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Abstract

Fuller et al. (Asiacrypt 2013) studied on computational fuzzy extractors, and showed, as a
negative result, that the existence of a computational “secure sketch” implies the existence of an
information-theoretically secure sketch with slightly weaker parameters. In this work, we show
a similar negative result such that the existence of a computational fuzzy extractor satisfying a
certain computational condition implies the existence of an information-theoretic fuzzy extractor
with slightly weaker parameters. The condition is that the generation procedure of the fuzzy
extractor can be efficiently invertible. This result implies that to circumvent the limitations
of information-theoretic fuzzy extractors, we need to employ computational fuzzy extractors in
which the generation procedure cannot be efficiently invertible. As positive results, we present
a construction of computational fuzzy extractor based on a leakage-resilient key encapsulation
mechanism and a construction based on a strong decisional Diffie-Hellman assumption.

1 Introduction

Cryptographic primitives generally require uniformly random strings. A fuzzy extractor is a primi-
tive proposed by Dodis et al. [6] that can reliably derive uniformly random keys from noisy sources,
such as biometric data (fingerprint, iris, facial image, etc.) and long pass-phrases. More formally, a
fuzzy extractor is defined to be a pair of procedures (Gen,Rep). The key generation procedure Gen
receives a sample w from a noisy source W with some entropy, and outputs a uniformly random
key r and a helper string p. After that, the reproduction procedure Rep can be used to derive the
same key r from the helper string p and a sample w′ that is close to the original sample w. Notably,
this framework does not need secret keys other than w. The derived key r is close to uniform even
if the helper string p was given. See [7, 3] for surveys of results related to fuzzy extractors.

Dodis et al. [6] introduced the notion of secure sketch, which, on input w, produces an informa-
tion that enables the recovery of w from any close value w′ and does not reveal much information
about w. Then, they show that a combination of secure sketches and strong extractors gives fuzzy
extractors.

Fuzzy extractors were defined as information-theoretic primitives, and several limitations re-
garding parameters in fuzzy extractors are also studied in [6]. The entropy loss is the difference
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between the entropy of w and the length of the extracted key r. In the setting of information-
theoretic security, the entropy loss is known to be inevitable [12].

Fuller et al. [8] consider the computational security of fuzzy extractors to circumvent the limita-
tions of information-theoretic fuzzy extractors. They gave both negative and positive results. On
one hand, they show that secure sketches with computational security need to be subject to lower
bounds from coding theory. In particular, they show that the existence of a computational secure
sketch implies the existence of an information-theoretic secure sketch with slightly weaker param-
eters. On the other hand, they present a direct construction of a computational fuzzy extractor
based on the hardness of learning with errors (LWE) problem.

In this work, we further study the limitations and possibilities of fuzzy extractors.
First, as a negative result, we show that, assuming that the generation procedure Gen can be

efficiently invertible, computational fuzzy extractors also need to be subject to lower bounds from
coding theory. Specifically, we show that if w can be efficiently computable from the pair (r, p) that
can be generated by Gen(w), then the existence of a computational fuzzy extractor implies the ex-
istence of an information-theoretic fuzzy extractor with slightly weaker parameters. This negative
result implies that in order to circumvent the limitation of the entropy loss of information-theoretic
fuzzy extractors, we need to employ computational fuzzy extractors in which the generation pro-
cedure cannot be efficiently invertible. Indeed, there are extractors for structured sources that can
be efficiently invertible [5].

Next, as a positive result, we give a construction of a computational fuzzy extractor based on a
leakage-resilient key encapsulation mechanism. A key encapsulation mechanism (KEM) is a public-
key primitive that enables two parties to share a random key without private communication. A
leakage-resilient KEM is a KEM with the security against leakage-attacks to secret keys. Such
leakage-resilient cryptographic primitives have been extensively studied in recent years. See [2, 11]
for surveys of leakage-resilient primitives. In our positive result, we only need a somewhat weak
leakage-resilience, which was proposed by Akavia et. al [1], where the leakage function is determined
before choosing a public key. A generic construction of secure public-key encryption in this model
is provided by Naor and Segev [10]. We observe that a combination of a leakage-resilient KEM
and a secure sketch gives a computational fuzzy extractor. Compared to existing computational
extractors, our construction based on leakage-resilient KEM has an advantage in “stretching” the
key. See Section 4 for the details. Finally, we give a simple construction of a computational fuzzy
extractor based on a stronger variant of the decisional Diffie-Hellman assumption.

