C̃1, C̃2, · · · , C̃mbn), and the tag for

(AD,M) is T̃ .

Particularly, when σ = φ = 64 and n = 128, each universal forgery attack
that includes the phase of recovering L requires approximately 265 encryption
queries, a memory of approximately 268 bytes, and has a time complexity of
264 memory accesses and a success probability of about 63%. (Note that if one

15

would treat the time complexity for encrypting chosen messages as part of the
time complexity of the attack, the resulting time complexity would be about
265 × 5 ≈ 267.4 block cipher encryptions.)

3.3.3 Application to AES-COPA
AES-COPA has an additional (public) input parameter called nonce, which has a
constant length of 128 bits. It is appended to associated data (if any), and then
the resulting value is treated as associated data in COPA. As a consequence,
when applying the state recovery attack described in Section 3.3.1 to AES-
COPA, we should obtain associated data satisfying Steps 1 and 2; this can
be easily done, for example, we choose (associated data of one 128-bit block
long, nonce of one 128-bit long) pairs (AD,N (i)) in Step 1, and in Step 2 we
choose the (associated data of less than 128 bits long, nonce of one 128-bit long)
pairs such that the padded (associated data, nonce) pairs are (AD,X(j)), where

N (i) = AD
(i)
1 and X(j) = ÂD

(j)

1 ; and a value of AD can be (1, · · · , 1, 0) in
binary form. Then, the first blocks for all the (2η +2φ−ρ) (padded) (associated
data, nonce) pairs are identical, and the first block cipher encryption operations
produce the same output, and we only need to modify the above state recovery
attack slightly. As a result, the nonces used are different one another, and the
state recovery attack works in the nonce-respecting scenario. Of course, it can
also work in the nonce-misuse scenario.

For AES-COPA, when we set η = φ ≈ 62 extremely, the attack requires
nearly 263 queries with the total (associated data, message) pairs having a length
of nearly 264 blocks (which is very close to the approximate maximum length
264 that AES-COPA can process with a single key), and a memory of about
262 × 16 = 266 bytes, and has a time complexity of about 262 memory accesses
and a success probability of about 6%. (For a longer (associated data, nonce,
message) tuple, we need to reduce the values of η and φ accordingly.)

3.4 Notes

Since there is no proof or explanation on the security claim of tag guessing for
AES-COPA, we are not clear about how their security against tag guessing for
AES-COPA is defined; anyway, from a general understanding of security against
tag guessing, it seems that the above attacks invalidate the 128-bit security claim
and show that the security of AES-COPA against tag guessing is of the same
level as its security on integrity, that is the birthday bound roughly.

Observe that if there is a constraint on the maximum number of the blocks of
an associated data or a message in COPA, the attack described in Section 3.1.2
as well as Section 3.2 does not work for a message with the maximum number of
blocks, and the attack described in Section 3.3.2 does not work for an associate
data with the number of blocks being equal to or one smaller than the maximum
number. Thus, the attacks are almost universal forgery attacks. In Section 3.1.2,
if associated data is not fixed, we can conduct another attack similarly to that
described in Section 3.3.2. Of course, we can combine the two ways together, so

16

that the attacks can apply to a wider range of (associated data, message) pairs.
Besides, when there is a birthday bound on the number of data available, the
attacks described in Section 3.3 can be readily revised to be more advantageous
than exhaustive key search. (The attacks may apply to a message with the last
block being an incomplete block.)

4 (Almost) Universal Forgery Attacks on Marble

In this section, we present two (almost) universal forgery attacks on Marble.
Each attack consists of two phases: recovering the secret parameter L, followed
by a forgery if L is recovered.

4.1 (Almost) Universal Forgery Attack on the Three Versions of
Marble When Used without Associated Data

The procedure for recovering L is basically the same as that described for COPA
in Section 3.2, except some minor distinctions due to the differences between
COPA and Marble. Different from COPA, the phase of processing associated
data of Marble produces a secret parameter τ , which is later used in the phase
of tag generation. Thus, the state recovery attack works on the Marble that
does not use any associated data (and that uses constant Const0, otherwise, our
attack works in the nonce-reuse model, for which the Marble designer claims
it to have a full security level as well), and applies to all the three versions of
Marble, since the three versions are identical when there is no associated data.

