Compact and Side Channel Resistant Discrete
Gaussian Sampling

Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, ragvil Verbauwhede

Abstract—Discrete Gaussian sampling is an integral part of vast range of applicability [2] and computational efficigna
many lattice based cryptosystems such as public-key encripn, the present decade, beside significant progress in theytheor
digital signature schemes and homomorphic encryption scimes. of lattice-based cryptography, efficient implementati¢a

In this paper we propose a compact and fast Knuth-Yao sampler .
for sampling from a narrow discrete Gaussian distribution with [41, [5], [6], [7], 8], [9], [10], [11], [12], [13] have inceased

very high precision. The designed samplers have a maximumast Practicality of the schemes.
tistical distance of 27 to a true discrete Gaussian distribution. Sampling from a discrete Gaussian distribution is an essen-

In this paper we investigate various optimization techniqes to tial part in many lattice-based cryptosystems such as @ubli
achieve minimum area and cycle requirement. For the standat key encryption, digital signature and homomorphic endoypt

deviation 3.33, the most area-optimal implementation of thk bit- H fficient d imol tati f di t
scan operation based Knuth-Yao sampler consumes 30 slices o ence an eflicient and secure implementation ot discrete

the Xilinx Virtex 5 FPGAs, and requires on average 17 cycles Gaussian sampling is a key towards achieving practical im-
to generate a sample. We improve the speed of the samplerplementations of these cryptosystems. To achieve effigjenc

by using a precomputed table that directly maps the initial the sampler architecture should be small and fast. At theesam
random bits into samples with very high probability. The fas ime the sampler should be very accurate so that its statisti

sampler consumes 35 slices and spends on average 2.5 cycle . . LT
to generate a sample. However the sampler architectures are distance to a true discrete Gaussian distribution is nieiig

not secure against timing and power analysis based attackgn tO satisfy the security proofs [14].
this paper we propose a random shuffle method to protect the The most commonly used methods for sampling from a

Gaussian distributed polynomial against such attacks. Theside discrete Gaussian distribution are based on the rejectidn a
channel attack resistant sampler architecture consumes 5&lices inversion methods. However these methods are very slow and
and spends on average 420 cycles to generate a polynomial 01! ' . .
256 coefficients. consume a large number of random bits. The first hardware
_ _) implementation of a discrete Gaussian sampler [4] uses a
Keywords. Lattice-based cryptography, Discrete Gaussialsam- Gy ssjan distributed array indexed by a (pseudo)random num
pler, Hardware implementation, Knuth-Yao algorithm, Discrete b tor. H th ler h | . d
distribution generating (DDG) tree, Side channel analysis er gen_era or. OWeV‘?r e Samp erhas a OW p_reCIS_Ion and a
small tail bound 2s) which results in a large statistical distance
to the true discrete Gaussian distribution. A more efficient
. INTRODUCTION sampler in [6] uses an inversion method which compares

Most currently used public-key cryptosystems are based tapdom probabilitigs with a cumulative distribution tablp
difficult number theoretic problems such as integer fagtori e hardware architecture an array of parallel comparasors
tion or discrete logarithm problem. Though these probleny$€d 10 map a random probability into a sample value. To
are difficult to solve using present day digital computereyt Satisfy a negligible statistical distance, the samplemires
can be solved in polynomial time on large quantum computef&y large comparator circuits. This increases area aray aé|

using Shor’s algorithm. Although quantum computing isl stif"€ sampler. The first compact implementation with neglegib
in a primitive stage, significant research is going on to tgve statistical distance was proposed in [7]. The sampler igdbas

powerful quantum computers for military applications sucfil the Knuth-Yao random walk algorithm [15]. The advantage
as cryptanalysis [1]. As a result, the possible appeararﬂ:feth's algorithm is that it requires a near-optimal numbgr o

of powerful quantum computers could bring disaster for ofif"dom bits to generate a sample pointin the average case. Th
present day public-key infrastructure. sampler was designed to attain a statistical distance tess t

Lattice-based cryptography is considered as a strong cardi’’ to a true discrete distribution for the standard deviation
date for public key cryptography in the era of quantum conf. = 3-33: On the Xilinx Virtex V FPGA, the sampler con-
puting. Advantages of lattice-based cryptography oveenthSUMes 47 slices and requires on average 17 cycles to compute a

conventional public key schemes are its strong securitgfgro SaMPple point. Later in [11] a very small-area Bernoulli séenp
architecture was presented. The sampler consumes only 37

The authors are with the ESAT/COSIC and iMinds, KU Leuvenslices and spends on average 144 cycles to generate a sample.

Ka_lsteelpark Arenberg 10, B-3001 Legven-HeverIee, Belgiuﬁmail: In [10] an efficient sampler architecture was proposed for
{firstname.lastnanje@esat.kuleuven.be This work was supported in part bg ling f ider di G . distributi h
the Research Council KU Leuven: TENSE (GOA/11/007), by iléin by ampling from wider discrete Gaussian distributions thvat a

the Flemish Government, FWO G.0213.11N, by the Herculesn@ation Suitable for the lattice based digital signature schemeS3L|
AKUL/11/19, by the European Commission through the ICT paogme [16]. In this paper we focus on designing compact, fast and
under contract FP7-ICT-2011-284833 PUFFIN and FP7-ICI3200-SEP- lers for th di G ian dist
210076296 PRACTICE. Sujoy Sinha Roy is funded by an Erasmusdus S€cure samplers for the narrow discrete Gaussian disoitsut

fellowship. that are normally used in the lattice based encryption selsem

Our contributions: In this paper we propose a compact andefined as follows.

fast discrete Gaussian sampler based on the Knuth-Yaomando 1 2, * 2 902
walk. As the Knuth-Yao random walk is not a constant-tim&7(E = z) = 3¢ “/77 whereS =1+ 226 s
operation, the discrete Gaussian sampler is vulnerabliglés s z=1

channel attacks. In this paper we propose a technique Tioe normalization factof is approximatelyr/27. For most
prevent such attacks. In particular, we make the followirigttice based cryptosystems the meais taken as zero and
contributions: in such cases we usPyz, to representDz .. A discrete