Comparison to the Negative Results of Fuller et al. [8]

Fuller et al. noted in [8, footnote 3] that, if the generation procedure Gen can be efficiently invertible,
their negative results for computational secure sketches can also be applied to computational fuzzy
extractors. This observation is true if Gen is injective, but it is unclear if similar negative results
hold for non-injective Gen from their results. Moreover, considering non-injective fuzzy extractors
is important because it seems difficult to construct injective fuzzy extractors. We describe these
facts below in more detail.

Let (Gen,Rep) be a computational fuzzy extractor. Assume that there is an efficient algo-
rithm InvGen that, given (r, p), outputs w, where (r, p) was generated by Gen(w). Then, one can
construct a computational secure sketch (SS,Rec) (see Definition 3 for the definition of secure
sketches) by defining SS(w) = {(r, p)← Gen(w);Output p} and Rec(w′, p) = {r ← Rep(w′, p);w ←
InvGen(r, p);Output w}. Thus, by the negative results of [8], this implies the existence of secure
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sketch and fuzzy extractor with information-theoretic security. However, the above observation can
be applied only if InvGen(r, p) outputs the same w from which (r, p) was actually generated. In
general, Gen is not injective. Namely, there could exist different w1 and w2 such that the outputs of
Gen(w1) and Gen(w2) are the same. In such a case, at least one of w1 and w2 cannot be recovered
by InvGen, and thus it seems difficult to use InvGen for constructing secure sketches.

In contrast, we give our negative result for computational fuzzy extractors even when Gen is
not injective. In this sense, our result is a generalization of the negative results of [8].

Furthermore, to the best of our knowledge, no construction of injective fuzzy extractors is known
so far. There is an intuitive reason for the non-existence of injective fuzzy extractors. For a fuzzy
extractor (Gen,Rep), consider two input w1 and w2 that are close to each other. If Gen(w1) outputs
(r, p), then it must be that Rep(w1, p) = r and Rep(w2, p) = r. In this case, it seems natural to
consider that the output range of Gen(w2) contains (r, p). If so, this extractor is not injective.

2 Preliminaries

Let X and Y be random variables over some alphabet Z. The min-entropy of X is
H∞(X) = − log(maxx Pr[X = x]). The average min-entropy of X given Y is H̃∞(X|Y ) =
− log(Ey∈Z maxx∈Z Pr[X = x|Y = y]). The statistical distance between X and Y is ∆(X,Y ) =
1
2

∑
z∈Z |Pr[X = z] − Pr[Y = z]|. If ∆(X,Y ) ≤ ϵ, we say X and Y are ϵ-close. We denote by

Uℓ the uniformly distributed random variable on {0, 1}ℓ. For s ∈ N, the computational distance
between X and Y is ∆s(X,Y ) = maxD∈Cs |E[D(X)]−E[D(Y )]|, where Cs is the set of randomized
circuits of size at most s that output 0 or 1. A metric space is a set M with a distance function
dis :M×M→ R+ = [0,∞). For the Hamming metric over Zn, dis(x, y) is the number of positions
in which x and y differ. For a probabilistic experiment E and a predicate P , we denote by Pr[E : P ]
the probability that the predicate P is true after the event E occurred.

We give definitions of fuzzy extractor, computational fuzzy extractor, secure sketch, and strong
extractor.

Definition 1 (Fuzzy Extractor). An (M,m, ℓ, t, ϵ)-fuzzy extractor with error δ is a pair of ran-
domized procedures (Gen,Rep) with the following properties:

• The generation procedure Gen on input w ∈ M outputs an extracted string r ∈ {0, 1}ℓ and a
helper string p ∈ {0, 1}∗.

