
NAVIGATING IN THE CAYLEY GRAPH OF SL2(Fp)

AND APPLICATIONS TO HASHING

LISA BROMBERG, VLADIMIR SHPILRAIN, AND ALINA VDOVINA

ABSTRACT. Cayley hash functions are based on a simple idea of using a pair
of (semi)group elements, A and B, to hash the 0 and 1 bit, respectively, and
then to hash an arbitrary bit string in the natural way, by using multiplication
of elements in the (semi)group. In this paper, we focus on hashing with 2× 2
matrices over Fp. Since there are many known pairs of 2× 2 matrices over Z
that generate a free monoid, this yields numerous pairs of matrices over Fp, for
a sufficiently large prime p, that are candidates for collision-resistant hashing.
However, this trick can “backfire”, and lifting matrix entries to Z may facilitate
finding a collision. This “lifting attack” was successfully used by Tillich and
Zémor in the special case where two matrices A and B generate (as a monoid)
the whole monoid SL2(Z+). However, in this paper we show that the situation
with other, “similar”, pairs of matrices from SL2(Z) is different, and the “lifting
attack” can (in some cases) produce collisions in the group generated by A and
B, but not in the positive monoid. Therefore, we argue that for these pairs of
matrices, there are no known attacks at this time that would affect security of
the corresponding hash functions. We also give explicit lower bounds on the
length of collisions for hash functions corresponding to some particular pairs of
matrices from SL2(Fp).

1. INTRODUCTION

Hash functions are easy-to-compute compression functions that take a variable-
length input and convert it to a fixed-length output. Hash functions are used as
compact representations, or digital fingerprints, of data and to provide message
integrity. Basic requirements are well known:

(1) Preimage resistance (sometimes called non-invertibility): it should be com-
putationally infeasible to find an input which hashes to a specified output;

(2) Second pre-image resistance: it should be computationally infeasible to
find a second input that hashes to the same output as a specified input;

(3) Collision resistance: it should be computationally infeasible to find two
different inputs that hash to the same output.

A challenging problem is to determine mathematical properties of a hash func-
tion that would ensure (or at least, make it likely) that the requirements above are
met.

Research of the second author was partially supported by the NSF grant CNS-1117675.
1

2 NAVIGATING IN THE CAYLEY GRAPH OF SL2(FP) AND APPLICATIONS TO HASHING

Early suggestions (especially the SHA family) did not really use any mathemat-
ical ideas apart from the Merkle-Damgard construction for producing collision-
resistant hash functions from collision-resistant compression functions (see e.g. [9]);
the main idea was just to “create a mess” by using complex iterations (this is not
meant in a derogatory sense, but just as an opposite of using mathematical structure
one way or another).

An interesting direction worth mentioning is constructing hash functions that are
provably as secure as underlying assumptions, e.g. as discrete logarithm assump-
tions; see [2] and references therein. These hash functions however tend to be not
very efficient. For a general survey on hash functions we refer to [9].

Another direction, relevant to the present paper, is using a pair of elements, A
and B, of a semigroup S, such that the Cayley graph of the semigroup generated
by A and B is expander, in the hope that such a graph would have a large girth and
therefore there would be no short relations. Probably the most popular implemen-
tation of this idea so far is the Tillich-Zémor hash function [16]. We refer to [11]
and [13] for a more detailed survey on Cayley hash functions.

The Tillich-Zémor hash function, unlike functions in the SHA family, is not a
block hash function, i.e., each bit is hashed individually. More specifically, the “0”
bit is hashed to a particular 2× 2 matrix A, and the “1” bit is hashed to another
2×2 matrix B. Then a bit string is hashed simply to the product of matrices A and
B corresponding to bits in this string. For example, the bit string 1000110 is hashed
to the matrix BA3B2A.

