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Abstract

Fuzzy extractors (Dodis et al., Eurocrypt 2004) convert repeated noisy readings of a high-entropy
secret into the same uniformly distributed key. A minimum condition for the security of the key is the
hardness of guessing a value that is similar to the secret, because the fuzzy extractor converts such a
guess to the key.

We define fuzzy min-entropy to quantify this property of a noisy source of secrets. Fuzzy min-
entropy measures the success of the adversary when provided with only the functionality of the fuzzy
extractor, that is, the ideal security possible from a noisy distribution. High fuzzy min-entropy is
necessary for the existence of a fuzzy extractor.

We ask: is high fuzzy min-entropy a sufficient condition for key extraction from moisy sources? If
only computational security is required, recent progress on program obfuscation gives evidence that
fuzzy min-entropy is indeed sufficient. In contrast, information-theoretic fuzzy extractors are not known
for many practically relevant sources of high fuzzy min-entropy.

In this paper, we show that fuzzy min-entropy is also sufficient for information-theoretically secure
fuzzy extraction. For every source distribution W for which security is possible we give a secure fuzzy
extractor.

Our construction relies on the fuzzy extractor knowing the precise distribution of the source W. A
more ambitious goal is to design a single extractor that works for all possible sources. We show that
this more ambitious goal is impossible: we give a family of sources with high fuzzy min-entropy for
which no single fuzzy extractor is secure. This result emphasizes the importance of accurate models of
high entropy sources.

Keywords: Fuzzy extractors, secure sketches, information theory, biometric authentication, error-
tolerance, key derivation, error-correcting codes.

1 Introduction

Sources of reproducible secret random bits are necessary for many cryptographic applications. In many
situations these bits are not explicitly stored for future use, but are obtained by repeating the same
process (such as reading a biometric or a physically unclonable function) that generated them the first
time. However, bits obtained this way present a problem: noise [Dau04), [ZH93|, [BS00, EHMS00, MG09,
MRW02, PRTG02, [GCVDD02, TSv*06, [SD07, BBR8S|. That is, when a secret is read multiple times,
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readings are close (according to some metric) but not identical. To utilize such sources, it is often necessary
to remove noise, in order to derive the same value in subsequent readings.

The same problem occurs in the interactive setting, in which the secret channel used for transmitting
the bits between two users is noisy and/or leaky [Wyn75]. Bennett, Brassard, and Robert [BBR&§]
identify two fundamental tasks. The first, called information reconciliation, removes the noise without
leaking significant information. The second, known as privacy amplification, converts the high entropy
secret to a uniform random value. In this work, we consider the noninteractive version of these problems,
in which these tasks are performed together with a single message.

The noninteractive setting is modeled by a primitive called a fuzzy extractor [DORS08|, which consists
of two algorithms. The generate algorithm (Gen) takes an initial reading w and produces an output key
along with a nonsecret helper value p. The reproduce (Rep) algorithm takes the subsequent reading w’
along with the helper value p to reproduce key. The correctness guarantee is that the key is reproduced
precisely when the distance between w and w’ is at most t.

The security requirement for fuzzy extractors is that key is uniform even to a (computationally un-
bounded) adversary who has observed p. This requirement is harder to satisfy as the allowed error
tolerance t increases, because it becomes easier for the adversary to guess key by guessing a w’ within
distance t of w and running Rep(w’, p).

Fuzzy Min-Entropy We introduce a new entropy notion that precisely measures how hard it is for
the adversary to guess a value within distance ¢ of the original reading w. Suppose w is sampled from a
distribution W. To have the maximum chance that w’ is within distance ¢ of w, the adversary would want
to maximize the total probability mass of W within the ball B;(w’) of radius ¢ around w’. We therefore

define fuzzy min-entropy Hf%2*(W) © —log max,y Pr[W € B(w')]. Observe that this quantity can be
bounded in terms of min-entropy: Hoo(W) > Hf¥2(W) > Hoo (W) — log | By|.

Fuzzy min-entropy measures the ideal security of a noisy source of entropy when used for key derivation,
similar to distributional notions of program obfuscation (e.g., [BGIT01, [DS05a, [DS05b]; see Section for
discussion). Superlogarithmic fuzzy min-entropy is necessary for nontrivial key extraction (Proposition
2.3).

However, existing constructions do not measure their security in terms of fuzzy min-entropy; instead,
their security is shown to be Hoo (W) minus some loss, for error-tolerance, that is at least log|B;|. Since
Hoo(W) — log |B;| < Hf%*(W), it is natural to ask whether this loss is necessary. This question is
particularly relevant when the gap between the two sides of the inequality is high[] As an example, iris
scans appear to have significant Hfuof)z(W) (because iris scans for different people appear to be well-spread
in the metric space [Dau06]) but negative Hoo (W) — log |B;| [BHO9, Section 5]. We therefore ask: is
fuzzy min-entropy sufficient for fuzzy extraction? There is evidence that it may be when the security
requirement is computational rather than information-theoretic—see Section [I.2l We provide an answer
in two settings.

Sufficiency of Hf‘})zoz(W) for a Precisely Known Distribution Ideally, a fuzzy extractor has precise
knowledge of the probability distribution function of W. We call this the precise knowledge setting. In
this setting, we show that for every source W with superlogarithmic Hff)ZOZ(W), it is possible to construct
a fuzzy extractor with a superlogarithmic length key (Corollary [3.7). Our construction crucially utilizes

the probability distribution function of W and, in particular, is not polynomial time. This result shows

!'For nearly uniform distributions, Hf*%%(W) = Hoeo (W) — log | B:|. In this setting, standard coding based constructions of

fuzzy extractors (instantiated with optimum codes) yield keys of size approximately Hf2(W).



that Hf‘}foz(W) is a necessary and sufficient condition for building a fuzzy extractor for a given distribution
w.

A number of previous works in the precise knowledge setting have provided efficient algorithms and
tight bounds for specific distributions—generally the uniform distribution or i.i.d. sequences (for example,
[JW99, [LT03, [TG04, HADOG], [WRDI11, TW12]). Our characterization unifies previous work, and justifies
using H{¥2*(W) as the measure of the quality of a noisy distribution, rather than cruder measures such
as Hoo (W) — log | By|.

The Challenge of Precise Distributional Knowledge Assuming precise knowledge of a distribution
W may be unrealistic. Indeed, high-entropy distributions can never be fully observed directly and must
therefore be modeled. It is imprudent to assume that the designer’s model of a distribution is completely
accurate—the adversary, with greater resources, would likely be able to build a better model. Therefore,
fuzzy extractor designs cannot usually be tailored to one particular source. Existing designs work for
a family of sources (for example, all sources of min-entropy at least m with at most ¢t errors). Thus,
the design is fixed with a partially known distribution, and the adversary may know more about the
distribution than the designer of the fuzzy extractor. We call this the distributional uncertainty setting.

The Cost of Distributional Uncertainty When the distribution is W is uncertain, our results are
negative. In this setting, W is known to be an element of a family of distributions Wyz. We construct a fam-
ily Wz where not even a 2-bit fuzzy extractor can be secure for most distributions in Wy,. We emphasize
that each distribution W, € Wz has superlogarithmic fuzzy min-entropy—in fact, Hf%*(W.) = Hoo (W),
because all points in W, are distance at least ¢ apart. Our proof relies on high dimensionality of each W,
and on perfect correctness of the Rep procedure. This result shows that uncertainty in the distribution
W is devastating to building a fuzzy extractor. In particular, our positive results (Corollary [3.7) show
it is possible to build a fuzzy extractor for each W,, but no construction can simultaneously secure the

whole family. Our result motivates further research into high fidelity descriptions of noisy sources.

Precise Knowledge Distributional Uncertainty
Fuzzy Extractor Yes (Corollary No (Theorem
Secure Sketch  Yes (Corollary No (Theorem [4.1])

Table 1: Is fuzzy min-entropy sufficient to extract an information-theoretic superlogarithmic length key?