1) The compact Knuth-Yao sampler proposed in [7] iSaussian distri_but.ion.can. also be defined over a Ia_tljcg
composed of mainly a ROM, a scan register and sevef&'- Such a distribution is denoted d3, , and assigns a
small counters. The sampler consumes 47 slices BFpbability proportional to==IXI"/27" to each element € L.
a Xilinx Virtex 5 FPGA for the standard deviationWhenL = Z™, the discrete Gaussian distributidpy, , over
o = 3.33. The area requirement of the sampler is mostly is the product distribution of» independent copies db ..
due to the ROM and the scan-register. In this paper Viée
reduce the total area consumption of the sampler by
reducing the width of the ROM and the scan-register. A discrete Gaussian distribution has an infinitely long tail
We also optimize the control signal generation block t8nd infinitely high precision for the probabilities of thengale
finally achieve an area of only 30 slices for the overaloints. In a real-world application it is not possible to ides
sampler. In this paper we provide a detailed intern& sampler that can support infinite tail and precision. lddee
architecture of the sampler along with the control signd} Practical applications we put an upper bound on the tail
generation block. and the precision of the probabilities. Such bounds obWous

2) The basic Knuth-Yao sampler [7] performs a randofftroduce a non-zero statistical distance to a true discret
walk determined by a sequence of random bits and @aussian distribution. To satisfy the security proofs [1#4¢
the probability bits from the ROM. This bit scanning opSampler should have a negligible statistical distance tue t
eration is sequential and thus the sampler in [7] requirééscrete Gaussian distribution. According to Lemma 4.4 in
on average 17 cycles to obtain a sample point. To achigide]: for anyc > 1 the probability of sampling from Dz .
faster computation time, we increase the speed of tfatisfies the following inequality.
sampler by using a dedicated small lookup table that Pr(|v| > cov/m) < e (1=c) (1)

maps the initial random bits directly into a sample point Similarlv denote th bability of i 7 d
(with large probability) or into an intermediate position 'miiarly denote the probabiiity of samplinge £ accord-
in the random walk Ing to the accurate distributio® , with p.. Assume that

3) The Knuth-Yao random walk is not a constant '[iméhe real-wo_rld sampler_ samplgsvv_ith prob~abilitypz an(_j the
operation and hence it is possible by an adversary Q8rrespond|ng approximate distribution i3, Therells_an
predict the value of the output sample by performin ror-constant > 0 such thatjp, — p?l < c The statistical
timing and simple power analysis. In this paper w istance betweerDz o corresp(_)nd_lng.tOm independent
show how this side channel analysis can be used ﬁgmples fromDz,; and the true distributiozr ;- [18]:
break the ring-LWE encryption scheme. Finally we A(Dzm,U,DZm,U) <27% £ 2mze. (2)
propose a random shuffle method to remove any timiq_gere Pr
information from a Gaussian distributed polynomial.

Tail and precision bounds

(V| > 2¢ : vV + Dzm) < 27F represents the tail
bound.

The remainder of the paper is organized as follows: Sec-In Table | we show the tail boun{t;| and the precision
tion Il provides a brief mathematical background. Implebounde required to satisfy a statistical distance of less than
mentation strategies for the Knuth-Yao sampler architectiz—?° for the Gaussian distribution parameter sets taken from
are described in Section Ill. The hardware architecture fpf]. We first calculate the tail bound;| from Equation 1 for
the discrete Gaussian sampler is presented in Section tNe right-hand side upper boud'°°. Then using Equation 2,

In Section V we describe side channel vulnerability of th@e derive the precisiom for a maximum statistical distance
sampler architecture along with countermeasures. Dedtailef 2= and the value of the tail boun¢t;|. In practice
experimental results are presented in Section VI.

m o |z¢] €
256 | 3.33 84 | 106
320 | 3.192 | 86 | 106

Il. BACKGROUND 512 | 3.195 | 101 | 107
Here we recall the mathematical background required to TABLE |
understand the paper. PARAMETER SETS AND PRECISIONS TO ACHIEVE STATISTICAL DISTANE

LESS THAN2~90

A. Discrete Gaussian Distribution the tail bounds obtained from Equation 1 are quite loose for

A discrete Gaussian distribution defined oZemith stan- the precision values shown in Table I. For all three standard
dard deviationo > 0 and mearc € Z is denoted a9z , .. deviations, the probabilities for the sample points gretitan
Let £ be a random variable distributed as @ef , .. Thisis 39 become zero upto the given precision bounds.

A Knuth-Yao traversal from th¢; — 1)th level of the DDG
tree to theith level is shown in Figure 2. Assume that in the
(¢ — 1)th level, the visited node is thkth intermediate node
and that there aré intermediate nodes to the right side of the
visited node. Now the random walk consumes one random bit
and visits a child node in thé&h level of the DDG tree. The
visited node ha&d or 2d+ 1 nodes to its right side depending
on whether it is a right or a left child of its parent node. Now
to discover the terminal nodes in this level of the DDG tree,
C. The Knuth-Yao Algorithm the ith column of the probability matrix is scanned from the

The Knuth-Yao sampling algorithm performs a random wal ottom. Ea_ch ‘1’_bit in the polumn discovers a terminal node
along a binary tree known as the discrete distribution gener rom the right suje of that.h level of the DD.G tree. The
ing (DDG) tree. A DDG tree is related to the probabilities oralue Qf the term|_nal node is the_ correspond_rqg/ number .
the sample points. The binary expansions of the probagsilti or which it was discovered. In this way the visited node will

are written in the form of a binary matrix which we call the&fventually be discovered as a terminal node if the Hamming

probability matrix P,,,.;. In the probability matrix theth row weight of theith_ column IS Iarge_r Fhan the number of nod_es
corresponds to the probability of thieh sample point present to the right side of the visited node. When the dsite
A DDG tree consists of two types of nodes : intérmediaféOde is discovered as a terminal node, the sampling operatio
nodes (1) and terminal nodes. A terminal node containsS};\Ops a_nd the corresponding row number of the probability
sample point, whereas an intermediate node generates m/%t(;'x IS tTE value of the sgmpler.] IForIth;e r?ther (c;ase, the
child nodes in the next level of the DDG tree. The numb&pndom walk continues to the + 1)th level of the DDG tree
of terminal nodes in théth level of a DDG is equal to the and then the same process continues until a terminal node is