Tillich and Zémor use matrices A, B from the group SL2(R), where R is a com-
mutative ring (actually, a field) defined as R = F2[x]/(p(x)). Here F2 is the field
with two elements, F2[x] is the ring of polynomials over F2, and (p(x)) is the ideal
of F2[x] generated by an irreducible polynomial p(x) of degree n (typically, n is a
prime, 127 ≤ n ≤ 170); for example, p(x) = x131 +x7 +x6 +x5 +x4 +x+1. Thus,
R = F2[x]/(p(x)) is isomorphic to F2n , the field with 2n elements.

Then, the matrices A and B are:

A =

(
α 1
1 0

)
, B =

(
α α+1
1 1

)
,

where α is a root of p(x).
This particular hash function was successfully attacked in [4] and [12]; see also

[10] for a more general attack approach.

Another idea for hashing with matrices is to use a pair of 2×2 matrices, A and
B, over Z that generate a free monoid, and then reduce the entries modulo a large
prime p to get matrices over Fp. Since there cannot be an equality of two different
products of positive powers of A and B unless at least one of the entries in at least
one of the products is ≥ p, this gives a lower bound on the minimum length of bit
strings where a collision may occur. This lower bound is going to be on the order
of log p; we give more precise bounds for some particular examples of A and B in
our Section 3.

The first example of a pair of matrices over Z that generate a free monoid is:

NAVIGATING IN THE CAYLEY GRAPH OF SL2(Fp) AND APPLICATIONS TO HASHING 3

A(1) =
(

1 1
0 1

)
, B(1) =

(
1 0
1 1

)
.

These matrices are obviously invertible, so they actually generate the whole
group SL2(Z). This group is not free, but the monoid generated by A(1) and B(1)
is free, and this is what matters for hashing because only positive powers of A(1)
and B(1) occur in hashing. However, the fact that these two matrices generate
the whole SL2(Z) yields an attack on the corresponding hash function (where the
matrices A(1) and B(1) are considered over Fp, for a large p), see [15], where a
collision is found by using Euclidean algorithm on the entries of a matrix.

At this point, we note that a pair of matrices

A(x) =
(

1 x
0 1

)
, B(y) =

(
1 0
y 1

)
generate a free subgroup of SL2(Z) if xy ≥ 4.

In Section 2, we consider the following pair of matrices:

A(2) =
(

1 2
0 1

)
, B(2) =

(
1 0
2 1

)
.

By using a result from an old paper of Sanov [14] and combining it with the
attack on hashing with A(1) and B(1) offered in [15], we show that there is an
efficient heuristic algorithm that finds circuits of length O(log p) in the Cayley
graph of the group generated by A(2) and B(2), considered as matrices over Fp.
However, this has no bearing on the (in)security of the hash function based on
A(2) and B(2) since in hashing only positive powers of A(2) and B(2) are used,
and group relations of length O(log p) produced by the mentioned algorithm will
involve negative as well as positive powers with overwhelming probability.

To conclude the Introduction, we mention that the fact that Cayley graphs of the
groups generated by A(1),B(1) and by A(2),B(2) are expanders was known for a
couple of decades (see e.g. [7] for all background facts on expanders), but the same
property of the Cayley graph relevant to A(3),B(3) was a famous 1-2-3 question
of Lubotzky, which was settled in the positive in [1] using results from [5].

We also give a word of caution: while intuitively, we think of expander graphs as
graphs with a large (“expanding”) girth, this is not necessarily the case in general.
In particular, first explicit examples of expander graphs due to Margulis[8] have
bounded girth.

2. HASHING WITH A(2) AND B(2) AND CIRCUITS IN THE CAYLEY GRAPH

In this section, motivated by hashing with the matrices A(2) and B(2) considered
as matrices over Fp, we discuss circuits in the relevant Cayley graph.