Stronger Results on Information Reconciliation (Secure Sketches) Traditionally, fuzzy ex-
tractors use a secure sketch to perform information reconciliation (mapping w’ back to w), followed by
randomness extractor [NZ93| to transform w into a uniform key. The security losses incurred in the first
of these two steps dominate for typical sources and, indeed, this step is less well understoodE] Formally, a
secure sketch performs non-interactive information reconciliation via pair of algorithms: SS takes w and
produces a nonsecret value ss, while Rec takes a value w’ within distance ¢ of w and uses ss to output
the original reading w.

For secure sketches, we show results that are similar to but stronger than our results for fuzzy extrac-
tors. Namely, we show in Corollary that secure sketches are possible if the distribution W is precisely

2Randomness extractors have matching upper and lower bounds on the security loss: for every extra two bits of output
key, they lose one bit of security



known. (In fact, we obtain our fuzzy extractors for the case of a precisely known distribution from this
result by applying a randomness extractor.)

On the other hand, there is a family of sources, Wy, where each element has Hf,‘(‘;z(Wz) =H (W) =
w(logn) for which no secure sketch correcting even a few errors is possible (Theorem [4.1]). The impossi-
bility result applies even when Rec is allowed to be incorrect with probability up to 1/4 (in contrast to
our fuzzy extractor impossibility result, which requires perfect reconstruction).

1.1  Our Techniques

Techniques for Positive Results for a Precisely Known Distribution We now explain how
to construct a secure sketch for a precisely known distribution W with fuzzy min-entropy (we already
explained how to construct a fuzzy extractor from it). We begin with distributions in which all points in
the support have the same probability (so-called “flat” distributions). Consider some subsequent reading
w’. To achieve correctness, the sketch algorithm must disambiguate which point w € W within distance
t of w’ was sketched. Disambiguating multiple points can be accomplished by universal hashing, as long
as the size of hash output space is slightly greater than the number of possible points. Thus, our sketch
is computed via a universal hash of w. To determine the length of that sketch, consider the heaviest
(according to W) ball B* of radius t. Because the distribution is flat, B* is also the ball with the most
points of nonzero probability. Thus, the length of the sketch needs to be slightly greater than the logarithm
of the number of non-zero probability points in B*. Since Hf%*(W) is determined by the weight of B*,
the number of points cannot be too high and there will be remaining entropy after the sketch is published.
This remaining entropy suffices to extract a key.

For an arbitrary distribution, we cannot afford to disambiguate points in the ball with the greatest
number of points, because there could be too many low-probability points in a single ball despite a high
Hf‘};z(W) We solve this problem by splitting the arbitrary distribution into a number of nearly flat
distributions we call “levels.” We then write down, as part of the sketch, the level of the original reading
w and apply the above construction considering only points in that level. We call this construction leveled

hashing (Construction [3.5)).

Techniques for Negative Results for Distributional Uncertainty We construct a family of dis-
tributions Wy and prove impossibility for a uniformly random W, < W;. We start by observing the
following asymmetry: Gen sees only the sample w (obtained via W, <— Wy and w <+ W), while the
adversary knows W,. To exploit the asymmetry, we construct YWz so that conditioning on the knowledge
of W, (the outcome z) reduces the distribution to a single affine line, but conditioning on only w leaves
the rest of the distribution uniform on a large fraction of the entire space.

An adversary can exploit the knowledge of the affine line to reduce the uncertainty about w (in the
secure sketch case) or key (in the fuzzy extractor case). In the secure sketch case, ss can be used to
find fixed points of Rec(-, ss) which, by the correctness requirement of the sketch, must be separated
by minimum distance t. This means there aren’t too many of them, so few can lie on an average line,
permitting the adversary to guess one easily.

In the fuzzy extractor case, the nonsecret value p partitions the metric space into regions that produce
a consistent value under Rep (preimages of each key under Rep(:,p)). For each of these regions, the
adversary knows that possible w lie ¢-far from the boundary of the region. However, in the Hamming
space, the vast majority of points lie near the boundary (this follows by combining the isoperimetric
inequality [Har66] showing that the ball has the smallest boundary and Hoeffding’s inequality [Hoe63] for
bounding the volume that is t-away from this boundary). This allows the adversary to rule out so many



possible w that, combined with the adversarial knowledge of the affine line, many regions become empty,
leaving key far from uniform.

The result for fuzzy extractors is delicate. It uses the fact that p partitions the space into nonoverlap-
ping regions, which is implied by perfect correctness. Extending this result to imperfect correctness seems
challenging and is an interesting open problem. Our result also uses the fact that there are few points far
from the boundary of every region, which is implied by the geometry of the high-dimensional Hamming
space. This fact seems crucial: in contrast, in low-dimensional Euclidean space, which does not have this
property, a single fuzzy extractor can work for any distribution with sufficient Hf%@z (Such a construction
would use quantization or tiling, similar to, for example, [CK03, [LT03, [CZC04., [LC06, BDH™10, VTO™10].
Each sample from W would map to the “tile” containing it, from which the output key would be extracted.
A randomly chosen quantizer would have the property that few samples lie near the boundary, giving
almost-perfect correctness; if perfect correctness is desired, we can give up on security for those rare
samples and simply use a special value of p to indicate that one of them was the input.)

1.2 Related Settings

Other settings with close readings: Hfl};z is sufficient The security definition of fuzzy extrac-
tors and secure sketches can be weakened to protect only against computationally bounded adver-
saries [FMR13]. In this computational setting, a single fuzzy extractor (or secure sketch) can simul-
taneously secure all possible distributions by using virtual grey-box obfuscation for all circuits [BCKP14].
The construction places into p the obfuscated program for testing proximity to w and outputting the
appropriate value if the test passesﬂ This construction is secure when the adversary can rarely learn
key with oracle access to the program functionality. This is true for the set of distributions with fuzzy
min-entropy (and only those distributions). Thus, extending our negative result to the computational
setting would rule out the existence of virtual grey-box obfuscation for all circuits.

Furthermore, the functional definition of fuzzy extractors and secure sketches can be weakened to
permit interaction between the party having w and the party having w’. Such a weakening is useful
for secure remote authentication [BDK™05]. When both interaction and computational assumptions are
allowed, secure two-party computation can produce a key that will be secure whenever the distribution
W has fuzzy min-entropy. The two-party computation protocol needs to be secure without assuming
authenticated channels; it can be assuming the existence of collision-resistant hash functions and enhanced
trapdoor permutations [BCL™11].

Correlated rather than close readings A different model for the problem of key derivation from
noisy sources does not explicitly consider the distance between w and w’, but rather views w and w’ as
samples of drawn from a correlated pair of random variables. This model is considered in multiple works,
including [Wyn75| [CK78|, [AC93, Mau93]; recent characterizations of when key derivation is possible in
this model include [RWO05] and [TW14]. We compare our positive results to these characterizations in
Appendix [A] To the best of our knowledge, prior results on correlated random variables are in the precise
knowledge setting, we are unaware of works that consider the cost of distributional uncertainty.

Organization The remainder of the paper is organized as follows. In Section 2, we cover preliminaries
and fuzzy extractor definitions. In Section [3] we construct a fuzzy extractor in the precise knowledge

3If this construction is used for a secure sketch, W will remain unpredictable conditioned on p, but will not have pseu-
doentropy (see Section ] for details).



setting. In Sections [4] and [5| we construct families of distributions that no secure sketches and fuzzy
extractors can secure, respectively (the distributional uncertainty setting).

2 Preliminaries

Usually, we use capitalized letters for random variables and corresponding lowercase letters for their sam-
ples. Unless otherwise noted logarithms are base 2. The min-entropy of W is Hoo (W) = — log(max,, Pr[W =
w]), and the average (conditional) min-entropy of W given P is Hoo(W|P) = — log(Epep max,, Pr[W =
w|P = p]) [DORS08], Section 2.4]. Let Ho(WW) be the logarithm of the size of the support of W, that
is Ho(W) = log|{w|Pr[W = w] > 0}|. We use an average case of remaining support size Ho(W|P) =
log(Eye [{w] Pr{W = w|P = p] > 0}]).