The state recovery attack is illustrated in Fig. 4-(a), without any further
text explanation. Its complexity is the same as that given in Section 3.2, except
1 ≤ ϕ < 128. (Recall that Marble has a full security, and thus the range of ϕ for
Marble is different from that for COPA.)

Once the 128-bit secret parameter L is recovered by the abovementioned
state recovery attack, we can then make a universal forgery attack on the
Marble (when used without associated data) with a single query at a one-
hundred-percent success probability, as follows. Assume a target message M =
(M1,M2, · · · ,Mmbn) of mbn 128-bit blocks long (mbn ≥ 1).

1. Query the Marble encryption and tag generation oracle with the (mbn+1)-

block message M̃ = (M1,M2, · · · ,Mmbn, 2
mbn+1∗L⊕2mbn∗7∗L⊕

⊕mbn
i=1 Mi),

and obtain its ciphertext C̃ = (C1, C2, · · · , Cmbn, C̃mbn+1).
2. The ciphertext for M is C = (C1, C2, · · · , Cmbn), and the tag for M is

C̃mbn+1 ⊕ 2mbn ∗ 3 ∗ L⊕ 2mbn−1 ∗ 3 ∗ 7 ∗ L.

The universal forgery attack, including the phase of recovering L, requires
2ϕ + 2 encryption queries (the tags for 2ϕ + 1 chosen messages are not required
actually) and a negligible memory, and has a computational complexity of about

2ϕ simple ∗ operations, with a success probability of approximately 1−e−2ϕ−127

2 .
Particularly, it has a success probability of about 32% when ϕ = 127.

17

E1

⊕

E2

E3

⊕

M1

2∗L

3∗L

C1

E1

⊕

E2

E3

⊕

M1

2∗7∗L

3∗7∗L

T

E1

E2

E3

Const0

L

Const1

Const2

E1

⊕

E2

E3

⊕

M̂
(j)
1 = M1

2∗L

3∗L

Ĉ
(j)
1 = C1

E1

E2

E3

Const0

L

Const1

Const2

E1

⊕

E2

E3

⊕

⊕2

i=1
M̂

(j)
i

2
2
∗7∗L

2∗3∗7∗L

T̂
(j)

E1

⊕

E2

E3

⊕

M̂
(j)
2

2
2
∗L

2∗3∗L

Ĉ
(j)
2

S1

S2

S1

S2

E1

⊕

E2

E3

AD
(i)
1

3
2
∗L

E1

⊕

E2

E3

⊕

AD
(i)
2

2∗3
3
∗L

E1

⊕

E2

E3

⊕

M
(i)
1

2∗L

3∗L

C
(i)
1

E1

⊕

E2

E3

⊕

M
(i)
1

2∗7∗L

3∗7∗L

T
(i)

E1

E2

E3

Const0

L

Const1

Const2

E1

⊕

E2

E3

⊕

M̂
(j)
1

2∗L

3∗L

Ĉ
(j)
1

E1

E2

E3

Const0

L

Const1

Const2

E1

⊕

E2

E3

⊕

⊕2

l=1
M̂

(j)
l

2
2
∗7∗L

2∗3∗7∗L

T̂
(j)

E1

⊕

E2

E3

⊕

M̂
(j)
2

2
2
∗L

2∗3∗L

Ĉ
(j)
2

S1

S2

τ
(i)

τ
(i)

E1

⊕

E2

E3

ÂD1

3
3
∗L

τ̂
(j)

τ̂
(j)

(a): the case without associate data (b): the case with (variable) associate data

Fig. 4. State recovery attacks on Marble

4.2 (Almost) Universal Forgery Attacks on the Newest and Initial
Versions of Marble When Used with (Variable) Associated Data

In this subsection, we show that the newest version of Marble still suffers from
(almost) universal forgery attacks that are based on Fuhr et al.’s (almost) uni-
versal forgery attack [14] on the second version of Marble. Our attacks also apply
to the initial version of Marble, since the last blocks of associated data used in
our attacks are full and the newest version of Marble is identical to the initial
version when the last block of associated data is full. First, we describe how to
recover the secret parameter L.