• The reproduction procedure Rep takes w′ ∈ M and p ∈ {0, 1}∗ as inputs. The correctness
property guarantees that for any w,w′ ∈ M with dis(w,w′) ≤ t, if (r, p) ← Gen(w), then
Rep(w′, p) = r with probability at least 1− δ, where the probability is taken over the coins of
Gen and Rep. If dis(w,w′) > t, no guarantee is provided about the output of Rep.

• The security property guarantees that for any distribution W on M of min-entropy m, if
(R,P )← Gen(W ), then ∆((R,P ), (Uℓ, P )) ≤ ϵ.

Definition 2 (Computational Fuzzy Extractor). An (M,m, ℓ, t, s, ϵ)-computational fuzzy extractor
with error δ is a pair of randomized procedures (Gen,Rep) that is an (M,m, ℓ, t, ϵ)-fuzzy extractor
with error δ in which the security property is replaced by the following one:

• For any distribution W on M of min-entropy m, if (R,P ) ← Gen(W ), then
∆s((R,P ), (Uℓ, P )) ≤ ϵ.
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Definition 3 (Secure Sketch). An (M,m, m̃, t)-secure sketch with error δ is a pair of randomized
procedures (SS,Rec) with the following properties:

• The sketching procedure SS on input w ∈M outputs a string s ∈ {0, 1}∗.

• The recovery procedure Rec takes w′ ∈M and s ∈ {0, 1}∗ as inputs. The correctness property
guarantees that for any w,w′ ∈ M with dis(w,w′) ≤ t, Pr[Rec(w′, SS(s)) = w] ≥ 1− δ where
the probability is taken over the coins of SS and Rec. If dis(w,w′) > t, no guarantee is provided
about the output of Rec.

• The security property guarantees that for any distribution W on M of min-entropy m,
H̃∞(W |SS(W )) ≥ m̃.

Definition 4. We say that Ext : {0, 1}n → {0, 1}ℓ is an (n,m, ℓ, ϵ)-strong extractor if for any W
on {0, 1}n of min-entropy m, ∆((Ext(W ;X), X), (Uℓ, X)) ≤ ϵ, where X is the uniform distribution
on {0, 1}r.

3 Negative Results

In this section, we show that the existence of a computational fuzzy extractor satisfying some
computational condition implies the existence of an information-theoretic fuzzy extractor with
slightly weaker parameters. The condition is that the generation procedure of a fuzzy extractor
can be efficiently invertible.

We give a formal definition of invertibility of the generation procedure.

Definition 5. Let (Gen,Rep) be a fuzzy extractor for a metric space M. We say Gen is (s, η)-
invertible if there exists a deterministic circuit InvGen of size at most s such that

Pr
[
W ′ ← InvGen(R′, p) : ∃ rG ∈ {0, 1}∗ s.t. Gen(W ′; rG) = (R′, p)

]
≥ 1− η

for any p that can be generated as (r, p) ← Gen(w) for w ∈ M, where R′ = Uℓ. We say Gen is
errorless-invertible if InvGen(r, p) outputs either ⊥ (failure symbol) or w ∈M for which there exists
rG such that (r, p) = Gen(w; rG).

In the definition, we consider that InvGen succeeds in inverting Gen if it outputs w′ from which
the input (r′, p) can be generated by Gen, and thus w′ is not necessarily the same as w from which
p was actually generated.

Note that, since the inverter InvGen is confined to being deterministic, InvGen has the property
of output uniqueness. That is, for any r and p, InvGen(r, p) does not output two different values
w1, w2 ∈M such that (r, p) = Gen(w1; r1) = Gen(w2; r2) for some r1, r2 ∈ {0, 1}∗.

We show that if a fuzzy extractor has the perfect correctness, we can obtain the errorless
invertibility for Gen.

Lemma 1. Let (Gen,Rep) be a fuzzy extractor with error 0. If Gen is (s, η)-invertible, then Gen is
(s+ srep, η)-errorless-invertible, where srep is the size of circuit Rep.