Tillich and Zémor [15] offered an attack on the hash function based on A(1) and
B(1) (again, considered as matrices over Fp). To the best of our knowledge, this
is the only published attack on that hash function. In this section we explain why
this particular attack should not work with the matrices A(2) and B(2), and this

4 NAVIGATING IN THE CAYLEY GRAPH OF SL2(FP) AND APPLICATIONS TO HASHING

therefore leaves the door open for using these matrices (over Fp, for a sufficiently
large p) for hashing.

First we explain, informally, what appears to be the reason why the attack from
[15] should not work with A(2) and B(2). The reason basically is that, while A(1)
and B(1) (considered over Z) generate (as a monoid!) the whole monoid of 2×2
matrices over Z with positive entries, with the matrices A(2) and B(2) the situation
is much less transparent. There is a result from an old paper by Sanov [14] that
says: the subgroup of SL2(Z) generated by A(2) and B(2) consists of all matrices of

the form
(

1+4m1 2m2
2m3 1+m4

)
, where all mi are arbitrary integers. This, however,

does not tell much about the monoid generated by A(2) and B(2). In fact, a generic
matrix of the above form would not belong to this monoid. This is not surprising
because: (1) A(2) and B(2) generate a free group, by another result of Sanov [14];
(2) the number of different elements represented by all freely irreducible words in
A(2) and B(2) of length m≥ 2 is 4 ·3m−1, whereas the number of different elements
represented by positive words of length m ≥ 2 is 2m. Thus, the share of matrices in
the above form representable by positive words in A(2) and B(2) is exponentially
negligible.

What Tillich and Zémor’s “lifting attack” [15] can still give is an efficient heuris-
tic algorithm that finds relations of length O(log p) in the group generated by A(2)
and B(2), considered as matrices over Fp. We describe this algorithm below be-
cause we believe it might be useful in other contexts, although it has no bearing
on the security of the hash function based on A(2) and B(2) since in hashing only
positive powers of A(2) and B(2) are used, and group relations of length O(log p)
produced by the algorithm mentioned above will involve negative as well as pos-
itive powers with overwhelming probability, even if p is rather small. What one
would need to attack the hash function corresponding to A(2) and B(2) is a result,
similar to Sanov’s, describing all matrices in the monoid generated by A(2) and
B(2).

We are now going to use a combination of the attack on A(1) and B(1) offered
in [15] with the aforementioned result of Sanov [14] to find relations of length
O(log p) in the group generated by A(2) and B(2).

Theorem 1. There is an efficient heuristic algorithm that finds particular relations
of the form w(A(2),B(2)) = 1, where w is a group word of length O(log p), and the
matrices A(2) and B(2) are considered over Fp.

Proof. It was shown in [15] that:
(a) For any prime p, there is an efficient heuristic algorithm that finds positive

integers k1,k2,k3,k4 such that the matrix
(

1+ k1 p k2 p
k3 p 1+ k4 p

)
has determinant 1

and all ki are of about the same magnitude O(p2).

(b) A generic matrix from part (a) has an efficient factorization (in SL2(Z)) in a
product of positive powers of A(1) and B(1), of length O(log p). (This obviously
yields a collision in SL2(Fp) since the matrix from part (a) equals the identity
matrix in SL2(Fp).)

NAVIGATING IN THE CAYLEY GRAPH OF SL2(Fp) AND APPLICATIONS TO HASHING 5

Now we combine these results with the aforementioned result of Sanov the fol-
lowing way. We are going to multiply a matrix from (a) (call it M) by a matrix
from SL2(Z) (call it S) with very small (between 0 and 5 by the absolute value) en-
tries, so that the resulting matrix M ·S has the form as in Sanov’s result. Since the
matrix M, by the Tillich-Zémor results, has an efficient factorization (in SL2(Z)) in
a product w(A(1),B(1)) of powers of A(1) and B(1) of length O(log p), the same
holds for the matrix M · S. Then, since the matrix M · S is in “Sanov’s form”, we
know that it is, in fact, a product of powers of A(2) and B(2).