4.2.1 Recovering the Secret Parameter L

1. Choose 264 (associated data of two blocks long, message of one block long)

pairs (AD
(i)
1 , AD

(i)
2 ,M

(i)
1) = ((32 ⊕ 33) ∗ i, (2 ∗ 33 ⊕ 2) ∗ i, (2 ⊕ 22) ∗ i), and

obtain their ciphertexts (and tags), where i = 0, 1, · · · , 264 − 1; we denote

by C
(i)
1 the ciphertext for message M

(i)
1 . Store C

(i)
1 into a table indexed by

C
(i)
1 ⊕ (3⊕ 2 ∗ 3) ∗ i (i.e. C(i)

1 ⊕ 5 ∗ i).
2. Choose 264 (associated data of one block long, message of two blocks long)

pairs (ÂD
(j)

1 , M̂
(j)
1 , M̂

(j)
2) = ((32⊕33)∗(j×264), (2∗33⊕2)∗(j×264), (2⊕22)∗

(j×264)), and obtain their ciphertexts (and tags), where j = 0, 1, · · · , 264−1;

we denote by (Ĉ
(j)
1 , Ĉ

(j)
2) the ciphertext for message (M̂

(j)
1 , M̂

(j)
2).

3. Check whether Ĉ
(j)
2 ⊕ (3⊕ 2 ∗ 3) ∗ (j× 264) (i.e. Ĉ

(j)
2 ⊕ 5 ∗ (j× 264)) matches

one of the set {C(i)
1 ⊕ 5 ∗ i|i = 0, 1, · · · , 264 − 1} for j = 0, 1, · · · , 264 − 1. We

18

denote the match(es) by (Ĉ
(ω)
2 ⊕ 5 ∗ (ω × 264), C

(µ)
1 ⊕ 5 ∗ µ) if any, that is,

Ĉ
(ω)
2 ⊕ 5 ∗ (ω × 264) = C

(µ)
1 ⊕ 5 ∗ µ.

4. Recover L from Ĉ
(ω)
2 ⊕ C

(µ)
1 = 5 ∗ (ω × 264)⊕ 5 ∗ µ = 5 ∗ L.

For (AD
(i)
1 , AD

(i)
2 ,M

(i)
1), the immediate inputs to the three E1 operations

are (32⊕33)∗ i⊕32 ∗L, (2∗33⊕2)∗ i⊕2∗33 ∗L, (2⊕22)∗ i⊕2∗L, respectively;
for (ÂD

(j)

1 , M̂
(j)
1 , M̂

(j)
2), the immediate inputs to the three E1 operations are

(32 ⊕ 33) ∗ (j × 264)⊕ 33 ∗L, (2 ∗ 33 ⊕ 2) ∗ (j × 264)⊕ 2 ∗L, (2⊕ 22) ∗ (j × 264)⊕
22 ∗L, respectively. Thus, the input difference to the three E1 operations under

(AD
(i)
1 , AD

(i)
2 ,M

(i)
1) and (ÂD

(j)

1 , M̂
(j)
1 , M̂

(j)
2) are (32⊕33)∗ [i⊕(j×264)⊕L], (2∗

33 ⊕ 2) ∗ [i ⊕ (j × 264) ⊕ L], (2 ⊕ 22) ∗ [i ⊕ (j × 264) ⊕ L], respectively. Now, if
i⊕ (j × 264) = L, the input difference to the corresponding three E1 operations
will be zero.

As a result, the state recovery attack requires about 265 encryption queries
and a memory of about 264×16 = 268 bytes, and has a time complexity of about

265 memory accesses and a success probability of about 1−
(
2128

0

)
· (2−128)0 · (1−

2−128)2
128 ≈ 63%.

4.2.2 Making an (Almost) Universal Forgery
Once L is recovered, we have two different ways to make an (almost) universal
forgery attack on Marble; one way is similar to that described for COPA in
Section 3.1.2, working on the Marble that does not use associated data, and the
other way is similar to Fuhr et al.’s attack [14] on the second version of Marble.

In summary, each universal forgery attack that includes the phase of recov-
ering L requires about 265 encryption queries and a memory of about 268 bytes,
and has a time complexity of about 265 memory accesses and a success probabil-
ity of about 63%. (Note that if one would treat the time complexity of encrypting
chosen messages as part of the time complexity of the attack, the resulting time
complexity would be about 265 × 5 ≈ 267.4 AES encryptions.)