Proof. Let InvGen be the inverter of (s, η)-invertibility of Gen. Then, we construct an inverter
InvGen′ such that on input (r, p), (1) run w ← InvGen(r, p), (2) output w if Rep(w, p) = r, and
output ⊥ otherwise. The correctness property of (Gen,Rep) guarantees that the output of InvGen′

is a valid inverse of (r, p).
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Since we prove our negative result for computational fuzzy extractors with errorless invertibility,
Lemma 1 implies that our negative result can also be applied to computational fuzzy extractors
with perfect correctness.

We will prove that the existence of a computational fuzzy extractor implies the existence of an
error-correcting code. We provide some notions regarding coding theory.

Definition 6. We say a metric space (M, dis) is (s, t)-bounded-error samplable if there exists a
randomized circuit ErrSmp of size s such that for all 0 ≤ t′ ≤ t and w ∈ M, ErrSmp(w, t′) outputs
a random point w′ ∈M satisfying dis(w,w′) = t′.

Definition 7. Let C be a set over a metric space M. We say C is a (t, ϵ)-maximal-error Shan-
non code if there exists an efficient recover procedure Rec such that for all t′ ≤ t and c ∈ C,
Pr[Rec(ErrSmp(c, t′)) ̸= c] ≤ ϵ.

Definition 8. Let (M, dis) be a metric space that is (s, t)-bounded-error samplable by a circuit
ErrSmp. For a distribution C over M, we say C is a (t, ϵ)-average-error Shannon code if there
exists an efficient recover procedure Rec such that for all t′ ≤ t, Prc←C [Rec(ErrSmp(c, t′)) ̸= c] ≤ ϵ.

The following fact can be obtained by Markov’s inequality. (See [8] for the proof.)

Lemma 2 ([8]). Let C be a (t, ϵ)-average-error Shannon code with recovery procedure Rec such that
H∞(C) ≥ k. Then, there exists a set C ′ with |C ′| ≥ 2k−1 that is (t, 2ϵ)-maximal-error Shannon
code with recovery procedure Rec.

We prove that if the generation procedure is errorless-invertible, then the existence of a com-
putational fuzzy extractor implies the existence of a maximal-error Shannon code.

Theorem 1. Let (M, dis) be a metric space that is (ssmp, t)-bounded-error samplable. Let
(Gen,Rep) be an (M,m, ℓ, t, ssec, ϵ)-computational fuzzy extractor with error δ. Let srep denote
the size of the circuit that computes Rep. If Gen is (sinv, η)-errorless-invertible, and it holds that

ssec ≥ sinv + tssmp+(t+1)srep, then there exists a value p and a set C with |C| ≥ 2
− log(2−ℓ+ ρ

|M| )−1

that is a (t, 2ρ)-maximal-error Shannon code with recovery procedure InvGen(Rep(·, p), p), where
ρ = ϵ+ η + (t+ 1)δ.

Proof. Let W be an arbitrary distribution on M of min-entropy m. By the security property of
the computational fuzzy extractor (Gen,Rep), we have that ∆ssec((R,P ), (Uℓ, P )) ≤ ϵ for (R,P )←
Gen(W ).

Let InvGen be an inverter of the (s, η)-errorless-invertibility of Gen. We consider the modified
inverter InvGen′:

1. On input r ∈ {0, 1}ℓ and p ∈ {0, 1}∗, compute w ← InvGen(r, p).

2. If w ̸= ⊥ and Rep(w, p) = r, output w. Otherwise, output a random element inM.

The procedure InvGen′ can be implemented by a circuit of size sinv + srep. Define the event Esuc

such that
Esuc = {w ̸= ⊥ ∧ Rep(w,P ) = R},

where (R,P ) ← Gen(W ), w ← InvGen(R,P ). By the correctness property of (Gen,Rep) and the
failure probability of InvGen, we have that Pr[Esuc] ≥ 1− (η + δ).

Define the following procedure D:
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1. On input r ∈ {0, 1}ℓ, p ∈ {0, 1}∗, and t ∈ N, compute w ← InvGen′(r, p).

2. For all 1 ≤ t′ ≤ t, do the following:

(a) w′ ← ErrSmp(w, t′).

(b) If Rep(w′, p) ̸= r, output 0. Otherwise, do nothing.