The statistical distance between random variables X and Y with the same domain is SD(X,Y) =
3>, | Pr[X = 2] — Pr[Y = z]|. For a metric space (M, dis), the (closed) ball of radius t around w is the
set of all points within radius ¢, that is, By(w) = {w'|dis(w,w") < t}. If the size of a ball in a metric space
does not depend on w, we denote by |B;| the size of a ball of radius ¢. We consider the Hamming metric
over vectors in Z7, defined via dis(w,w’) = |{i|lw; # w,}| where Z is some alphabet. For this metric,
1By =30, (M)(|1Z] = 1)". Uy denotes the uniformly distributed random variable on {0, 1}*. Throughout
this work, we consider a sequence of metric spaces M, parameterized by n, but we write M for notational
convenience. A negligible function ngl(n) is one that decreases faster than any positive inverse polynomial
as n — oo.

2.1 Fuzzy Extractors and Secure Sketches

In this section, we define fuzzy extractors and secure sketches. Definitions and lemmas are drawn from the
work of Dodis et al. [DORSO08, Sections 2.5-4.1] with modifications. First, we allow for error as discussed
in [DORS08, Section 8]. Second, in the distributional uncertainty setting we consider a general family
W of distributions instead of families containing all distributions of a given min-entropy. Let M be a
metric space with distance function dis.

Definition 2.1. An (M, Wy, k,t,€)-fuzzy extractor with error ¢ is a pair of randomized procedures,
“generate” (Gen) and “reproduce” (Rep). Gen on input w € M outputs an extracted string key € {0,1}"
and a helper string p € {0,1}*. Rep takes w' € M and p € {0,1}* as inputs. (Gen, Rep) have the following
properties:

1. Correctness: if dis(w,w’) <t and (key,p) < Gen(w), then

Pr[Rep(w’,p) = key] > 1 — 4.

2. Security: for any distribution W, € Wy, if (Key, P) + Gen(W,,), then SD((Key, P), (U, P)) <.

Fuzzy extractors perform two tasks, information-reconciliation and privacy amplification. The standard
construction is sketch-and-extract: the uniform key is extracted from w (using a randomness extrac-
tor [NZ93|) and the error-tolerance is obtained by using a secure sketch [DORS08, Lemma 4.1]. Secure
sketches produce a string ss that minimally decreases the entropy of w, while mapping nearby w’ to w:

Definition 2.2. An (M, Wy, m,t)-secure sketch with error § is a pair of randomized procedures, “sketch”
(SS) and “recover” (Rec). SS on input w € M returns a bit string ss € {0,1}*. Rec takes an element
w' € M and ss € {0,1}*. (SS, Rec) have the following properties:



1. Correctness: Yw,w' € M if dis(w,w’) <t then

Pr[Rec(w’,SS(w)) = w] > 1 — 6.

2. Security: for any distribution W, € Wy, Hoo(W,|SS(W,)) > .

In the above definitions, the errors are chosen before ss (resp., p) is known in order for the correctness
guarantee to hold: correctness holds for any w’ with probability 1 — § over the coins of the algorithms,
but w’ cannot be a function of the output of SS(w).

The Case of a Precisely Known Distribution If in the above definitions we take Wz to be a
one-element set containing a single distribution W, then the fuzzy extractor/secure sketch is said to be
constructed for a precisely known distribution. In this case, we need to require correctness only for w that
have nonzero probability’]

Note that we have no requirement that the algorithms are compact or efficient, and so the distri-
bution can be fully known to them. Finding a natural model of specifying distributions that allows for
efficient (yet generic) constructions of sketches and extractors for a precisely known distribution is an
interesting problem.

From Secure Sketches to Fuzzy Extractors A fuzzy extractor can be produced from a secure sketch
and an average case randomness extractor:

Definition 2.3. Let M, x be finite sets. A function ext : M x {0,1}¢ —{0,1}" a (1, €)-average case
extractor if for all pairs of random variables X,Y over M, x such that Hyx(X|Y) > m, we have

SD((ext(X,Uy),Uyg,Y), U x Uy x Y) < .

Lemma 2.4. Assume (SS,Rec) is an (M, Wz, m,t)-secure sketch with error ¢, and let ext : M X
{0,1}% — {0,1}* be a (7, €)-average case extractor. Then the following (Gen, Rep) is an (M, Wz, k,t, €)-
fuzzy extractor with error §:

e Gen(w) : sample x < {0,1}4, set p = (SS(w),z),r = ext(w;z), output (r,p).

e Rep(w', (s,x)) : recover w = Rec(w’, s) and output r = ext(w;x).

2.2 Fuzzy Min-Entropy: suitability of a noisy distribution for key derivation

The value p allows everyone, including the adversary, to find the output of Rep(-,p) on any input w'.
Ideally, p should not provide any useful information beyond this ability, and the outputs of Rep on inputs
that are too distant from w should provide no useful information, either. In this ideal scenario, the
adversary is limited to trying to guess a w’ that is t-close to w. Letting w’ be the center of the maximum-
weight ball in W would be optimal for the adversary. We therefore measure the quality of a source by
(the negative logarithm of) this weight.

4We can extend correctness to all of M by defining Gen /SS to output the point w as part of p/ss on zero-probability
inputs, which will ensure that Rep/Rec can always be correct; this does not affect security.



Definition 2.5. The t-fuzzy min-entropy of a distribution W in a metric space (M, dis) is:

H{%*(W) = —log max Z Pr[iV = w]

weW|dis(w,w’)<t

Fuzzy min-entropy is a necessary condition for security. It measures the functionality provided to the
adversary by providing Rep (since p is public). Thus, the fuzzy min-entropy is the ideal security that any
fuzzy extractor should be compared against. We defer proofs of statements in this section to Appendix [C|

Proposition 2.6. Let W be a distribution over (M,dis) with H{*%2*(W) = m. Let (Gen,Rep) be a
(M, {W}, K, t, €)-fuzzy extractor with error §. Then

e>27M_§—-27",
In particular, for security parameter n, if m = ©(logn),d = ngl(n), k = w(logn), then e = 1/poly(n).

The proof of Proposition is not specific to the fuzzy extractor setting, it also applies to computa-
tional and interactive definitions. Fuzzy min-entropy represents an upper bound on the security from a
noisy source. There is evidence it may be possible to (nearly) achieve this upper bound in the computa-
tional setting (see Section [[.2)). However, in the information-theoretic setting there are many distributions
with fuzzy min-entropy with no known fuzzy extractor (or corresponding impossibility result). We now
show some properties of fuzzy min-entropy.

Lemma 2.7. H{%*(W|P = p) > H[%Z#(W) + log Pr[P = p].

Conditional Fuzzy min-entropy In our proofs, we will use a conditional version of fuzzy min-entropy.

Definition 2.8. The t-conditional fuzzy min-entropy of a distribution W|P in a metric space (M, dis) is:

H{2*(W|P) = —log [ E max > Pr[W = w|P = p]
weW |P=p|dis(w,w’)<t

Lemma 2.9. Hf“2*(W|P) > Hf“2*(W) — Ho(P).

t,00

3 Sufficiency of Hf*?*(1V) in the Precise Knowledge Setting

t,00

In this section, we build a secure sketch (and thus fuzzy extractors through Lemma 2.4)) for each distri-
bution W with H{%*(W) = w(logn) (using precise knowledge of W). We begin with flat distributions
and then turn to arbitrary distributions.

3.1 Flat Distributions

A distribution is flat if all points in its support have the same probability. Let supp(W) denote the
support of W i.e., the set of points with nonzero probability.

Definition 3.1. A distribution W is flat if for all wo, w1 € supp(W), Pr[W = wo] = Pr[W = wy].



Denote the largest number of points in a ball of radius ¢ in the support of W as
B = max [{w|w € supp(W) A dis(w, w’) < t}].
w'eM

For flat distributions, this quantity defines the fuzzy min-entropy,

H{%#(W) = —log <1£I/1§/\}§t [{w|w € supp(W) A dis(w,w’) < t}| Pr[W = w]>

= —log <maj)\</l {w|w € supp(W) A dis(w,w') < t}] - 2H°°(W)>
w’'e

= H (W) — log 5;. (1)

We use universal hashes to construct secure sketches for flat distributions. Skoric et al. constructed secure
sketches from universal hashes to correct a polynomial number of error patterns [STGPQ9].