4.3 A Note

We note that the Marble designer distinguished the cases whether the last block
of associated data is full or not in the initial version [15], (by using different input
mask parameters for them), but seemed not to distinguish the cases in the second
and newest versions [16,17]. If this was the intention of the designer, the second
and newest versions of Marble are also vulnerable to other universal forgery
attacks obtained simply by changing the length of the last block of associated
data as long as there is an associated data with the last block being not the
128-bit string (0, 0, · · · , 0) or (1, 0, · · · , 0); specifically, when the last block of the
original associated data is not full, query with the padded associated data (as
well as the original message), or when the last block of the original associated
data is full, query with the truncated associated data such that the padded
associated data is the original associated data. The ciphertexts as well as tags
for a message are identical under such a pair of associated data.

19

5 Discussions on Forgery-Resistance of Authenticated
Encryption

We notice that there exist many open problems in the field of authenticated en-
cryption. First, the standard definition of forgery-resistance, namely Definition
1, requires that the security should always have a uniform probability of 2−n

even when there are a number of message-tag pairs available. In other words,
Definition 1 requires that there should be no more advantageous forgery attack
than exhaustive key search (or other generic attacks), until the number of avail-
able messages reaches the maximum number of messages that can be processed
under a key. However, we note that some cryptographers and cryptanalysts may
have a different understanding of the forgery-resistance security of an authenti-
cation algorithm with a provable birthday-bound security. This is partially due
to the various security claims that are not consistent with the standard definition
of forgery-resistance. Sometimes, the standard definition of forgery-resistance is
deliberately weakened, for example, Daemen and Rijmen [8] claimed that (given
known message-tag pairs) the success probability of any forgery attack not in-
volving key recovery or internal collisions is 2−n for the ALRED construction
(that has an iterated structure with a provable birthday-bound security), by
adding restrictions “not involving key recovery or internal collisions”.

Recently, Huang and Wu [21] described an existential forgery attack on AES-
OTR [27] — the OTR [26] authenticated encryption mode instantiated with
AES. Huang and Wu’s attack requires one query of an maximum-length message
of 260 blocks and has a time complexity of about 260 simple operations and a
success probability of 2−11. By Definition 1, this attack should be regarded as
valid; and Wu thought AES-OTR has an 11-bit security only, rather than the
claimed 128-bit security, however, it does not violate the security proof or claim
of AES-OTR and is not considered to be a valid attack by the OTR designer. A
similar example from early days is Ferguson’s existential forgery attack [11] on
the OCB [32] authenticated encryption mode; the attack is valid by Definition
1, but does not contradict with the security proof of OCB.

A less serious but somewhat similar problem also exists in some other candi-
dates submitted to the CAESAR competition. For example, for CLOC [35, 36],
which is also a block-cipher-based authenticated encryption mode with a prov-
able birthday-bound security and works in a nonce-respecting model, if we obtain

about 2
n+1
2 encryption queries under random associated data and nonces, then it

is expected that there is a pair of queries colliding on the XOR value of the first
message block and the first ciphertext block, which means the internal states
immediately before the first message block are identical for the colliding query
pair, and thus we can make an existential forgery by exchanging the (associated
data, nonce) pairs for the pair of colliding queries. Likewise, it does not violate
the security proof or claim of CLOC.

For these examples and the versions of COPA and Marble that we have crypt-
analysed above as well as some others, their security margins become smaller
and smaller when there are more and more message-tag pairs available, (even
in the nonce-respecting model for some algorithms). This weak property does

20

not conform to the standard definition of forgery-resistance, which requires a
uniform probability of 2−n until the number of available messages reaches the
maximum number of messages that can be processed under the same key. On the
other hand, this weak property does not exist in some authenticated encryption
algorithms with/without a provable security. In this sense, this weak property is
due to the designs of the specific algorithms.

Now we face a question: should we continue regarding an authentication al-
gorithm with a weaker security claim than the standard forgery-resistance as a
sound design? The ongoing CAESAR competition may be a good opportunity
for the cryptology community to unify the answers to this controversial question,
by discussing extensively and defining explicitly what the forgery-resistance se-
curity is. A design may have an advantage if it has a provable security, however,
its motivation is doubtable if the proof is at the compromise of the standard se-
curity. From a future perspective, it seems preferable to design an authenticated
encryption algorithm with the standard unforgeability security from now on.