3. Output 1.

The procedure D “efficiently” checks whether Rep can correctly output the string r from the
corresponding p and w with random t-bounded errors. We need the efficiency of D since otherwise
the “error-correcting” property of Rep may not be taken over from the computational security of
(Gen,Rep).

The procedureD can be implemented by a circuit of size sinv+tssmp+(t+1)srep. Note that in the
procedure D, we can easily check whether the event Esuc occurs or not (by checking that a random
element is produced in InvGen′). Thus, by the invertibility of Gen and the correctness property of
(Gen,Rep), we have that Pr[D(R,P, t) = 1 ∧ Esuc] ≥ 1−(η+(t+1)δ). Since ∆ssec((R,P ), (Uℓ, P )) ≤
ϵ, if ssec ≥ sinv + tssmp + (t+ 1)srep, it holds that

Pr[D(Uℓ, P, t) = 1 ∧ Esuc] ≥ 1− (ϵ+ η + (t+ 1)δ)

= 1− ρ.

By the averaging argument, there exists a value p such that Pr[D(Uℓ, p, t) = 1 ∧ Esuc] ≥ 1− ρ.
This implies that, for all 1 ≤ t′ ≤ t,

Pr

[
w ← InvGen′(R, p),

w′ ← ErrSmp(w, t′)
: Rep(w′, p) = R ∧ Esuc

]
≥ 1− ρ, (1)

where R = Uℓ. Since the event Esuc implies that InvGen(R, p) = w, we have that, for all 1 ≤ t′ ≤ t,

Pr

[
w ← InvGen′(Uℓ, p),

w′ ← ErrSmp(w, t′)
: InvGen(Rep(w′, p), p) = w

]
≥ 1− ρ.

This implies that the distribution InvGen′(Uℓ, p) is a (t, ρ)-average-error Shannon code with recovery
procedure InvGen(Rep(·, p), p). By applying Lemma 2, we can show that there is a set C with
|C| ≥ 2k−1 that is a (t, 2ρ)-maximal-error Shannon code for k ≤ H∞(InvGen′(Uℓ, p)).

Finally, we prove that H∞(InvGen′(Uℓ, p)) ≥ − log(2−ℓ + ρ
|M|). Define

Rgood =

{
r ∈ {0, 1}ℓ :

w ← InvGen(r, p),

w ̸= ⊥ ∧ Rep(w, p) = r

}
.

By equation (1), it holds that |Rgood| ≥ (1− ρ)2ℓ. Let Wgood = {InvGen(r, p) : r ∈ Rgood}. By the
definition of InvGen′, we have that

Pr[InvGen′(Uℓ, p) = w] =

{
2−ℓ + ρ

|M| w ∈M∩Wgood

ρ
|M| w ∈M \Wgood.

Therefore, the min-entropy of InvGen′(Uℓ, p) is − log(2−ℓ + ρ
|M|).
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It is known that a secure sketch can be constructed from a Shannon code, which is explicitly
presented in [8], and implicitly stated in [6, Section 8.2].

Lemma 3 ([6, 8]). For an alphabet Z, let C be a (t, δ)-maximal-error Shannon code over Zn.
Then, there exists a (Zn,m,m− (n log |Z| − log |C|), t) secure sketch with error δ for the Hamming
metric over Zn.

An information-theoretic fuzzy extractor can be constructed from a secure sketch and a strong
extractor [6]. In particular, if we use universal hashing as strong extractor, we obtain the following
result.

Lemma 4 ([6]). Let (SS,Rec) be an (M,m, m̃, t)-secure sketch with error δ, and Ext an (n, m̃, ℓ, ϵ)-
strong extractor given by universal hashing (any ℓ ≤ m̃− 2 log(1ϵ ) + 2 can be achieved). Then, the
following (Gen,Rep) is an (M,m, ℓ, t, ϵ)-fuzzy extractor:

• Gen(w; r, x) : set P = (SS(w; r), x), R = Ext(w;x), and output (R,P ).

• Rep(w′, (s, x)) : recover w = Rec(w′, s) and output R = Ext(w;x).

By combining Theorem 1 and Lemmas 3 and 4, we obtain the following corollary.