Definition 3.2 ([CW79]). Let F : K x M — R be a function. We say that F is universal if for all

distinct 1,19 € M:
1
Pr [F(K = F(K =—.
K<—I.IC[ ( ,1’1) ( ,1'2)] ‘R’
Construction 3.3. Let F' : K x M — R be a universal hash function. Let W be a distribution. Define
SSW, RecW as:

SSw/ Recy
1. Input: w. 1. Input: (!, 55 = (4, K)
2. Sample K < K. 2. Let W* = {w € supp(W)|dis(w,w") < t}.
3. Set ss = F(K,w), K. 3. Forw* € W*, if F(K,w") =y,
output w*.
4. Output 1.

Lemma 3.4. Let W be a flat with Hoo (W) > m. Then Construction[3.3 is a (M,{W},m —log|R|,t)-

known distribution secure sketch with error 6 < B ‘tg'l.

Proof. We first argue security. Fix some W € W. Since K and W are independent Hoo (W|K) = Hoo (W) =
m. Then by [DORS08, Lemma 2.2b], Hoo (WK, F(KC,W)) > Hoo (W) — log |F(W, W)| > m — log |R).

We now argue correctness. Fix some w,w’. Let W* denote the set of elements in W within distance ¢ of
w’. The size of W* is at most ;. Since w,w’ are independent of SS this set is independent of the choice
of IC. The algorithm Rec will never output L as the correct w will match the hash. The probability that
another element w* collides is:

Pr[3w* € W*|w* # w A F(K,w") = F(K,w)]
< Y PE(K ) = F(K,w)
w* EW* |w* #w

-y bl
(Rl — R

w* W |w* #w

The inequality proceeds by union bound. The first equality proceeds by the universality of F' and the
second inequality proceeds by noting the number of wrong neighbors is bounded by £; — 1. This completes
the proof. O



3.2 Arbitrary Distributions

The hashing approach used in the previous subsection does not work for arbitrary sources. The reason is
that some balls may have many points but low total weight. For example, let W be a distribution consisting
of the following balls. Denote by B} a ball with 2H>(W) points with probability Pr[W € B}] = 2~ He (W),
Let Bf,...,BfiHOO(W) be balls with one point each with probability Pr[W € Bi] = 27 H<(W) = Then
the hashing algorithm needs to write down Hu (W) bits to achieve correctness on B}. However, with
probability 1 — 27Hee(W) the initial reading is outside of B}, and the hash completely reveals the point.

Dealing with non-flat distributions requires a new strategy. Many solutions for manipulating high
entropy distributions leverage a solution for flat distributions and use the fact that high entropy distribu-
tions are convex combinations of flat distributions. However, a distribution with high fuzzy min-entropy
may be formed from component distributions with little or no fuzzy min-entropy. It is unclear how to
leverage the convex combination property in this setting.

The main obstacle in the arbitrary setting is distinguishing between a setting where a ball has a few
high probability points and a large number of low probability points. To overcome this problem, we write
the probability of w € W in the sketch output. To ensure this information does not completely reveal w
we write down only the approximate probability of the outcome w. We then use a universal hash whose
output length is proportional to the maximum number of points of the same approximate probability in
any ball.

Construction 3.5. Let M be a metric space and let n = log|M|. Let W be a distribution with Heo (W) =
m. Let £ € Z* be a parameter. Let L; = (2_(”1),2_"] fori=m,..m+L€—1. Let F; : K; x M — R; be
a parameterized family of universal hash functions. Define SSy, Recys as:

SSw Recy
1. Input: w. 1. Input: (W', ss)
2. If Pr[W =w] < 2~ (m+0), 2. If sso = 1, output sy |y|-
Set ss =1, w.
3. FElse
3. FElse

(a) Parse (i,y, K) = ss1,__|y|-
B ' (b) W* = {wl|dis(w,w’) <t
Pr[W = w] € L;. APr[W =w] € L;}.

(b) Sample K < K;. (c) For w* € W*,

(c) Set ss = 0,1, F;(K,w), K. if Fi(K,w*) = z,

output w*.

(d) Output L.

(a) Find i such that

To set parameters, we restrict our notation of the maximum likelihood ball to points of a given probability.
Define 3;; as the maximum number of points in a ball in level 7. That is,

Bri = max |{w|dis(w,w’) <t APr[W =w] € L;}|.
w'eM
Theorem 3.6. Let W be a distribution over M where n = log M. Let 6 > 0 be an function of n. Let
F; : Ki x M — R; be a parameterized family of universal hash functions where |R;| = /0. When { =n

Construction is a (M, {W},m,t)-known distribution secure sketch with error § for m = H{%*(W) —
logn —log1/6 — 4.

10



We provide a proof in Appendix [D] The main idea is that providing the level information makes the
distribution look nearly flat (the probability of points differs by at most a factor of two). We can
apply techniques from Lemma B.4] to show security for each nearly flat distribution. Then, we show that
providing the level information does not hurt security too much.

Corollary 3.7. Let M be a sequence of metric space parameterized by n where n = log|M|. For any
distribution W over M with Hf*22(W) = w(logn), there exists a (M, {W},m, t)-known distribution secure

t,00

sketch with m = w(logn) and 6 = ngl(n). (Extendible to a fuzzy extractor using Lemmal[2.4).)

4 Impossibility of Secure Sketches for a Family with Hf";z
In the previous section, we showed the sufficiency of Hf‘gzoz(W) when the distribution was precisely known.
It may be infeasible to completely characterize a high entropy distribution W. Traditionally, algorithms
deal with this distributional uncertainty by providing security for a family of distributions Wp.

In this section, we show distributional uncertainty of W comes at a real cost. The security game of
a fuzzy extractor can be thought of as a three stage process: 1) the challenger specifies (SS, Rec), 2) the
adversary sees (SS,Rec) and specifies W, € Wy 3) the adversary wins if Hoo (W, |SS(W.,)) < 7.

We prove impossibility in a game that is harder for the adversary to win: 1) the challenger specifies
(SS,Rec) 2) the adversary randomly samples W, < Wy 3) the adversary wins if Hoo (W,|SS(W.)) < m

Let V be the process of uniformly sampling W, <— Wz and then sampling w <— W,. Let the random
variable Z represent the process of sampling W, <~ Wy. The view of the challenger is V', while the view
of the adversary is SS(V') and Z. We now show a family of distributions Wy that does not admit a secure
sketch.

Theorem 4.1. Let n be a security parameter. There exists a family of distributions Wy such that for
each element W, € Wz, H{%2*(W.) = w(logn), and yet for any (M, Wz, m,t)-secure sketch (SS, Rec)
with error 6 < 1/4 and distance t > 4, m < 2.
Furthermore, this is true on average. Let V' be process of sampling W, < Wz and sampling w < W,.
Then
Hoo(VISS(V), Z) < 2.

Proof. We prove the stronger average case statement. We first describe a family W,. Let F be a field
where of size |F| = w(poly(n)). Let Wz be the set of all distributions of the form

1 0
a9 b2

w = wi +
y by

The family is defined by the parameters z = as, .., a, b, ..., by (seen by the adversary) where a; # 0. The
outcome w < W, is sampled by sampling w; and computing w. Each distribution W, is an affine line in
space FY. The algorithm SS,Rec never see Z only V. Fix some 4 < ¢t < . We show the following (in

Appendix [E)):

5Our results rule out security for an average member of Wy. It may be possible to improve parameters by ruling out only
a worst case W.. In Appendix [B] we show that providing security for the set of distributions Wz is equivalent to providing
security for all distributions Z over that family.

11



Proposition for all W, € Wy, H{%Z#(W.) = w(logn).

Proposition the distribution V' is uniform.

Lemma [E.4l for any secure sketch on V, the support size of V[SS(V') decreases significantly. Here
we show the minimum distance between points of V|SS(V) is at least ¢.

Lemma [E.5 Ho(V[SS(V), Z) < 2 and thus Hoo(V|SS(V) < 2.

O]

Note: There is a tradeoff between the size of F and the error tolerance required for the counter example.
By increasing t it is possible to show a counter example for a smaller F.