Hamming weight of théth column of the probability matrix. visited by the random yvalk.))
An example of a DDG tree corresponding to a probabilit The traversal can be implemented using a counter which we

distribution consisting of three sample poin8, 1,2} with all disF:?mce co_unteand a r(_egister to scan a column of the
probabilitiesp, = 0.01110, p; = 0.01101 andpy — 0.00101 probability matrix. For each jump to a new level of the DDG

is shown in Figure 1. During a sampling operation a randolffe the counter is initialized t&d or 2d+ 1 depending on the

walk is performed starting from the root of the DDG tre r_andom bit. Then the corresponding column of the probabilit

For every jump from one level of the DDG tree to the neﬂ]atﬁx‘ '? scannzdffrom r:hebk.)ottom using the b_lt-S((:jan registe
level, a random bit is used to determine a child node. T ¢ _1 It read from the |t-§c;ann|ng OP?ra“F’“ ecrersent
tr;ﬂe distance counter. The visited node is discovered as a

sampling operation terminates when the random walk hits)) .
terminal node. The value of the terminal node is the value ?rmlnal node when the distance counter becomes negative
or the first time.

the output sample point.
A naive implementation of a DDG tree requiré€¥z;c)
storage space where the probability matrix has a dimensiBn Optimized storage of the probability bits
(2 + 1) x e. However in practice much smaller space is |n the last subsection we have seen that during the Knuth-
required as a DDG tree can be constructed on-the-fly frovao random walk probability bits are read from a column of
the corresponding probability matrix. the probability matrix. For a fixed distribution the problipi
values can be stored in a cheap memory such as a ROM. The
[Il. EFFICIENT IMPLEMENTATION OF THEKNUTH-YAO way in which probability bits are stored in the ROM affects
ALGORITHM the number of ROM accesses and hence also influences the
In this section we present a simple hardware implementatiparformance of the sampler. Since the probability bits eaelr
friendly construction of the Knuth-Yao sampling algorithnfrom a single column during the runtime construction of a
from our previous paper [7]. However this basic constructidevel in the DDG tree, the number of ROM accesses can be
is slow due to its sequential bit-scanning operation. Inghé minimized if the columns of the probability matrix are stdre
of this section we propose a fast sampler architecture usingn the ROM words.

<« column 0

row0 —[{0111
Pmat = [0110
0010

Fig. 1. Probability matrix and corresponding DDG-tree

precomputed lookup table. A straightforward storage of the columns would result in
a redundant memory consumption as most of the columns in
A. Construction of the DDG tree at runtime the probability matrix contains a chain of Os in the bottom. |

The Knuth-Yao random walk travels from one level of the

DDG tree to the next level after consuming a random bit. . 4
During a random walk, theth level of the DDG tree is
constructed from théi — 1)th level using theith column of
the probability matrix. Hence in an efficient implementatadf . .
the sampling algorithm, we need to work with only one level D
of the DDG tree and one column of the probability matrix at

a time. Fig. 2. DDG Tree Construction

Discover Terminal Nodes
< —

000111111111010111000101110101
001111001101110110011011001101
001101001000110011101100011010
001010010010001110000011001110
000111010011001101100110100000
00§100101100101100100011010010
000910101111011110010010001110
000091011100110110001001011000
000000101100100010110010101101
000000010011011000000110100010
000000000111101001000111111011
000000000010101110111011001001
000000000000111000101110001100

continuous normal distribution with a standard deviatiois

% log(2mea?). For a discrete Gaussian distribution, the entropy
is approximately close to entropy of the normal distribatio
with the same standard deviation. A more accurate entrapy ca
be computed from the probability values as per the following
equation.

000000000000010000101011010101
000000000000080100011100100010
000000000000000001000100110001
00000000000000001
000000000000000000000010111111 #0

Part of Probability Matrix

®)

#2 : _) .
41 | 11011_110010111_11 H= § pi log p;
— 00

001110_1110111_110

First two ROM worc: The Knuth-Yao sampling algorithm was developed to consume

the minimum number of random bits on average [15]. It was
shown that the sampling algorithm requires at mast+ 2
random bits per sampling operation in the average case.

an optimized storage these 0s can be compressed. However inor a Gaussian distribution, the entropl increases with
such a storage we also need to store the lengths of the colurtigs standard deviatior, and thus the number of random
as the columns will have variable lengths after trimmingits required in the average case also increases avitRor

off the bottom 0s. If the column lengths are stored naivelgpplications such as the ring-LWE based public key encoypti
then it would cost[log z;0] bits per column and hence inscheme and homomorphic encryption, smals used. Hence
total ¢[log z;0| bits. By observing a special property of thefor such applications the number of random bits requiretién t
Gaussian distributed probability values, we can indeeivelar average case are small. Based on this observation we cah avoi
much simpler and optimized encoding scheme for the colurifie costly bit-scanning operation using a small precongpute
lengths. In the probability matrix we see that for most of thi@ble that directly maps the initial random bits into a samnpl
consecutive columns, the difference in the column lengshsvalue (with large probability) or into an intermediate node
either zero or one. Based on this observation we use one-dteghe DDG tree (with small probability). During a sampling
differential encoding scheme for the column lengths : when v@peration, first a table lookup operation is performed using
move from one column to its right consecutive column, thethe initial random bits. If the table lookup operation retsir
column length either increases by one or remains the saresample value, then the sampling algorithm terminates. For
Such a differential encoding scheme requires only one bit gbe other case, bit scanning operation is initiated from the
column length. In Figure 3 we show how the bottom zerdgtermediate node. For example, when = 3.33, if we

are trimmed using one-step partition line. In the ROM wese a precomputed table that maps the first eight random
store only the portion of the probability matrix that is abovbits, then the probability of getting a sample value aftex th
the partition line. Along with the columns, we also store thtable lookup is 0.973. Hence using the lookup table we can