Corollary 1. Let Z be an alphabet. Let (Gen,Rep) be a (Zn,m, ℓ, t, ssec, ϵ)-computational fuzzy
extractor with error δ. Let srep denote the size of the circuit that computes Rep. If Gen is (sinv, η)-
errorless-invertible, and it holds that ssec ≥ sinv + tn log |Z| + (t + 1)srep, then there exists a
(Zn,m, ℓ′, t, ϵ′) (information-theoretic) fuzzy extractor with error 2ρ for any ℓ′ ≤ m − n log |Z| −
log(2−ℓ + ρ

|Z|n )− 2 log( 1
ϵ′ ) + 1, where ρ = ϵ+ η + (t+ 1)δ.

In particular, in the above corollary, if we choose m = n log |Z| and ρ
|Z|n ≤ 2−ℓ, then a

(Zn, n log |Z|, ℓ, t, ssec, ϵ)-computational fuzzy extractor implies a (Zn, n log |Z|, ℓ − 2 log( 1
ϵ′ ), t, ϵ

′)-
fuzzy extractor with error 2ρ.

As in the negative result of [8], we do not claim about the efficiency of the resulting fuzzy
extractor. In our case, the non-explicit parts are (1) fixing the value p, and (2) constructing a
maximal-error Shannon code from an average-error one (Lemma 2) in Theorem 1.

4 Positive Results

4.1 A Construction based on LR-KEM

We present a construction of a computational fuzzy extractor based on a leakage-resilient key encap-
sulation mechanism. First, we give a definition of leakage-resilient key encapsulation mechanism.

Definition 9 (Leakage-Resilient Key Encapsulation Mechanism (LR-KEM)). An (n, ℓ,m, s, ϵ)-
LR-KEM scheme Π is a tuple of randomized procedures (KEM.Gen,KEM.Enc,KEM.Dec) with the
following properties.

• The key generation procedure KEM.Gen on input a random string r ∈ {0, 1}n outputs a pair
(pk, sk) of a public key and a secret key.

• The encryption procedure KEM.Enc on input a public key pk outputs a ciphertext c and a key
k ∈ {0, 1}ℓ.
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• The decryption procedure KEM.Dec on input a secret key sk and a ciphertext c outputs a key
k. The correctness property guarantees that for any (pk, sk) ← KEM.Gen(1n), Pr[(c, k) ←
KEM.Enc(pk) : KEM.Dec(sk, c) = k] = 1.

• The security property guarantees that for any circuit A of size at most s and for any f :
{0, 1}n → {0, 1}ℓ satisfying H̃∞(r|f(r)) ≥ m, where r ← Un, it holds that

∆s(ExptleakΠ,A(0),Expt
leak
Π,A(1)) ≤ ϵ,

where the experiment ExptleakΠ,A(b) is defined as follows:

1. r ← Un.

2. (pk, sk)← KEM.Gen(r).

3. (c, k)← KEM.Enc(pk).

4. k0 = k, and k1 ← Uℓ.

5. b′ ← A(pk, c, kb, f(r)).

6. Output b′.

A usual (non-leakage-resilient) KEM scheme is a special case of an (n, ℓ,m, s, ϵ)-LR-KEM scheme
in which f(r) is not given to A. We say such a scheme an (n, ℓ, s, ϵ)-KEM scheme.

Definition 9 is slightly different from the corresponding security of leakage-resilient public-key
encryption considered in [1, 10] (cf. [10, Section 8]). In [1, 10], the leakage function can be applied
to the secret key sk, and the restriction on f is the output length |f(sk)|. Instead, in Definition 9,
we consider the leakage of the random string r of Gen, and the restriction on f is the residual
entropy of r. Nevertheless, the difference is not crucial. Indeed, the same construction as [10,
Section 8] gives a generic construction of a leakage-resilient KEM scheme from any KEM scheme
and a strong extractor. Although the proof is almost the same as that of [10, Theorem 8.1], we give
the proof for completeness and for a detailed analysis due to the treatment of the exact security in
this paper.