4.1 Implications for Computational Secure Sketches

Fuller et al. show that computational secure sketches that provide pseudoentropy imply information-
theoretic secure sketches with almost the same parameters [FMRI13, Corollary 3.8]. The definition of
Fuller et al. uses a weak version of pseudoentropy [HILL99] due to Gentry and Wichs [GW11].

Definition 4.2. W|S has relaxed HILL entropy, denoted HI™™"'*(W|S) > 1, if there exists a joint
distribution (X,Y), such that Hoo(X|Y) > 1 and

6Pssec (W, 9), (X,Y)) < €see-

By the contrapositive of [FMR13, Corollary 3.8], no sketch can retain HILL entropy for the same family
of distributions:

Corollary 4.3. Let n be a security parameter and let M = |F|7. There exists a family of distributions
Wy over M such that for each element W, € Wy, (M, Wz, m,t)-secure sketch (SS,Rec) with error §,
then

HELLTIX (U7 ISS(W), 7)) < 4.

€sec;Ssec

if t >4, ssec > t(|Rec| + vlog|F|), and €sec +t0 < 1/16.

Secure sketches that provide computational unpredictability are implied by virtual-grey box obfuscation
of proximity functions [BCKP14]. Our impossibility result says nothing about this weaker form of a secure
sketch. Extraction from unpredictability entropy can be done using an extractor with a reconstruction
property [BSWO03l [HLRO7]; however, in the computational setting, the obfuscated function can simply
hide a randomly generated key, and therefore extraction is not necessary to obtain a fuzzy extractor.

fuzz
t,00

5 Impossibility of Fuzzy Extractors for a Family with H

In the previous section, we showed a family of distributions that does not admit a secure sketch. We
provide an analogous result for fuzzy extractors.

Theorem 5.1. Let n be a security parameter. There exists a family of distributions Wz over {0,1}"
satisfying the following conditions. For each element W, € Wy, Hfgz(Wz) = w(logn). Let kK > 2 and
t =w(n'?logn). Any (M, Wy, k,t,€)-fuzzy extractor with error § = 0 has € > 1/8 — ngl(n).

12



Furthermore, this is true on average. Let V' be process of uniformly sampling W, < Wy and sampling
w < W,. Let (Key, P) < Gen(V). Then,

SD((Key, P, Z), (Ux, P, Z)) > 1/8 —ngl(n).

Proof Outline. We prove the stronger average case statement. Let v = w(logn) and v = o(n'/?/logn).
Let t = 4vn'/? 4+ 1 and note that n/v > t.

Our counterexample uses a slightly different family of distributions Wy than the counterexample for
secure sketches. We will work over a binary alphabet (we used a large alphabet in our counterexample for
secure sketches). A property of the binary Hamming space is that a large fraction of any set of bounded
size is the near “boundary” of that set. This will be crucial in our proof. We will embed the larger
alphabet in the secure sketch counterexample into the binary Hamming metric. Let zq,...,2, € {0,1}".
Let IF denote the field of size 2”. Let ag,...,a,/, € F such that a; # 0 and let by, ...,b,,, € F. Interpret
x1,...,T, as a element x € F and let

1 0
as by
w = T+
Qan /v bn/y

The multiplication is in IF. The family Wy is indexed by z = ag, ..., ay,,, b2, ..., by, Where a; # 0. Define
V' as the process of uniformly choosing W, < W, and then sampling from w < W,. The adversary sees
SS(V) and Z. We then show the following (proofs in Appendix [F):

e Proposition [F1} for all W, € Wy, Hf*22(W,) = w(logn).

t,00
e Proposition [F.2} the distribution V' is uniform.
e Lemma [[.3} In expectation across Z, a large subset of keys are not possible. In more detail,

— Half the keys have at most 2"~ pre images in the metric space (this is at most half the metric
space). Denote this set as Key,,q1-

— Consider some key € Key,, ;- Consider the set of Vie, = {w|Rep(w,p) = key}. All points
in V|SS(V) are distance t from a boundary of Vi, (the functionality of Rep guarantees that
for the true w all nearby points map to the same key). We show that most of Ve, is near a
boundary. A result of Frankel and Fiiredi says that the boundary of a region is minimized by
a ball containing the same number of points [FEF8I]. Hoeffding’s inequality says that most of
a ball lies near its boundary [Hoe63]. The number of w that could produce key is small.

— There are many possible values for z1, zo for the side information Z (and these possible values
are equally likely). Furthermore, the distributions V|Z = z; and V|Z = 2z have disjoint
support outside of a single point w.

— For most values of possible Z, the intersection between the viable pre images of V|Z and Ve
contains at most one point (the received point v). Checking if V'|Z N Ve, is nonempty is an
effective distinguisher.

O]
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Note: As stated in Section using strong computational assumptions it is possible to avoid this
result. For the specific family Wy, Canetti et al. [CEPT14, Construction 5.3] construct computational
fuzzy extractors for this family of distributions when F is large enough under weaker assumptions. (Their
construction is stated with imperfect correctness. A construction with perfect correctness is obtained by
using a code that corrects ¢ bidirectional errors instead of a code that corrects ¢ unidirectional errors.)

Comparison with Theorem [4.1] The parameters in this result are weaker than those in Theorem .11
This result requires: 1) higher error tolerance t = w(n'/?logn) 2) the fuzzy extractor must have perfect
correctness. The secure sketch counter example needs ¢t = 4 and allows the Rec to be wrong almost 1/4
of the time.
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A Key Derivation from Correlated Random Variables

In this work, we consider two draws from some physical source whose distance was bounded according to
some metric space. Instead of considering w,w’ that have bounded distance, we can treat W, W’ as a pair
of correlated random variables. Renner and Wolf [RW05] study this setting, firsting consider information-
reconciliation and privacy amplification separately. They show that Ho, (W) is a necessary and sufficient
condition for privacy ampliﬁcationﬁ Second, they show that the length of p must grow with the worst
case number of possible outcomes for W conditioned on W’ E] That is, the length of the public value

lp| > max log [{w| Pr[W = w|W' = '] > 0}|.
w'eW

5The results of Renner and Wolf use smooth notions of entropy. A random variable has smooth entropy if it is statistically
close to a distribution with true entropy. We describe their results in the terminology of non smooth entropy.
"This result also uses a smooth notion of entropy. We describe the non smooth version for simplicity.
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Furthermore, they show there exists a protocol with this length p using optimal encoding functions.
Intuitively, the public information must describe which possible outcome for W actually occurred. This
result describes the maximal length of p and does not argue how p effects security. It may be possible to
construct a p that reduces the entropy of w by less than log|p|. In Section Bl we construct schemes with
variable length p, providing information-reconciliation for distributions where the bounds of Renner and
Wolf provide no security guarantees.

Lastly, the work of Renner and Wolf shows characterize when key derivation is possible from correlated
random variables [RWO05, Theorem 3]. Fuzzy min-entropy can be generalized to this setting. Fuzzy
extractors consider the worst case w’. When considering correlated readings, it is natural to treat W' as
a random variablef]

Definition A.1. Let (W, W') be a pair of correlated random variables. The correlated fuzzy min-entropy
of W, W' is:

[
wESUP(WY) | Pe[W oW =] >0

In Definition .5 the sum is implicitly over W = w|W’ = w' since we assume any w’ within distance
t is possible. In Section 3] we showed sufficiency of Hf‘éiz(W) for key derivation from noisy sources

(Definition [2.5]).

Connection to the characterization of [RWO05] Renner and Wolf characterize when it is possible to
derive keys from correlated random variables [RW05, Theorem 3]. They consider all possible (randomized)
transforms T, 7" of W, W' into a new pair of variables V, V. They show that

key| <

sup (HOO(V|T’) — log max [{v|Pr[V =o|T' AV =] > O}]> .
(V.V) (T (W), T (W) VeVt

Furthermore, they show that there is a transformation that achieves a key of nearly this length. The
result is nonconstructive as there is no guidance on how to find the transforms T,7”. Since there is no
known bound on the length of T, 7" it is not clear how to search the transform space even with unlimited
time. Construction can be used to derive keys from correlated random variables. The main change is
to define

W* = {w|Pr[W = w|W' =w'] > 0APr[W =w] € L;}.