Now we need one more ingredient to efficiently re-write a product of A(1) and
B(1) into a product of A(2) and B(2) without blowing up the length too much. This
procedure is provided by Theorem 2.3.10 in [3]. We cannot explain it without in-
troducing a lot of background material, but the fact is that, since the group SL2(Z)
is hyperbolic (whatever that means) and the subgroup generated by A(2) and B(2)
is quasiconvex (whatever that means), there is a quadratic time algorithm (in the
length of the word w(A(1),B(1))) that re-writes w(A(1),B(1)) into a u(A(2),B(2))
such that w(A(1),B(1)) = u(A(2),B(2)) and the length of u is bounded by a con-
stant (independent of w) times the length of w.

Thus, what is now left to complete the proof is to exhibit, for all possible ma-
trices M as in part (a) above, particular “small” matrices S such that M · S is in
“Sanov’s form”. We are therefore going to consider many different cases corre-
sponding to possible combinations of residues modulo 4 of the entries of the ma-
trix M (recall that M has to have determinant 1), and in each case we are going to
exhibit the corresponding matrix S such that M ·S is in “Sanov’s form”. Denote by
M̂ the matrix of residues modulo 4 of the entries of M. Since the total number of
cases is too large, we consider matrices M̂ “up to a symmetry”.

(1) M̂ =

(
1 0
1 1

)
, S =

(
1 0
1 1

)
(2) M̂ =

(
1 0
2 1

)
, S =

(
1 0
2 1

)
(3) M̂ =

(
1 0
3 1

)
, S =

(
1 0
3 1

)
(4) M̂ =

(
2 1
1 1

)
, S =

(
1 3
3 2

)
(5) M̂ =

(
2 3
3 1

)
, S =

(
3 1
1 2

)
(6) M̂ =

(
2 3
1 2

)
, S =

(
0 1
3 2

)
(7) M̂ =

(
2 1
1 3

)
, S =

(
1 3
3 2

)
(8) M̂ =

(
2 3
3 3

)
, S =

(
1 1
1 2

)
(9) M̂ =

(
3 3
0 1

)
, S =

(
3 3
0 1

)

6 NAVIGATING IN THE CAYLEY GRAPH OF SL2(FP) AND APPLICATIONS TO HASHING

(10) M̂ =

(
3 0
0 3

)
, S =

(
−1 0
0 −1

)
(11) M̂ =

(
3 0
1 3

)
, S =

(
−1 0
1 −1

)
(12) M̂ =

(
3 0
2 3

)
, S =

(
−1 0
2 −1

)
(13) M̂ =

(
3 0
3 3

)
, S =

(
−1 0
3 −1

)
(14) M̂ =

(
3 2
2 3

)
, S =

(
−1 2
2 −5

)
This completes the proof.

�
To conclude this section, we point out an example of re-writing a word in A(1)

and B(1) into a word in A(2) and B(2). All matrices here are considered over Z.

A(1)B(1)A(1)B(1)A(1)B(1) = A(2)A(2)B(2)−1B(2)−1A(2)−1A(2)−1B(2)B(2).

We see that even in this simple example, both positive and negative powers of A(2)
and B(2) are required.

3. GIRTH OF THE CAYLEY GRAPH RELEVANT TO A(k) AND B(k)

Our starting point here is the following observation: the entries of matrices that
are products of length n of positive powers of A(k) and B(k) exhibit the fastest
growth (as functions of n) if A(k) and B(k) alternate in the product: A(k)B(k)A(k)B(k) · · · .
More formally:

Proposition 1. Let wn(a,b) be an arbitrary positive word of even length n, and let
Wn = wn(A(k),B(k)), with k ≥ 2. Let Cn = (A(k) ·B(k))

n
2 . Then: (a) the sum of

entries in any row of Cn is at least as large as the sum of entries in any row of Wn;
(b) the largest entry of Cn is at least as large as the largest entry of Wn.