Lemma 5. Let Π = (KEM.Gen,KEM.Enc,KEM.Dec) be an (n, ℓ, skem, ϵkem)-KEM scheme, and Ext
an (n,m, k, ϵext)-strong extractor. Then, the following Π′ = (KEM.Gen′,KEM.Enc′,KEM.Dec′) is
an (n + t, ℓ,m, s, ϵkem + 2ϵext)-LR-KEM scheme for any s ≤ skem − sf , where t is the length of a
random string in Ext and sf is the size of the circuit for computing the leakage function f .

• KEM.Gen′ : Choose r ∈ {0, 1}n and x ∈ {0, 1}t uniformly at random, and compute r′ =
(Ext(r;x), x) and (pk, sk)← KEM.Gen(r′). Output pk′ = (pk, x) and sk′ = r.

• KEM.Enc′ : On input pk′ = (pk, x), compute (c, k) ← KEM.Enc(pk). Output c′ = (c, x) and
k.

• KEM.Dec′ : On input sk′ = r and c′ = (c, x), compute (pk, sk)← KEM.Gen(Ext(r;x), x) and
k = KEM.Dec(sk, c). Output k.

Proof. Consider the following experiment Exptleak
′

Π,A (b) for b ∈ {0, 1}:

1. r ← Un, x← Ut, and r′ ← Un+k.
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2. (pk, sk)← KEM.Gen(r′). Let pk′ = (pk, x) and sk′ = r.

3. (c, k)← KEM.Enc(pk). Let c′ = (c, x).

4. k0 = k, and k1 ← Uℓ.

5. b′ ← A(pk, c, kb, f(r)).

6. Output b′.

It follows from the triangle inequality that for any s ∈ N,

∆s(ExptleakΠ,A(0),Expt
leak
Π,A(1)) ≤ ∆s(ExptleakΠ,A(0),Expt

leak′

Π,A (0)) (2)

+ ∆s(Exptleak
′

Π,A (0),Exptleak
′

Π,A (1)) (3)

+ ∆s(Exptleak
′

Π,A (1),ExptleakΠ,A(1)). (4)

The experiment Exptleak
′

Π,A (b) is different from ExptleakΠ,A(b) only in the key generation phase, in
which the uniformly random string r′ is used instead of the output of the strong extractor Ext.
Thus, for any s ∈ N, equations (2) and (4) are upper-bounded by ϵext.

The experiment Exptleak
′

Π,A (b) is almost the same as the experiment for non-leakage-resilient KEM.
The only difference is in the guessing phase, where A is given f(r). Thus, for any s ∈ N, equation (3)
is upper-bounded by ϵkem if skem ≥ s+ sf .

Therefore, for any s ≤ skem − sf , ∆
s(ExptleakΠ,A(0),Expt

leak
Π,A(1)) is upper-bounded by ϵkem + 2ϵext.

We give a construction of a computational fuzzy extractor based on a leakage-resilient KEM
scheme.

Theorem 2. Let (KEM.Gen,KEM.Enc,KEM.Dec) be an (n, ℓ, m̃, ssec, ϵ)-LR-KEM scheme, and
(SS,Rec) be an (M,m, m̃, t)-secure sketch with error δ. Let sgen, senc, and sss denote the
sizes of circuits that computes KEM.Gen, KEM.Enc, and SS, respectively. Then, for any s ≤
ssec − (sgen + senc + sss), the following (Gen,Rep) is a ({0, 1}n,m, ℓ, t, s, ϵ)-computational fuzzy
extractor with error δ:

• Gen(w; r1, r2) : compute (pk, sk) ← KEM.Gen(w) and (c, k) ← KEM.Enc(pk; r1), set p =
(c,SS(w; r2)) and r = k, and output (r, p).

• Rep(w′, (c, ss)) : recover w = Rec(w′, ss), compute (pk, sk) ← KEM.Gen(w) and K ←
KEM.Dec(sk, c), and output K.

Proof. The correctness property immediately follows from the correctness of the LR-KEM scheme
and the secure sketch.