Our result shows if one is satisfied with obtaining a strong key when possible (our protocol has losses of
2log1/e +logn +log1/d), then a protocol is possible (and explicitly constructible) in the original space.

B A Definitional Equivalence

As described in Section M, our negative results rule out security for an average member of Wz. It may be
possible to significantly improve parameters by only ruling out security for a single member W,.

8Fuzzy extractors are defined to require high probability of correctness for all pairs w,w’. In the correlated setting, it
may make sense to provide an average-case guarantee, where the probability of correctness is also over the draw of w,w’.
Renner and Wolf use a smoothed notion of entropy that removes the ¢ fraction of the probability mass of W = w|W' = v’
with the most points to improve parameters under such a definition. In this work, we consider worst case correctness and
use unsmoothed entropy.
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Recall the security game of a fuzzy extractor: 1) the challenger specifies (SS, Rec), 2) the adversary
specifies a source W, € Wy 3) The challenger wins if Hoo(W,|SS(W,)) > 7. Instead of just thinking
of the uniform distribution over Wy, consider an arbitrary distribution V' over elements of Wy. The
minimax theorem says we can reverse which of these actions is announced first [vN2§| if A announces V
instead of a single element W,. That is, the following two player games have the same equilibrium:

Experiment Exp!"? m):

(SSI,)Rec) “ c(vv;1 O Experimont Exp;"” (A,C, 1):

W, < AW, SS, Rec) Vi AWz)

IfW, €Wy, C wins. (SS,Rec) <~ C(V,Wz)

If Flao (W[SS(W2)) > 10, € wins. | 172 ¥ -

Else A wins. If Hoo (W|SS(W>)) > m, C wins.
Else A wins.

This means that showing security for a family of distributions Wy is equivalent to showing security for
all distributions V' when the distribution is known to the algorithms (SS,Rec). In our negative results,
the adversary uses the uniform distribution over W;. However, it may be possible to improve parameters
by using a different V.

C Fuzzy min-entropy

In this section, we provide proofs of statements in Section 2.2

Proof of Proposition[2.6. Let W be a distribution where Hf%2#(TW) = m. This means that there exists a

t,00

point w’ € M such that Pryew [dis(w, w') < t] = 27™. Consider the following distinguisher D:
e Input key, p.
e If Rep(w’,p) = key, output 1.
e Else output 0.
Clearly, Pr[D(Key, P) = 1] > 2-™ — §, while Pr[D(U,, P) = 1] = 1/2-*. Thus,
SD((Key, P), (Uy, P)) > 6P ((Key, P), (Ux, P)) > 27 ™ —§ — 27",

This completes the proof of Proposition O
Proof of Lemma [2.7]
HE52* (W|P = p) = —log | max > Pr(W = w|P = p]
we(W|P=p)|dis(w,w’)<¢
Pr[W =w A P = p|
-1
og | max Z Pr[P — p]

we(W|P=p)|dis(w,w’)<t

Z Pr[W = w]

>—1 -
=T , PP =

weW |dis(w,w’)<
= H{%Z*(W) + log Pr[P = p].
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This completes the proof of Lemma O

Proof of Lemma[2.9.
I:If:;z(W]P) = —log EPm@X Z Pr[W = w|P = p]
Pl weW|P=p|dis(w,w’)<t
= —log Zm&}x Z Pr[W = w|P = p| Pr[P = p|
p " weW|P=p[dis(w,uw)<t
= —log Zmz}x Z Pr[W =w A P = p)
p 7 weW |P=p|dis(w,w’)<t
> — log Z ma;X Z PI‘[W = ’U)]
p Y weW|P=pldis(w,uw)<t
> —log Zm@x Z Pr[W = w]
p v weW |dis(w,w’)<t
> —log [ 2P max Z Pr[W = w]
v weW |dis(w,w’)<t
> Hi (W) = Ho(P).
This completes the proof of Lemma [2.91 O

D Proof of Theorem [3.6

Proof. Throughout the proof we assume that ¢ = n is the number of levels. The proof can be carried out
for an arbitrary ¢ but it leads to a complicated theorem statement.

Correctness: Fix some w,w’. If Pr[IW = w] < 27+ = 2=(m+n) then w is simply transmitted to Rec
and correctness is clear. When Pr[W = w] > 27"+ let L* be the level of Pr[W = w).

Let W* denote the set of elements of W in L; within distance ¢ of w’. The size of W* is at most ;.
The choice of w,w’ is independent of SS, so this set is independent of K; (it does effect the value of 7 but
not the particular outcome from K;). The probability that another element w* matches the hash is:

Pr[3w* € W*w* # w A F;(K,w") = F;(K,w)]

w*eW*|w*#w

- ¥

wreW*|lw*#w

1 < Bei—1 < Bt,i

< < =9
|R;| | Ri | R;|

The first inequality is by union bound. The first equality follows from the universality of F;. The second
inequality follows since the number of neighbors is bounded by f; ;.
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Security: We now argue security of the construction. First note that the total weight of points whose
probability is less than 2= (ntm) ig at most 27 (there are at most 2" points in the distribution). Let 1}y
be the indicator random variable for Pr[IW = w] < 2=(+™) Then
I:IOO(W]SS(W)) = —log (Pr[llow =1] %14 Pr[ljoy = 0]2_H°°(W|SS(W)/\1‘°W:0)>
> —log (277 (1 — 272 (WISS(W)A L =0)) @)
For the remainder of the proof, we seek a bound on Hao(W[SS(W) A ligw = 0). Let L; be the random

variable of the level information (in what follows, L takes values between m and m + n, where possible
we omit the range of i for notational clarity).

E Z—ﬁoo(W|SS(W)/\110w0/\L1i)>
E 2—ﬁoo(WlK'i/\Fi(Ki:W)/\llow:O/\LI:i)>
i

= —log (IE 2HOO(W|Fi(Ki,W)/\11OW=O/\L]:i)>

> = 1Og E 2_(Hw(WIIIOWZOALI:i)_10g(5t,i)+10g 6)>
Z - log % E 2_(ﬁoo (Wl110W:0/\L1:i)_10g(5t72’)))
2 - log (E 2(ﬁw(W|1low:0AL]=i)log(ﬁt’i))> _ log % (3)

The third line follows because the only dependence between IC; and W is in i. The fourth line follows by

[DORS08, Lemma 2.2]. We now show that the fuzzy min-entropy conditioned on the level information is
proportional to 3¢ ;. For convenience denote by .J = (L1 A ligw = 0). That is, Pr[J = i = Pr{liow =
OANL; = ’L]

Claim D.1. Hoo(W|J = i) — log 8;; > Hf*%Z*(W|J =14) — 1.
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Proof.

Hi 522 (WJ = i) =

=—1lo P = =1
g | max Z (W =wl|J =i
weW|Pr[W=wl€L,
Ndis(w,w’)<t
<-lo a i Pr[W =w*|J =1
<-oofme| 3 (i, PV =wy=i)
weW | Pr[W=wl€L,
Ndis(w,w’)<t
< —log | max a Pr[W = w*|J =1 1
o & w'eM Z (w*egfliUi 1“[ v | Z]) *
weW|Pr[W=wl|€L,;
Ndis(w,w’)<t
=—lo 2_H00(W|J:i) 1
Blmax | 2 +
weW| Pr[W=wleL;

Ndis(w,w’)<t

—H — ) —
oW |J =1i) — log Imax, Z 1 +1
weW | Pr[W=w]€L;

Adis(w,w’) <t
= HOO(W|J = Z)
w'e
=Ho(W|J =1i) 4+ 1 — log Bt.