There are also some other questions that seem to have no unified answers
and need to be discussed as well. For example, should we distinguish between
existential and universal forgeries by defining different security levels for them?
If yes, how to define a universal forgery? Our definition on a universal forgery
attack given in Section 1 may have connection with privacy, thus, considering
that an authenticated encryption algorithm provides more functionalities than
a MAC, should we introduce a new security notion that defines integrity and
privacy simultaneously? Should we treat the time complexity for encrypting cho-
sen messages (queries) as part of the time complexity of an attack, or simply
associate it with the data complexity as typically in block cipher cryptanalysis?
As indicated in Definition 1, it seems preferable to associate it with the data
complexity of an attack; otherwise, an attack may be very easy in practice after
the attacker collects sufficient data. If so, when checking whether an attack is
more advantageous than exhaustive key search, we should compare the success
probability of the attack to the success probability of exhaustive key search with
the same time complexity, rather than to the success probability of exhaustive
key search with the same number of queries, as typically in block cipher crypt-
analysis.

It would be another major contribution of the CAESAR competition if the
competition could unify these controversial problems and give formal security
definitions, so that a future design or cryptanalysis can follow. We think this
would be not less (if not more) significant than selecting a specific algorithm.

6 Concluding Remarks

In this paper, we have presented beyond-birthday-bound (almost) universal
forgery attacks on the COPA that uses the same associated data or variable
associate data, and have presented (almost) universal forgery attacks on the
Marble that does not use any associated data or uses variable associated data.
Our attacks on the COPA that uses variable associate data have a complexity

21

that is very close to the birthday bound, and their applications to AES-COPA
may show that the security claim of AES-COPA against tag guessing may be
not correct; and our attacks on the newest (as well as initial) version of Mar-
ble shows that Marble does not provide a full 128-bit security as the designer
claimed. The attacks are mainly based on the structures of COPA and Marble,
and thus may apply to other authenticated encryption algorithms with similar
structures. Like many recently published cryptanalytic results on message au-
thentication algorithms with a provable birthday-bound security, our attacks on
COPA do not violate its security proofs, but give us a comprehensive under-
standing of its security against universal forgery attacks, show that the success
probability of a universal forgery on the COPA is larger than the ideal bound
2−n of the standard forgery-resistance, and boil down to an existing open ques-
tion: Should a message authentication algorithm with a weaker security claim
than the standard forgery-resistance be regarded as a sound design?

Acknowledgments

The author is grateful to Jian Guo and Kan Yasuda for their discussions on some
of the attacks and to Hongjun Wu for his discussions on forgery-resistance.

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Ya-
suda, K.: AES-COPA v.1, Submission to the CAESAR competition, March 2014.
http://competitions.cr.yp.to/round1/aescopav1.pdf

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.:
Parallelizable and Authenticated Online Ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg (2013)

3. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and Authenticated Online Ciphers. Cryptology ePrint Archive,
Report 2013/790 (2013). http://eprint.iacr.org/2013/790

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

5. CAESAR — Competition for Authenticated Encryption: Security, Applicability,
and Robustness. http://competitions.cr.yp.to/caesar.html

6. Contini, S., Yin, Y.L.: Forgery and Partial Key-Recovery Attacks on HMAC and
NAMC using Hash Collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

7. Daemen, J., Rijmen, V.: AES proposal: Rijndael. Presented at the First AES Can-
didate Conference. NIST, 1998.

8. Daemen, J., Rijmen, V.: Refinmements of the ALRED construction and MAC
security claims. IET Information Security 4(3), 149–157 (2010)

9. Dinur, I., Leurent, G.: Improved Generic Attacks against Hash-Based MACs and
HAIFA. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616,
pp. 149–168. Springer, Heidelberg (2014)

22

10. Dunkelman, O., Keller, N., Shamir, A.: Almost universal forgery attacks on AES-
based MAC’s. Designs, Codes and Cryptography, avaialble as Online First. DOI:
10.1007/s10623-014-9969-x

11. Ferguson, N.: Collision attacks on OCB, 2002. http://csrc.nist.gov/groups/ST/
toolkit/BCM/documents/comments/General Comments/papers/Ferguson.pdf

12. Ferguson, N., Kelsey, J., Lucks, S., Schneier, S., Stay, M., Wagner, D., Whiting,
D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

13. Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full Key-Recovery Attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)

14. Fuhr, T., Leurent, G., Suder, V.: Forgery and Key-Recovery Attacks on
CAESAR Candidate Marble. HAL archive hal-01102031, 13 January 2015.
http://hal.inria.fr/hal-01102031v2