Fig. 3. Storing Probability Matrix

encoded column-length bit. Each column starts with a colunaoid the costly bit-scanning operation with probabilit9 3.
length bit : if this bit is ‘1’, then the column is larger by oneHowever extra storage space is required for this lookupetabl
bit compared to its left consecutive column; otherwise théy/hen the probability distribution is fixed, the lookup table

are of equal lengths.
We take Algorithm 1 from [7] to summarize the steps of the

Knuth-Yao sampling operation. The ROM has a word size of\lgorithm 1: Knuth-Yao Sampling in Hardware Platform

w bits and contains the probability bits along with the column Input: Probability matrix

length bits.

Output: Sample valueS

1 begin
2 d + 0; /* Distance between the visited and the rightmost intenaae */
. . 3 Hit < 0; /* This is 1 when the sampling process hits a terminal node */
C. Fast sampling using lookup table 4 ColLen + INITIAL; [* Column length is initialized */

A Gaussian distribution is concentrated around its centa?r.
In the case of a discrete Gaussian distribution with stahd
deviationo, the probability of sampling a value larger thare
t- o is less thar2 exp(—t*/2) [17]. In fact this upper bound 1
is not very tight. We use this property of a discrete Gaussian
distribution to design a fast sampler architecture satigfyhe ﬁ
speed constraints of many real-time applications. As sexn f 15
the previous section, the Knuth-Yao random walk uses randi)‘jn
bits to move from one level of the DDG tree to the nexs
level. Hence the average case computation time required ﬁer
sampling operation is determined by the number of randam
bits required in the average case. e

The lower bound on the number of random bits requwed
per sampling operation in the average case is given by g

end

address <— 0; [* This variable is the address of a ROM word */
i < 0; [* This variable points the bits in a ROM word */
while Hit = 0 do
r < RandomBit() ;
d<2d+7;
ColLen < ColLen + ROM [address][i] ;
for row = ColLen — 1 down to0 do
i1+ 1;
if « = w then
address < address + 1 ;
140
end
d <~ d — ROM][row][i] ;
if d=—1 then
S <+ row ;
Hit < 1 ;
EzitForLoop() ;
end
end
end
return (S)

entropy of the probability distribution [19]. The entropy @

can be implemented as a ROM which is cheap in terms wf achieve minimum area requirement. In FPGAs a ROM can
area in hardware platforms. In the next section we propoke implemented as a distributed ROM or as a block RAM.
a cost effective implementation of a fast Knuth-Yao sampl&hen the amount of data is small, a distributed ROM is the
architecture. ideal choice. The way a ROM is implemented (its width
and depthh) affects the area requirement of the sampler. Let
us assume that the total number of probability bits to beestor
in the ROM is D and the size of the FPGA LUTs fs. Then
IV. THE SAMPLER ARCHITECTURE the total number of LUTs required by the ROM is around

The first hardware implementation of a Knuth-Yao samplér; = | - w along with a small amount of addressing overhead.
was proposed in our previous paper [7]. In this paper wehe scan-register is a shift register of widthand consumes
optimize the previous sampler architecture and also inized aroundw LUTs andw; = w FFs. Hence the total area (LUTs
a lookup table that directly maps input random bits into @hd FFs) required by the ROM and the scan-register can be
sample point or into an intermediate node in the DDG tre@Pproximated by the following equation.

The sampler architecture is composed of 1) a bit-scanning

unit, 2) counters for column length and row number, and 3) #dArea = [w ok
a subtraction-based down counter for the Knuth-Yao digtanc h

in the DDG tree. In addition, for the fast sampler architegfu - [Q_k-l “w+ (w+wy)

a lookup table_ is also used. A control unit is used t(?_ge'a—or optimal storage) should be a multiple o2*. Choosing a
erate cor!trol_ signals for the different blocks and to _ma‘mtalarger value of will reduce the width of the ROM and hence
synchronization between the blocks. The control unit used the width of the scan-register. However with the increase in

this paper is more decentralized compared to the control u ! the addressing overhead of the ROM will also increase. In
in [7]. This decentralized control unit has a more simplifie able Il we compare area of the bit-scan unit for— 3.33
control logic which reduces the area requirement compargg, \arious widths of the ROM and the scan register using
to the previous architecture. We, now describe the differe@liny virtex v xcvix30 FPGA. The optimal implementation
components of the sampler architecture. is achieved when the width of the ROM is set to six bits.
Though the slice count of the bit-scan unit remains the same
A. The Bit-scanning Unit in both the second and third column of the table due to various
timizations performed by the Xilinx ISE tool, the actual

The bit-scanning unit is composed of a ROM, a sca ¢ th I | hitect il b idamt i
register, one ROM-address counter, one counter to recerd Ie?:f[:ior?rlll € overall sampier architecture will be evident |

number of bits scanned from a ROM-word and a comparatot.
The ROM contains the probabilities and is addressed b
the ROM-address counter. During a bit-scanning operatio%v', Row-number and Column-length Counters

a ROM-word (sizew bits) is first fetched and then stored in As described in the previous section, we use a one-step
the scan register. The scan-register is a shift-registdritan differential encoding for the column lengths in the proligbi
msb is read as the probability-bit. To count the number o bitatrix. Thecolumn-lengtitounter in Figure 4 is an up-counter
scanned from a ROM-word, a countgord-bitis used. When and is used to represent the lengths of the columns. During
the word-bit counter reaches — 2 from zero, the output from a random-walk, this counter increments depending on the
the comparatoComplenables theROM-addressounter. In column-length bit which appears in the starting of a coluthin.
the next cycle theROM-addresscounter addresses the nexthe column-length bit is zero, then tleelumn-lengticounter
ROM-word. Also in this cycle theword-bit counter reaches remains in its previous value; otherwise it increments bg.on

w — 1 and the output fromComp2enables reloading of the At the starting of a column-scanning operation, tRew-
bit-scan register with the new ROM-word. In the next cyclggumber counter is first initialized to the value of column-
the word-bit counter is reset to zero and the bit-scan registiangth. During the scanning operation this counter decr¢sne
contains the word addressed by fR@M-wordcounter. In this by one in each cycle. A column is completely read when the
way data loading and shifting in the bit-scan register tak&ow Numbeicounter reaches zero.