Where the fourth line follows by Lemma [D.2] which follows the proof of Theorem B.6l This completes
the proof of Claim [D.11 O

We now return to the proof of Theorem [3.6 Together Equation [3] and Claim [D.1] yield:
1

Al IVISS(V) A Loy = 0) > — g 5272001} o
(]
= —log <E 2H§?§§(W|I=i/\110w=0)> 1 10g%
7
3 1
= H{%*(W|I A ljoy, = 0) — 1 —log 3
1
> Hf,gz(W“low =0)—1—logn —log 5

1
> Hf‘f;z(W) —1—logn — log 5 +log(l—2"™)
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Where the second-to-last line follows by Lemma 2.9 The last line follows by Lemma and by noting
that Pr[ljow = 0] > (1 —27™). Returning to equation |2 one has:

Heo (W|SS(W)) > —log (rm +(1- 2—m)2—ﬁw<W|SS<W>Mlow:0>)
> —log (2—m + 2—(Hf:‘§§(W)—1—logn—log 1/5+210g(1—2_m))>
—log min{27m7 2—(Hf?§§(W)—1—logn—log 1/6+2 log(l—Q_m))} 1

Hf‘éf)z(W) —2—logn —logl/d +2log(l1—2"™)
H{%#(W) — 4 —logn —log1/4

AVARAVARLY]

Where the fourth line follows from the third because Hf%*(W) < Hoo(W) = m. The last line follows
from the fourth because if m > 1, then log(1 —27™) > —1 and if m < 1 the entire bound is vacuous as
Hf}é;z(W) <1 0

Lemma D.2. Let W be a distribution and let S C W such that for all wi,ws € S, Pr[W = w;] > Pr[W =
ws]/2. Let J be as above, then for all wi,wy € (SAW|J = j3), Pr[W = wq|J = j] > Pr[W = wq|J = j]/2.

Proof.

Pr[W = wy|J = j] =

Pr[J = j]
. PF[W = wl]
Y]
PF[W = wg]
— 2Pr[J =]
_ Pr[W =wa AT =]
N 2Pr[J = j]
_ Pr[W = ws|J = j]
2

Where the first and last equality follow by Bayes’ rule. The second and fourth equality follow by noting
that PriW = w A J = j]| =Pr[W = wA ligw = 0A I = i] = Pr[W = w)| for all w € L;. The inequality
proceeds by assumption. This completes the proof of Lemma ]

E Proof of Theorem [4.1]

Let ¢ < Neigh,(c) sample a uniform point within distance ¢ of c¢. The proof of Theorem 1] uses the
definition of a Shannon code:

Definition E.1. Let C be a set over space M. We say that C is an (t,)-Shannon code if there erists a
procedure Rec such that for all ¢ € C, Pr[¢’ <— Neigh,(c) A Rec(c') # ¢] < 6.

We now prove item in the outline of Theorem 4.1l

Proposition E.2. For each W, € Wz, H{%2*(W.) = w(logn).
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Proof. Consider some W, € Wy. The value w; is uniform in a field of size w(poly(n)), so Hoo(W,) >
w(logn). We now show that for any w,w’ € W, dis(w,w’) = v > t. This shows that H{%Z*(W.) =
Hoo (W,). Fix some w,w’ € W,. Clearly, w; # w}, for any i, w; = a;w; + b; and w} = a;w)| + b;. Since

a; # 0, a;wy # a;w} and thus a;wy + b; # a;w] + b;. That is, dis(w, w’) = 7.

O

Proposition E.3. V is the uniform distribution over F7.

Proof. Consider some w € V. Then w was drawn from an intermediate distribution W, with coefficients
az,ba,...,ay,by. The value w; is uniformly random and w; are uniformly random since by, ..., b, are
uniformly distributed. O

Lemma E.4. Fiz some SS, Rec algorithm with error § < 1/4, then Ho(V|SS(V)) < (y—t+1) log |F| + 1E|

Proof. We assume that Rec is deterministic in our analysis. Any randomness necessary for the Rec
algorithm can be provided by SS. This is the same as considering Rec that outputs any coin it flips. Since
w,w’ are independent of ss this does not effect correctness. Security is defined based on the output of SS
so outputting the coins of Rec does not effect security. By the definition of correctness for (SS, Rec),

Vw,w', dis(w,w’) <t, Pr [Rec(w',ss) # w] <.
554-SS(w)

Fix some w. By Markov’s inequality, there exists a set Ags such that Pr[ss € As5] > 1/2 and Vss € A,

{w'|dis(w’, w) <t A Rec(w’, ss) # w}
{w!|dis(w’, w) < t}]

< 26.

Consider some ss* € Ags. We now show that Hy(V|SS(V) = ss*) < (y—t+1)log|F|. For the sketched
value w, at most a 26 fraction of nearby w’ do not map to w. Thus, this is also true for every value in
VISS(V) = ss*. This makes the support of V|SS(V) = ss* a (t,2§)-Shannon code (see Definition [E.T]).
This implies that for all wy,wy € V|SS(V) = ss*, dis(wy, w2) > t (since 26 < 1/2). That is V|SS(V) = ss*
is a set with minimum distance at least ¢.

By the Singleton bound, this implies that Ho(V[SS(V) = ss*) < (y — ¢ + 1)|F|. Averaging over
SS(V) = ss* one has that Hy(V[SS(V)) < (v —t + 1) log |F| + 1. O

Lemma E.5. Hy(V|SS(V), Z) < 2 and thus Hy (V|SS(V), Z) < 2.

Proof. Recall that Z consists of 27 coefficients and there are (|F| — 1)7~!F|?~! equally likely values for
Z. As described above, the view of SS is a uniform distribution V. The length of this point is |F|.
Conditioned on this information there are still many possible values for Z. That is,

(IF] = D)~ HFP
g

Vo, Ho(ZIV =) = o ) =108 ((F1 - 17~ /IF).
Consider two possible z1, z2 that are possible values of Z (having seen v). The distributions V|Z = z;
and V|Z = z; intersect at one point (namely v).

We now show for any sketch algorithm there are few possible values of V|Z in the support of V/|SS(V).
The distributions V|Z = z; and V|Z = z; for possible z1, zo (having seen v) overlap only at the point

9This result is an extension of lower bounds from [DORS08, Appendix C]. Dealing with imperfect correctness makes the
bound more complicated. In particular, we can only argue about the average remaining support size.
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v. This means for any v* € V|SS(V) (other than the true v) there is at most one z such that v* €
VISS(V), Z = z.

The optimum strategy is to include these values uniformly from different Z values. We show this
across different sketch values. Consider some fixed sketch value s and let hy = Ho(V|SS(V) = s). Recall
that (VISS(V)=s) h

) _ Ho(V[SS(V)=s) _ s

Hy(V|SS(V)) = log seslg(\/) 2 = log SGSIE(V) 2
Conditioned on seeing the point V there are (|F| — 1)Y~!/|F| possible values for Z with disjoint support
outside of the sketched point. Consider these possible values for Z as containers to be filled with the
2"ss items (possible values of V|SS(V) = ss). Each container receives automatically receives one free
point (all the distributions share v). The average number of items in each container is maximized when
the containers are filled equally. That is, the average number of items in each container is bounded by
the number of items divided by the number of container. That is,

Fo(VIZ,SS(V) = s5) < log <# items + # contamers)

# containers

o (2EL
BN

Then averaging over the possible values of s, we have the following as long as t > 4:

gO(V‘Z, SS(V)) — IOg E QHO(V|SS(V):SS,(Z‘SS(V):SS))
seSS(V)

2% ||
=1 E EE——"—
0% cesw) ((\m T )

|| h
< I —— K 2" 1.15.
- max{ o8 ((\F! — 1)771 sess(v) T

Where the inequality follows because log(z + 1) < max{logx + 1,1} for z > 0. The left operand to max
is bounded by 2 (bounding the max by 2). This argument uses a technical lemma that appears directly

after (Lemma [E.6).
|F| h >
log (=" E 2" )41
o ((!F\ — 1)77 1 sess(v) "
= log |F| — (v — 1) log(|F| — 1) +1 E 2R ) 41
o Fl — (7~ )togl(Fl ~ 1) +1og (2 2") +
= log |F| — (v — 1) log(|F| — 1) + Ho(V[SS(V)) + 1

< (y—t+2)log F| — ( — 1) log(|F| — 1) + 2
<(y—t+2)log|F| — (y—2)log|F|+2 (by Lemma [E.G])
<(4—-t)log|F|+2<2.

O]

Lemma E.6. For any real numbers o < n with n > e+ 1 (in particular, n > 4 suffices), the following
holds: alog(n —1) > (o — 1) logn.
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Proof. Because n — 1 is positive, and 1+ z < e” for positive x,

1 1
1+ — <en1,
+ 1 en

Therefore,
1 a—1 P
<1+> <enl <e<n-—1
n—1
(since aw < ). Multiplying both sides by (n — 1)

o=l we obtain

< (n—1)".