15. Guo, J.: Marble Specification Version 1.0, Submission to the CAESAR competition,
15 March 2014. http://competitions.cr.yp.to/round1/marblev10.pdf

16. Guo, J.: Marble Specification Version 1.1, Submission to the CAESAR competition,
26 March 2014. http://competitions.cr.yp.to/round1/marblev11.pdf

17. Guo, J.: Marble Specification Version 1.2, 16 January 2015.
18. Guo, J., Peyrin, T., Sasaki, Y., Wang, L.: Updates on Generic Attacks against

HMAC and NMAC. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 131–148. Springer, Heidelberg (2014)

19. Guo, J., Sasaki, Y., Wang, L., Wu, S.: Cryptanalysis of HMAC/NMAC-Whirlpool.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 21–40.
Springer, Heidelberg (2013)

20. Guo, J., Sasaki, Y., Wang, L., Wang, M., Wen, L.: Equivalent Key Recovery At-
tacks against HMAC and NMAC with Whirlpool Reduced to 7 Rounds. In: Cid,
C., Rechberger, C. (eds.) FSE 2014. To appear.

21. Huang, T., Wu. H.: Attack on AES-OTR, 2014. https://groups.google.com/fo
rum/#!forum/crypto-competitions

22. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (Extended Abstract). In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer,
Heidelberg (2006)

23. Leurent, G., Peyrin, T., Wang, L.: New Generic Attacks against Hash-Based MACs.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 1–20.
Springer, Heidelberg (2013)

24. Lucks, S.: The Saturation Attack – A Bait for Twofish. In: Matsui, M. (ed.) FSE
2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)

25. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, 1996.

26. Minematsu, K.: Parallelizable Rate-1 Authenticated Encryption from Pseudoran-
dom Functions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 275–292. Springer, Heidelberg (2014)

27. Minematsu, K.: AES-OTR v1, 14 March 2014. http://competitions.cr.yp.to/
round1/aesotrv1.pdf

28. Naito, Y., Sasaki, Y., Wang, L., Yasuda, K.: Generic State-Recovery and Forgery
Attacks on ChopMD-MAC and on NMAC/HMAC. In: Sakiyama, K., Terada, M.
(eds.) IWSEC 2013. LNCS, vol. 8231, pp. 83–98. Springer, Heidelberg (2013)

29. National Institute of Standards and Technology (NIST). Advanced Encryption
Standard (AES), FIPS-197 (2001)

23

30. Peyrin, T., Wang, L.: Generic Universal Forgery Attack on Iterative Hash-Based
MACs. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 147–164. Springer, Heidelberg (2014)

31. Preneel, B., van Oorschot, P.C.: On the Security of Iterated Message Authentica-
tion Codes. IEEE Transcations on Information Theory 45(1), 188–199 (1999)

32. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for
efficient authenticated encryption. ACM Transactions on Information and System
Security 6 (3), 365–403 (2003)

33. Rechberger, C., Rijmen, V.: New Results on NMAC/HMAC when Instantiated
with Popular Hash Functions. Journal of Universal Computer Science 14(3), 347–
376 (2008)

34. Schneier, S., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: The
Twofish Encryption Algorithm. Presented at the First AES Candidate Conference.
NIST, 1998.

35. Iwata, T., Minematsu, K., Guo, J., Morioka, S.: CLOC: Authenticated Encryption
for Short Input. In: Cid, C., Rechberger, C. (eds.) FSE 2014. To appear.

36. Iwata, T., Minematsu, K., Guo, J., Morioka, S.: CLOC: Compact Low-Overhead
CFB, 15 March 2014. http://competitions.cr.yp.to/round1/clocv1.pdf

37. Wang, L., Ohta, K., Kunihiro, N.: New Key-Recovery Attacks on HMAC/NMAC-
MD4 and NMAC-MD5. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 237–253. Springer, Heidelberg (2008)

38. Wang, X., Yu, H., Wang, L., Zhang, H., Zhan, T.: Cryptanalysis on
HMAC/NMAC-MD5 and MD5-MAC. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 121–133. Springer, Heidelberg (2009)

39. Yuan, Z., Wang, W., Jia, K., Xu, G., Wang, X.: New Birthday Attacks on Some
MACs Based on Block Ciphers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 209–230. Springer, Heidelberg (2009)