For the security property, we know that H̃∞(W |SS(W )) ≥ m̃ from the security of the se-
cure sketch, where W is any random variable of min-entropy m. Thus, from the security of
the LR-KEM scheme, for any s ≤ ssec − (sgen + senc + sss), we have that ∆s((R,P ), (Uℓ, P )) =
∆s((K,C, SS(W )), (Uℓ, C, SS(W ))) ≤ ϵ.
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As for the LWE-based construction in [8], the above KEM-and-sketch construction does not
require the entropy of W conditioned on P = (C,SS(W )). Indeed, W may have no information-
theoretic entropy conditioned on P .

Another approach to constructing computational fuzzy extractor is to apply a pseudorandom
generator to the output of (information-theoretic) fuzzy extractor. We say this approach FE-
then-PRG. Compared to the LWE-based construction [8] and the FE-then-PRG construction, our
construction has an advantage in “stretching” the key. In the LWE-based construction, it seems
necessary also to stretch the input W to stretch the key, which is undesirable if the length of W
cannot be stretched (e.g., biometric data). In the FE-then-PRG construction, a straightforward way
of stretching the key is to use a PRG with longer stretch. Although a PRG with any polynomial-
length-stretch can be constructed from any PRG with one-bit-stretch, in its construction, we need
to use the one-bit-stretch PRG in a nested manner. Namely, we need sequential computation to
obtain the final output. In the KEM-and-sketch construction, in order to stretch the key, we can
use the same public key to generate multiple ciphertexts. Thus, the computation of encrypting
keys and decrypting ciphertexts can be done in parallel.

4.2 A Construction based on Strong DDH

We give a simple construction of a computational fuzzy extractor based on a stronger variant of the
Decisional Diffie-Hellman (DDH) assumption. Several stronger variants of the DDH assumption
have been proposed in the literature (e.g., [4, 9]). We use a weaker variant of the strong DDH
assumption used in [9].

The strong DDH assumption. For any polynomial s(n), ∆s(n)((g, ga, gb, gab), (g, ga, bb, gc)) is
upper-bounded by a negligible function, where g is a random generator of a group G, G is a group
of an n-bit prime order q, a ∈ Zq and c ∈ Zq are chosen uniformly at random, and b ∈ Zq is chosen
from a source of min-entropy Ω(n).

We assume that, for some n′ < n, there exist efficiently computable mappings B from Zq

to {0, 1}n′
and B′ from {0, 1}n′

to Zq that “preserve” the entropy of the input random variable.
Specifically, we require that for a uniformly random variable X over Zq, ∆(B(X), Un′) is upper-
bounded by a negligible function in n, and that for any random variable Y over {0, 1}n′

of min-
entropy Ω(n), H∞(B′(Y )) ≥ Ω(n).

Theorem 3. Assume that the strong DDH assumption holds. Let (SS,Rec) be a
({0, 1}n′

,m,Ω(n), t)-secure sketch with error δ. Then, the following (Gen,Rep) is a
({0, 1}n′

,m, n′, t, s, ϵ) computational fuzzy extractor with error δ for any polynomial s and a negli-
gible function ϵ in n:

• Gen(w) : Choose a random generator g ∈ G and a random element a ∈ Zq, set P =
(g, ga, SS(w)) and R = B(gaB

′(w)), and output (R,P ).

• Rep(w′, (g, ga, ss)) : recover w = Rec(w′, ss) and output B(gaB
′(w′)).

Proof. The correctness property immediately follows from the correctness of the secure sketch.
For the security property, we know that H̃∞(W |P ) ≥ Ω(n) from the security of the secure

sketch, where W is a random variable of min-entropy m. Then, we have that, for a sufficiently
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large polynomial s,

∆s((R,P ), (Un′ , P ))

= ∆s((B(gaB
′(W )), g, ga, SS(W )), (Un′ , g, ga, SS(W )))

≤ ∆s((B(gc), g, ga, SS(W )), (Un′ , g, ga,SS(W ))) + ϵ(n)

≤ ϵ′(n),

where c ∈ Zq is chosen uniformly at random, and ϵ(·) and ϵ′(·) are negligible functions. The first
inequality follows from the efficient computability of B and B′, the entropy-preserving property
of B′, and the strong DDH assumption. The last inequality follows from the entropy-preserving
property of B.
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