Proof. First note that multiplying a matrix X by A(k) on the right amounts to
adding to the second column of X the first column multiplied by k. Similarly,
multiplying X by B(k) on the right amounts to adding to the first column of X the
second column multiplied by k. This means, in particular, that when we build a
word in A(k) and B(k) going left to right, elements of the first row change indepen-
dently of elements of the second row. Therefore, we can limit our considerations
to pairs of positive integers, and the result will follow from the following

Lemma 1. Let (x,y) be a pair of positive integers and let k ≥ 2. One can apply
transformations of the following two kinds: (1) transformation R takes (x,y) to
(x,y+ kx); (2) transformation L takes (x,y) to (x+ ky,y). Among all sequences
of these transformations of the same length, the sequence where R and L alternate
results in: (a) the largest sum of elements in the final pair; (b) the largest maximum
element in the final pair.

NAVIGATING IN THE CAYLEY GRAPH OF SL2(Fp) AND APPLICATIONS TO HASHING 7

Proof. We are going to prove (a) and (b) simultaneously using induction by the
length of a sequence of transformations. Suppose our lemma holds for all se-
quences of length at most m ≥ 2, with the same initial pair (x,y). Suppose the
final pair after m alternating transformations is (X ,Y). Without loss of generality,
assume that X < Y . That means the last applied transformation was R. Now ap-
plying L to (X ,Y) gives (X + kY,Y), while applying R to (X ,Y) gives (X ,Y + kX).
Since X + kY > Y + kX , applying L results in a larger sum of elements as well as
in a larger maximum element. Thus, we have a sequence of (m+ 1) alternating
transformations, and now we have to consider one more case.

Suppose some sequence of m transformations applied to (x,y) results in a pair
(X ′,Y ′) with X ′+Y ′ <X+Y, Y ′ <Y , but X ′ >X . Then applying L to this pair gives
(X ′+kY ′,Y ′), and the sum is X ′+Y ′+kY ′ < X +Y +kY since X ′+Y ′ < X +Y and
Y ′ < Y . The maximum element of the pair (X ′+ kY ′,Y ′) is X ′+ kY ′ = X ′+Y ′+
(k−1)Y ′. Again, since X ′+Y ′ < X +Y and Y ′ < Y , we have X ′+ kY ′ < X + kY .
This completes the proof of the lemma and the proposition.

�

�

This motivates us to consider powers of the matrix C(k) = A(k)B(k) to get to
entries larger than p “as quickly as possible”.

3.1. Powers of C(2) = A(2)B(2). The matrix C(2) is
(

5 2
2 1

)
. If we denote

(C(2))n =

(
an bn
cn dn

)
, then the following recurrence relations are easily proved

by induction on n:

an = 5an−1 +2bn−1; bn = cn = 2an−1 +bn−1; dn = an−1.

Combining the recurrence relations for an and bn, we get 2bn = an − an−1, so
2bn−1 = an−1 − an−2. Plugging this into the displayed recurrence relation for an
gives

an = 6an−1 −an−2.

Similarly, we get

bn = 6bn−1 −bn−2.

Solving these recurrence relations (with appropriate initial conditions), we get

an =(
1
2
+

1√
8
)(3+

√
8)n+(

1
2
− 1√

8
)(3−

√
8)n, bn =

1√
8
(3+

√
8)n− 1√

8
(3−

√
8)n.

Thus, an is the largest entry of (C(2))n, and we conclude that no entry of (C(2))n

is larger than p as long as n < log
3+

√
8

p. Since C(2) = A(2)B(2) is a product of
two generators, (C(2))n has length 2n as a word in the generators A(2) and B(2).