Taking the logarithm of both sides yields the statement of the lemma. O

F Proof of Theorem [5.1

Proposition F.1. For each W, € Wy, Hf*22(W,) = w(logn).

t,00

Proof. Consider some fixed W, € Wz. The bits wy, ., = z are uniform, so Hoo (W) = w(logn). Recall
that t = o(n/v). Fix some w,w’ € W,. Denote by z, 2’ the values that produce w, w’ respectively. Clearly,
x # x'. Thus, for any i, a;z + b; # a;z’ + b;. This implies that w1 (i41)y 7 wgy+1’.__7(i+1)y. That is,
at least one of the bits in each block differs between w and w’, and so dis(w,w') > n/v > t. Since no two
values in the support of W, lie in the same ball of radius ¢, we have Hf%22(W,) = Hoo (W,) = w(logn). O

t,00
Proposition F.2. V is the uniform distribution over F7.

Proof. Consider some w € V over {0,1}". Then w < W, for coefficients z = as, by, ..., a, by. The value
w1,...» = z is uniformly random and w;, 41, (i+1), are uniformly random since by, ..., by are random. [J

Lemma F.3. Fiz some (Gen,Rep) algorithm with k > 2. There exists an information theoretic distin-
guisher between (Key, P, Z) and (U, P, Z) with advantage e = 1/8 —ngl(n).

Proof. As in the proof of Theorem [4.1l we assume that Rep is deterministic. Denote by (Key, P) <«
Gen(V'). By Markov’s inequality, there exists a set A, such that Pr[p € A] > 1/2 and Vp € A,

(Key|P = p, P = p) ~2 (Uy, P = p).

Consider some p* € A.. The distribution Key|P = p* is the set of possible keys. The distribution
Key|P = p* induces a partition on the metric space. That is, for every w € M, there exists a unique
value key such that Rep(w,p*) = key. Denote this partition by Qp+ ey = {w|Rep(w, p*) = key}.

There exists a set Key,,,.; where |Keyg.ul > 2571 such that for all key € Key,ai |Qpkeyl <
M/2% =277 If not, then Uyey|@p* key| > |M|. For the remainder of the proof we restrict ourselves to
elements in Key,,,,;- Only points that are distance ¢ from points outside of @,+ , are viable points in the
metric space. These are points where all points within distance ¢ map to the same key. We call this set
the interior of Qp+ key:

Inter(Qp+ key) = {w|Rep(w, p*) = key A (Yo', dis(w, w") <t A Rep(w’, p*) = key)},
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The isoperimetric inequality says Inter(Qp« key) must be of bounded size. This statement use the sets
which are nearly balls in the Hamming spacelﬁ

Definition F.4. A set S is a n-near ball if there exists a point x such that B, _i(x) C S C By(x).
We now show for any key*, Inter(Qp« key*) is small:

Lemma F.5. [Inter(Q« key*)| < 2774,

Proof. By the isoperimetric inequality on the Hamming space (we use a version due to [FE81, Theorem
1], the original result is due to Harper [Har66]), there exists a n-near ball Sy« oy« centered at 0" and a
near ball D, centered at 1", such that [Sp« key*| = [Inter(Qp+ ey )|, [D| = |Q]E*,key*| (where -C denotes the
complement of a set) and Vs € Sy ey, d € D, dis(s,d) > t (that is, the distance between the sets is t).
Since Sy« ey is a near ball and the set Db contains all points of distance less than ¢ from S« yey+. Thus,

the set Sy« ey U Db contains a near ball of radius is n+t—1). We now bound the size of Sp« ey
Recall that [Sp« yey* uDt| = |Qp= key*| < 2777 < |M]/2. Since this set contains less than half the points

in the metric space we know its radius at most n/2. This means that |Sp« e | is a near ball of radius at

most n/2 —t + 1. Let X denote a uniform string on {0,1}". We use Hoeffding’s inequality [Hoe63]:

n

|Sp+ key*| < {z|dis(z,0) < 5~ t+1}
1 t-1
=2" P HX) < (= — —=
X(—{({1}n[w ( ) - (2 n )n]

< 2ne—n(((t—1)/n)2) — gne—d < gn—4v_

where the second to last equality follows from the definition of ¢ (as 4vy/n + 1) at the beginning of the
proof of Theorem O

We have shown that [Inter(Qp« key*)| < 2n=4  To complete the proof it suffices to show that for
most values of the auxiliary information Z there are many parts @« key* that do not receive any points.
Recall that Z consists of 2n/v coefficients and there are (2/¥ —1)¥~12"¥ equally likely values for Z. As
described above, the view of Gen, Rep is a uniform distribution V. We know show there are many possible
values for Z|P = p*. The only information about Z is contained in the point V' = v. The length of this
point is 2. Conditioned on this information there are still many possible values for Z. That is,

on/v _ 1yw—lon—v
Vo, Hy(Z|V = v) = log <( ) )
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(2n/y _ 1)1/—1
21/
(2n/u)u—2
21/
o(n—2v))

= ]og 721/ =n — 3.

= log

> log (by Lemma [E.6])

10Tn most statements of the isoperimetric inequality, this type of set is simply called a ball. We use the term near ball for
emphasis.
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Consider two possible z1, z9 that are possible values of Z. The distributions V|Z = z; and V|Z = 29
intersect at one point (namely v).

This means that the Gen algorithm may include points for possible Z values into parts @« key* (other
than v) and these values are disjoint. The optimum strategy is to include these values uniformly from dif-
ferent Z values. Consider the set of all preimages of Key,,,,; denoted Qsmait = Ukeyekey,,, ., INter(Quey,p+)-
Note that Qgman < 27~ * |Keygman|- We now show that the intersection between Qyey p+ is small for most
possible values z. As before each container (the values of z) receives one item for free (the point v).

* # items -+ # containers
IE|Qsmallﬁ(Vv|P:p /\Z:Z)| < -
z # containers

< 2n_4y‘ Keysmall‘

— on—3v +1

|Keysmall|
= T +1

In expectation across 7,
‘Keyﬁyal” +1 1 1
| Keysmall ‘ 2 | KeYSmall |

fraction of Key,, ., receive any support. We now present a distinguisher D« for a particular p*:

1. On input key, z.

[\)

. Compute V|P =p* AN Z = z and Qp* key-
3. If (Qprkey NV|P =p* ANZ = z) =0 output b= 0.
4. Else output b= 1.

The distinguisher D(key, p, z) is formed by calling D) (key, z) when p € A, and outputting a random
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bit otherwise. The advantage of D is

Pr[D(Key, P, Z) = 1] — Pr[D(U, P, Z) = 1]

— (Pr[D(Key, P, Z) = 1|P € A]] — Pr[D(U, P, Z) = 1|P € A]) P[P € A/]
> Y Pr[P=p"](1-Pr[Dy(U, 2) = 1])

P*EA.
> Z PI‘[P = p*](l o PT[DP*(U’ Z) = 1|U S Keysmall] PI"[U S Keysmall]

p*EA.
- PI‘[U ¢ Keysmall])

1 1
> Pr[P =p* 1—<<+)PrU€Keysma )
;4 [ ]( |Keysmall‘ 2V [ ll]

prEAe

- PI‘[U ¢ Keysmall])

1 1
= Z PI‘[P = p*] <1 - 27 - 5 PI'[U € Keysmall] - PI‘[U g Keysmall]>
prEA.

1 1
2 Z PI‘[P = p*] (1 T o o PI‘[U € Keysmall] - PY[U ¢ Keysmall])

prEA 2 2
> PI'[P = p*] 1-— iy -1+ 1]?I'[[] S Keysma”]
2 2
PrEA.
1
> > Pr{P = p'] (1/4 - ngl(n) > < —ngl(n).
prEA.

The sixth line follows since Key,,,,; > 271 > 2. The eighth line follows because Pr[U € Key,,,.u] > 1/2.

The last inequality proceeds because Pr[P € A.] > 1/2. This completes the proof of Lemma [F.3l
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