place without any loss of cycles. Thus the frequency of the

data loading operation (which depends on the widths of tiie The Distance Counter

ROM) does influence the cycle requirement of the samplerp gptraction-based countelistanceis used to keep the

architecture. This interesting feature of the bit-scanwillbe jistance ¢ between the visited node and the right-most
utilized in the next part of this section to achieve optimaaa

requirement by adjusting the width of the ROM and the bit-

1-w+(w+wf)

scan register. Another point to note in this architecturtha, width | hewght | LUTs | FRs | Stices
most of the control signals are handled locally compared to 12 256 72 23 18
the centralized control logic in [7]. This effectively silffies 6 212 or | 17 | 18
the control logic and helps in reducing area. The bit-saagni TABLE II

unit is the largest sub-block in the sampler architecture in AREA OF THE BIFSCAN UNIT FOR DIFFERENT WIDTHS AND DEPTHS
terms of area. Hence this unit should be designed carefully

Carry W E done
4’{ Control FSM L
SCAN-UNIT !

scan-bit

dout shifted data COLUMN-ROW DISTANCE

ROM —J Ji
> 7
Carry ___
scan-bit _|enable 1= iimn Leng
Row_is_Zero_reg random bit
rst_internal
Comp3 Lookup_
0 Y sell

st|internal
——| Distance ‘

rst_internal

ROM-Addres:

rst_internal

enable enable]

Row Numher

Row_is_zero|

M

Rowilsizeroireéf

comp2_true

Fig. 4. Hardware Architecture for Knuth-Yao Sampler

intermediate node in the DDG tree. The registkstance failure, the next step of the random walk from the obtained
is first initialized to zero. During each column jump, théntermediate distance will be determined by the next secgien
row_zerg reg is set and thus the subtrahend becomes zed.random bits. Hence, we can extend the lookup operation
In this step, thalistanceregister is updated with the val@d to speedup the sampling operation. For example, the thtee-b
or 2d+ 1 depending on the input random bit. As described iwide distance can be combined with another five random bits
the previous section, a terminal node is visited by the remddo address a (theecond lookup table. Using this two small
walk when the distance becomes negative for the first timeokup tables, we achieve a success probability of 0.999 for
This event is detected by the control FSM using the carsy = 3.33. An architecture for a two stage lookup table is

generated from the subtraction operation. shown in Figure 5.
After completion of a random walk, the value present in
Row Numberis the magnitude of the sample output. One V. TIMING AND SIMPLE POWER ANALYSIS

random bit is used as a sign of the value of the sample outputr . \uth-Yao sampler presented in this paper is not a

constant time architecture. Hence this property of the $amp
D. The Lookup Table for Fast Sampling leads to side channel vulnerability. Before we describs thi

The output from the Knuth-Yao sampling algorithm is detein detail, we first describe the ring-LWE encryption scheme
mined by the probability distribution and by the input sequee Which requires discrete Gaussian sampling from a narrow
of random bits. For a given fixed probability distributionew distribution.
can precompute a table that maps all possible random strings
of bit-width s into a sample point or into an intermediaten. The ring-LWE Encryption Scheme
distance in the DDG tree. The precomputed table consists o
2% entries for each of thé® possible random numbers.

On FPGAs, this precomputed table is implemented as
distributed ROM using LUTs. The ROM contair2§ words
and is addressed by random numberssobit width. The
success probability of a table lookup operation can be in-
creased by increasing the size of the lookup table. For ebeamp Sample Sample
wheno = 3.33, the probability of success is 0.973 when the
lookup table maps the eight random bits; whereas the success
probability increases to 0.999 when the lookup table maps Lookup Lookup
13 random bits. However with a larger mapping, the size Tablel| g | Table 2 Initial Distance
of precomputed table increases exponentially figsirio 213,
Additionally each lookup operation requires 13 random.bits
A more efficient approach is to perform lookup operations in ?
steps. For example, we use a first lookup table that maps the Rrandom Bits LU1 Distancd
first eight random bits into a sample point or an intermediate
distance (three bit wide fos = 3.33). In case of a lookup Fig. 5. Hardware Architecture for two stage Lookup

tI'he ring-LWE encryption scheme [20] uses special struc-
tured ideal lattices. Such ideal lattices are a generaizat
of‘cyclic lattices and correspond to ideals in rirgk]/(f),
where f is an irreducible polynomial of degree To reduce

computation cost, the underlying ring is generally taken gerformed a SPA attack on the unprotected design running
R, = Z4[x]/(f) with the irreducible polynomial of the form on a Xilinx Spartan-1ll at 40 MHz. The instantaneous power
f(x) = 2™+ 1, wheren is a power of two and the primgis consumption is measured with a Langer RF5-2 magnetic pick-
taken asy = 1 mod 2n. The ring-LWE distribution consists up coil on top of the FPGA package (without decapsulation),
of tuples(a,t) where the polynomiak is chosen uniformly amplified ¢50 dB), low-pass filtered (cutoff frequency d8

from R, andt = a-s + e € R,. The polynomials is a MHz). In Figure 6 we show the instantaneous power consump-
secret polynomial and is a fixed polynomial for a ring-LWEion of two different sampling operations. The horizontsilsa
distribution. The error polynomialis constructed by sampling denotes time, and both sampling operations are triggered on
its coefficients from a discrete Gaussian distributidn Key the beginning of the sampling operation. One can distifiguis
generation, encryption and decryption are as follows: enough SPA features (presumably due to register updates)