8 NAVIGATING IN THE CAYLEY GRAPH OF SL2(FP) AND APPLICATIONS TO HASHING

Therefore, no two positive words of length ≤ m in the generators A(2) and B(2)
(considered as matrices over Fp) can be equal as long as

m < 2log
3+

√
8

p = log√
3+

√
8

p,

so we have the following

Corollary 1. There are no collisions of the form u(A(2),B(2)) = v(A(2),B(2)) if
positive words u and v are of length less than log√

3+
√

8
p. In particular, the girth

of the Cayley graph of the semigroup generated by A(2) and B(2) (considered as
matrices over Fp) is at least log√

3+
√

8
p.

The base of the logarithm here is
√

3+
√

8 ≈ 2.4. Thus, for example, if p
is on the order of 2256, then there are no collisions of the form u(A(2),B(2)) =
v(A(2),B(2)) if positive words u and v are of length less than 203.

We also note, in passing, that our Proposition 1 also holds without the assump-
tion on the words wn(a,b) to be positive if we consider the absolute values of the
matrix entries and their sums. Our lower bound on the girth of the Cayley graph of
the group generated by A(2) and B(2) therefore improves (in this particular case)
the lower bound given in [5], where the base of the logarithm in the lower bound is
3.

3.2. Powers of C(3)=A(3)B(3). The matrix C(3) is
(

10 3
3 1

)
. If we let (C(3))n =(

an bn
cn dn

)
, and use the fact that (C(3))n =C(3) ·C(3)n−1, we get the following re-

currence relations:

an = 10an−1 +3bn−1

bn = 3an−1 +bn−1 = cn

dn = an−1

Combining these recurrence relations for an and bn, we get

an = 11an−1 −an−2, bn = 11bn−1 −bn−2.

Solving these recurrence relations with the initial conditions a1 = 10,a2 = 109 and
b1 = 3,b2 = 33, we get

an =
(9

2
√

117
+

1
2

)(11+
√

117
2

)
+
(1

2
− 9

2
√

117

)(11−
√

117
2

)
,

bn =
3√
117

(11+
√

117
2

)
− 3√

117

(11−
√

117
2

)
.

From this we see that an is the largest entry of (C(3))n, so no entry of (C(3))n

is larger than p if n < log 11+
√

117
2

p. Since C(3) is a product of two generators, A(3)

and B(3), we have:

NAVIGATING IN THE CAYLEY GRAPH OF SL2(Fp) AND APPLICATIONS TO HASHING 9

Corollary 2. There are no collisions of the form u(A(3),B(3)) = v(A(3),B(3))
if positive words u and v are of length less than 2log 11+

√
117

2
p = log√

11+
√

117
2

p. In

particular, the girth of the Cayley graph of the semigroup generated by A(3) and
B(3) (considered as matrices over Fp) is at least log√

11+
√

117
2

p.

The base of the logarithm here is √
11+

√
117

2
≈ 3.3. For example, if p is on the

order of 2256, then there are no collisions of the form u(A(2),B(2)) = v(A(2),B(2))
if positive words u and v are of length less than 149.

4. CONCLUSIONS

We have analyzed the girth of the Cayley graph of the group and the monoid
generated by pairs of matrices A(k) and B(k) (considered over Fp), for various
k ≥ 1. Our conclusions are:

• The “lifting attack” by Tillich and Zémor [15] that produces explicit rela-
tions of length O(log p) in the monoid generated by A(1) and B(1), can be used in
combination with an old result by Sanov [14] and some results from the theory of
automatic groups [3] to efficiently produce explicit relations of length O(log p) in
the group generated by A(2) and B(2).

• Generically, relations produced by this method will involve negative as well
as positive powers of A(2) and B(2), and therefore will not produce collisions for
the corresponding hash function.

• In the absence of a result for A(3) and B(3) similar to Sanov’s result for A(2)
and B(2), at this time there is no known efficient algorithm for producing explicit
relations of length O(log p) even in the group generated by A(3) and B(3), let alone
in the monoid generated by this pair. At the same time, such relations do exist by
the pigeonhole principle.