1) KeyGeneration(a) : Two polynomialsr;,r, € R, are 10 infer that theblue graph corresponds to a sampling that
chosen fromX, and thenp = r, —a -7y € R, is requires small number of cycles (7 cycles exactly) whereas t

computed. The public key is the polynomial péir, p) red graph represents a sampling operation that requires more

and the private key is the polynomial. cycles (21 cycles). From this SPA attack, the adversary can
2) Encryption(a,p,m) : The message: is first encoded predict the values of each coefficient of the secret polyatsmi

to a polynomialm € R,. Then three error polynomi- €1, €2 andes that appear during the encryption operation in

als ey, e9,e3 € R, are constructed by sampling theirthe ring-LWE cryptosystem, effectively breaking the ségur

coefficients from from a discrete Gaussian distriblly infering the secret message (since the polynomiap is

tion with standard deviatiow. The ciphertext is the Publicly known). We recall that in the encryption operation

polynomial pair (ci,c;) wheree; = a - ey + es and in the ring-LWE cryptosystem, the encoded messagés

co=p-e1+es+im € R, masked ags = p-e; +e3+m using two Gaussian distributed
3) Decryption(cy,ca,r2) : First a polynomialm’ = ¢, - Noise polynomialg; andes. As the polynomiap is publicly

ry 4+ ¢2 € R, is computed. Then the original messagknown, any leakage about the coefficientseinand es will

m is recovered fromn’ using a simple decoder. eventually leak information about the secret message

130

120+ ﬂ(‘

In the ring-LWE encryption scheme, the key generation and J‘

110~

the encryption require discrete Gaussian sampling. The ke aaaan i
ypti qui I ussi pling y p JWV\Wﬂﬁ f UWMM“

B. Side Channel Vulnerability of the Sampling Operation

generation operation is performed only to generate long-te 100
keys and hence can be performed in a secure environment. | | \U
However, this is not the case for the encryption operation. e Endof samping “
It should be noted that in a public key encryption scheme, * | o I
the plaintext is normally considered secret informatioar F o e R /“ M i
example, it is common practice to use a public-key cryptosys ol WAV VY ﬂf{f‘@vfﬂjp\~L';J ‘ﬂk“‘ufk,*;t:,f\ | u W"{-ﬁJ‘Wv‘il@
tem to encrypt a symmetric key that is subsequently used for | | I i
fast, bulk encryption (this construction is commonly named o '
“hybrid cryptosystems”). Hence, from the perspective desi 10 s ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000

channel analysis, any leak of information during the entioyp
operation about the plaintext (symmetric key) is consider® Fig. 6. Two instantaneous power consumption measurementssponding
a valid security threat. to two different sampling operations. Horizontal axis iméi vertical axis

The basic Knuth-Yao sampler uses a bit Scanning Operat@ﬁ]legtromagnepc flgld intensity. The different timing fihe two different

pling operations is evident.

in which the sample generated is related to the number of
probability-bits scanned during a sampling operation. ¢éen
the number of cycles of a sampling operations provides some] N .
information to an attacker about the value of the sample. e Strategies to mitigate the side-channel leakage
recall that in a ring-LWE encryption operation, the Gaussia In this paper we propose an efficient and cost effective
sampler is used as a building block, and it is called in astheme to protect the Gaussian sampler from simple timing
iterative fashion to generate an array of samples. An attacland power analysis based attacks. Our proposal is based on
that monitors the instantaneous power consumption of ttree fact that the encryption scheme remains secure as long as
discrete Gaussian sampler architecture can easily retaiesu- the attacker has no information about the relative posstiohn
rate timings for each sampling information via Simple Powehe samples (i.e. the coefficients) in the noise polynomials
Analysis (SPA) patterns, and hence gain some informatishould be noted that, as the Gaussian distribution useckin th
about the secret polynomiads, e; andes. In the worst case, encryption scheme is a publicly known parameter, any one can
this provides the adversary with enough information to kreguess the number of a particular sample point in an array of
the cryptosystem. samples. Similar arguments also apply for other cryptesgyst

To verify to what extent the instantaneous power consumghere the key is a uniformly distributed random string obit
tion provides information about the sampling operation, waf some length (say). For such a random key, one has the

,,,

information that almost half of the bits in the key are one |
and the rest are zero. In other words, the Hamming weight is !
around!/2. Even if the exact value of the Hamming weight is
revealed to the adversary (on average, §&), the key still enable

din_sel

{

Gaussian
Sampler

mantains Iog(l/lQ) bits of entropy & 124 bits for a 128 bit rand_bits
key). It is the random positions of the bits that make a key

RAM

secure. ‘ % rand_bit_gen done |°°kUp—S”:ZZ?:SS§el ram_buffer
When the coefficients of the noise polynomial are generated : Random indox
information about both the value and position of the sample i coime] —
C2_dec—| n-1

the polynomial. Hence, such leakages will make the enawypti

using the sequential bit-scan, a side channel attacker gets; N T

. i . i L» address_sel ‘
scheme vulnerable. Our simple timing and power analysis ! enable} wea din_sel
resistant sampler is described below:

1) Use of a lookup : The table lookup operation is constant | e
time and has a very large success probability. Hence with E—’ - suctess dt .
this lookup approach, we protect most of the samples rand.index_gen n-1 -
from leaking any information about the value of the | o o»-
sample from which an attacker can perform simple T

power and timing analysis. Fig. 7. Sampler with shuffling

2) Use of a random permutation : The table lookup oper-
ation succeeds in most events, but fails with a smaljlgorithm 2: Random swap of samples
prObabi”tY- For a failure, the Sequential bit Scanning Input: Sample vector stored in RAM[] with timing information
operation leaks information about the samples. For ex_bOutput: Sample vector stored in RAM[] without timing information
ample, wherr = 3.33 and the lookup table maps initial é eg"z,vh”e Cy > 0do

eight random bits, the bit scanning operation is required %1 : 7‘§nd0m_dmde>r(e mgd)og?() ;
. It random_wndex n — en
for seven samples out of 256 samples in the average goto L1 ; - :
case. To protect against SPA, we perform a randofn end _
. . 7 swapRAM [n — C2] <» RAM [random_index] ;
shuffle after generating an entire array of samples. The Co e Cp— 1

random shuffle operation swaps all bit-scan operatid(?)nend end
generated samples with other random samples in the
array. This random shuffling operation removes any
timing information which an attacker can exploit. In the

next section we will describe an efficient implementation A hardware architecture for the secure consecutive-sagpli

of the random shuffling operation. is shown in Figure 7. In the architectur€;; is an up-
counter andCy is an up-down-counter. When thenable
D. Efficient Implementation of the Random Shuffling signal is high, the Gaussian sampler generates samples in

We use a modified version of the Fisher and Yates shuffi@ iterative way. After generation of each sample, the signa
which is also known as th&nuth shuffle[21] to perform Qdonegoes high and the type of the sample is indicated by the
random shuffling of the bit-scan operation generated sampléignallookup successin the case when the sample has been
The advantages of this shuffling algorithm are its simplicit 9enerated using a successful lookup operatakup success
uniformness, inplace data handling and linear time coniglex P€comes high. Depending on the value of thekup success
In the original shuffling algorithm, all the indexes of theirt the control machine sto_res the sample in the memory address
array are processed one after another. However in our casebwelr (”f02) and also Increments the cor_retqundlng counter.
can restrict the shuffling operation to only those samplas tH=0mpletion of then sampling operations is indicated by the

were generated using the sequential bit scanning operatiHtPut fromComparator2 _

This operation is implemented in the following way. In the random-shuffling phase, a random address is gen-
Assume thatn samples are generated and then stor&fated and then compared with — Cs). If the random-

in a RAM with addresses in the range 0 ta — 1). We address is smaller tham — C>) then it is used for the swap

use two counters”; and C» to represent the number ofoperation; otherwise another random-address is generated

samples generated through successful lookup and bit-sgandNOW the memory content of addregs— C',) is swapped with

operations respectively. The total number of samples géeer the memory content of random-address usingréra_buffer

is given by (Cy + Cs). The samples generated using looku gister. After this swap opera_tlon, the courerrdgcrements

operation are stored in the memory locations starting froRY one. The last swap operation happens wégris zero.

0 till (C1 — 1); whereas the bit-scan generated samples are

stored in the memory locations starting from address 1 VI. EXPERIMENTAL RESULTS

downton — C,. After generation of the:n samples, the bit- We have evaluated the Knuth-Yao discrete Gaussian sampler

scan operation generated samples are randomly swapped waitthitecture foro = 3.33 using the Xilinx Virtex V FPGA

the other samples using Algorithm 2 xcvIx30 with speed grade 3. The results shown in Table 11l

[Sampler Architecture [ROM-width | ROM-depth [LU-depth [LUTs [FFs [Slices [BRAM [Delay (ns) [Cycles]

Basic Knuth-Yao Sampler 24 128 - 101 81 38 2.9 17

Basic Knuth-Yao Sampler 12 256 - 105 60 32 - 25 17

Basic Knuth-Yao Sampler 6 512 - 102 48 30 - 2.6 17
Fast Knuth-Yao Sampler 6 512 8 118 48 35 - 3 ~2.5
Knuth-Yao Sampler [7] 32 96 - 140 - 47 - 3 17
Bernoulli Sampler [11] - - - 132 40 37 - 7.3 144
Polynomial Sampler-1 6 512 8 135 56 44 1 3.1 392
Polynomial Sampler—2 6 512 8 176 66 52 1 3.3 420

TABLE Il
PERFORMANCE OF THE DISCRETESAUSSIAN SAMPLER ON XCG5VLX 30

are obtained from the Xilinx ISE12.2 tool after place andteougenerators such as the trivium steam cipher which is used in
analysis. In the table we show area and timing results of orl]. The results in Table Il show that by spending addiéibn
architecture for various configurations and modes of omrat five slices, we can reduce the average case cycle requirement
and compare the results with other existing architecturke. per sampling operation to almost two cycles from 17 cycles.
results do not include the area of the random bit generatds the sampler architecture is extremely small even with the
Area requirements for the basic bit-scan operation basedkup table, the acceleration provided by the fast samgplin
Knuth-Yao sampler for different ROM-widths and depths ararchitecture will be useful in designing fast cryptosystem
shown in the first three columns of the table. The optimal The Polynomial Sampler-1 architecture in the seventh
area is achieved when the ROM-width is set to 6 bits. As tlowlumn of Table Il generates a polynomial af = 256
width of the ROM does not affect the cycle requirement afoefficients sampled from the discrete Gaussian distohuti
the sampler architecture, all different configurationsheame by using the fast sampler iteratively. The samples are dtore
clock cycle requirement. The average case cycle requiremanthe RAM from address 0 ta — 1. During the consecutive
of the sampler is determined by the number of bits scanned sampling operations, the state-machine jumps to the next
average per sampling operation. A C program simulation sampling operation immediately after completing a sangplin
the Knuth-Yao random walk in [7] shows that the number aiperation. In this consecutive mode of sampling operatites
memory-bits scanned on average is 13.5. Before starting ttransition to the end state’ cycle is not spent for the indiial
bit-scanning operation, the sampler performs two colummgu sampling operations. As the probability of a successfukigo
operations for the first two all-zero columns of the probigibil operation is 0.973, in the average case 249 out of the 256
matrix (for o = 3.33). This initial operation requires two samples are generated using successful lookup operations;
cycles. After this, the bit scan operation requires 14 ytte whereas the seven samples are obtained through the seduenti
scan 14 memory-bits and the final transition to the compietibit-scanning operation. In this consecutive mode of samgpli
state of the FSM requires one cycle. Thus, on average ddch lookup operation generated sample consumes one cycle.
cycles are spent per sampling operation. The most aremalpti Hence in the average case 249 cycles are spent for generating
instance of the Knuth-Yao sampler is smaller by 17 slicea théhe majority of the samples. The seven sampling operations
the Knuth-Yao sampler architecture proposed in [7]. Thecaff that perform bit scanning starting from the ninth column of
of the bit-scan unit and decentralized control logic is thube probability matrix require on average a total of 143 egcl
evident from the comparison. The compact Bernoulli sampl@hus in total 392 cycles are spent on average to generate a
proposed in [11] consumes 37 slices and spends on aver@geissian distributed polynomial.
144 cycles to generate a sample point. Thus in comparison tarhe Polynomial Sampler—2 architecture includes the random
the Bernoulli sampler, our Knuth-Yao sampler is both smallghuffling operation on a Gaussian distributed polynomial of
and faster. n = 256 coefficients. The architecture is thus secure against
_ i simple time and power analysis attacks. However this sicuri
The fast sampler architecture in the fourth column of Tab|g)nes at the cost of an additional eight slices due to the
Il 'uses a lookup table that maps eight random bits. Thgqyirement of additional counter and comparator circiite
sampler consumes additional five slices compared to the bagichjtecture first generates a polynomial in 392 cycles hed t
bit-scan based architecture. The probability that a tail&dp performs seven swap operations in 28 cycles in the average
operation returns a sample is 0.973. Due to this high successe Thus in total the proposed side channel attack resista