• We have computed an explicit lower bound for the length of relations in the
monoid generated by A(2) and B(2); the lower bound is logb p, where the base b of
the logarithm is approximately 2.4. For the monoid generated by A(3) and B(3),
we have a similar lower bound, with base b of the logarithm approximately equal
to 3.3.

• We conclude that at this time, there are no known attacks on hash functions
corresponding to the pair A(2) and B(2) or A(3) and B(3) and therefore no visible
threat to their security.

Acknowledgement. We are grateful to Ilya Kapovich for helpful comments, in
particular for pointing out the relevance of some results from [3] to our work. We
are also grateful to Harald Helfgott for useful discussions.

REFERENCES

[1] J. Bourgain, A. Gamburd, Uniform expansion bounds for Cayley graphs of SL2(Fp). Ann. of
Math. (2) 167 (2008), 625–642.

[2] S. Contini, A. K. Lenstra and R. Steinfeld, VSH, an Efficient and Provable Collision Resistant
Hash Function, in: Eurocrypt 2006, Lecture Notes Comp. Sci. 4004 (2006), 165–182.

10 NAVIGATING IN THE CAYLEY GRAPH OF SL2(FP) AND APPLICATIONS TO HASHING

[3] D. B. A. Epstein, J. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston, Word
processing in groups. Jones and Bartlett Publishers, Boston, MA, 1992.

[4] M. Grassl, I. Ilić, S. Magliveras, R. Steinwandt, Cryptanalysis of the Tillich-Zémor hash
function, J. Cryptolgy 24 (2011), 148-156.

[5] H. A. Helfgott,Growth and generation in SL2(Z/pZ) Ann. of Math. (2) 167 (2008), 601–
623.

[6] M. Larsen, Navigating the Cayley graph of SL2(Fp), Int. Math. Res. Notes 27 (2003), 1465-
1471.

[7] A. Lubotzky, Discrete groups, expanding graphs and invariant measures, Progress in Math-
ematics 125, Birkhäuser Verlag, Basel, 1994.

[8] G. A. Margulis, Explicit constructions of concentrators, Problems of Information Transmis-
sion 9 (1973), no. 4, 325–332.

[9] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRC
Press, 1997.

[10] C. Mullan and B. Tsaban, Short collision search in arbitrary SL2 homomorphic hash func-
tions, preprint, http://arxiv.org/abs/1306.5646

[11] C. Petit, On graph-based cryptographic hash functions, PhD thesis, 2009.
[12] C. Petit, J. Quisquater, Preimages for the Tillich-Zémor hash function, in: SAC 10, Lecture

Notes Comp. Sci. 6544 (2010), 282-301.
[13] C. Petit and J.-J. Quisquater, Rubik’s for cryptographers, Notices Amer. Math. Soc. 60

(2013), 733–739.
[14] I. N. Sanov, A property of a representation of a free group (Russian), Doklady Akad. Nauk

SSSR (N. S.) 57 (1947), 657–659.
[15] J.-P. Tillich and G. Zémor, Group-theoretic hash functions, in Proceedings of the First

French-Israeli Workshop on Algebraic Coding, Lecture notes Comp. Sci. 781 (1993), 90–
110.

[16] J.-P. Tillich and G. Zémor, Hashing with SL2, in CRYPTO 1994, Lecture Notes Comp. Sci.
839 (1994), 40–49.

GRADUATE CENTER, CITY UNIVERSITY OF NEW YORK

E-mail address: lisa.bromberg@gmail.com

DEPARTMENT OF MATHEMATICS, THE CITY COLLEGE OF NEW YORK, NEW YORK, NY
10031

E-mail address: shpil@groups.sci.ccny.cuny.edu

SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NEWCASTLE, NEWCASTLE

UPON TYNE, NE1 7RU, U.K.
E-mail address: alina.vdovina@ncl.ac.uk