rate of the lookup operation, the average case cycle requiggmpler spends 420 cycles to generate a secure Gaussian
ment of the fast sampler is slightly larger than 2 cycles Wit jistributed polynomial of 256 coefficients.
consideration that one cycle is consumed for the transiion

the state-machine to the completion state. In this cyclentou

we assume that the initial eight random bits are available
in parallel during the table lookup operation. If the random In this paper we presented an optimized instance of the
number generator is able to generate only one random bit eruth-Yao sampling architecture that consumes very small
cycle, then additional eight cycles are required per sargpliarea. We have shown that by properly tuning the width of the
operation. However generating many (pseudo)random bitsR®OM and the scan register, and by a decentralizing the dontro
not a problem using light-weight pseudo random numbégic, we can reduce the area of the sampler to only 30 slices

VIl. CONCLUSION

10

without affecting the cycle count. Moreover, in this papdn9] L. Devroye, Non-Uniform Random Variate Generation

we proposed a fast sampling method using a very small-area New ~ York: Springer-Verlag, 1986. [Online]. Available:
. http://luc.devroye.org/rnbookindex.html
precomputed table that reduces the cycle requirement haj\setéo] V. Lyubashevsky, C. Peikert, and O. Regev, “On Idealtitas and

times in the average case. We showed that the basic sampler Learning with Errors over Rings,” irAdvances in Cryptology EU-
architecture can be attacked by exploiting its timing armiqmo ROCRYPT 2010ser. Lecture Notes in Computer Science, vol. 6110.

. Springer Berlin Heidelberg, 2010, pp. 1-23.
consumption related leakages. In the end we proposed a Cest D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd

effective counter measure that performs random shuffling of Ed.): Seminumerical Algorithms Boston, MA, USA: Addison-Wesley
the samples. Longman Publishing Co., Inc., 1997.

REFERENCES

[1] S. Rich and B. Gellman, “NSA Seeks to build Quantum Coreput
that could crack most types of Encryption,” The WashingtastP2nd
January, 2014, http://www.washingtonpost.com/worltiémel-security/.

[2] O. Regeyv, “Lattice-Based Cryptography,” idvances in Cryptology -
CRYPTO 2006ser. LNCS, C. Dwork, Ed., vol. 4117. Springer Berlin,
2006, pp. 131-141.

[3] T. Poppelmann and T. Guneysu, “Towards Efficient Amttic for
Lattice-Based Cryptography on Reconfigurable HardwareProgress
in Cryptology LATINCRYPT 2012er. LNCS, A. Hevia and G. Neven,
Eds., vol. 7533. Springer Berlin, 2012, pp. 139-158.

[4] N. Gottert, T. Feller, M. Schneider, J. Buchmann, andHsss, “On
the Design of Hardware Building Blocks for Modern Latticedgd En-
cryption Schemes,” it€ryptographic Hardware and Embedded Systems
CHES 2012ser. LNCS, vol. 7428. Springer Berlin, 2012, pp. 512-529.

[5] T. Frederiksen, “A Practical Implementation of RegevISVE-
based Cryptosystem,” ihttp://daimi.au.dk/ jot2re/lwe/resourcesZ010.
[Online]. Available: http://daimi.au.dk/ jot2re/lweseurces/

[6] T. Poppelmann and T. Glneysu, “Towards Practical itetBased
Public-Key Encryption on Reconfigurable Hardware,"Salected Areas
in Cryptography — SAC 2013%er. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2014, pp. 68-85.

[7]1 S.S. Roy, F. Vercauteren, and |. Verbauwhede, “High Biec Discrete
Gaussian Sampling on FPGAs,” Belected Areas in Cryptography —
SAC 2013 ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2014, pp. 383-401.

[8] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I- Ve
bauwhede, “Compact Ring-LWE based Cryptoprocessor,” ©Olygy
ePrint Archive, Report 2013/866, 2013, http://eprint.ia@/.

[9] A. Aysu, C. Patterson, and P. Schaumont, “Low-cost andafefficient
FPGA Implementations of Lattice-based Cryptography,” HOST
IEEE, 2013, pp. 81-86.

[10] T. Poppelmann, L. Ducas, and T. GUneysu, “EnhancetiiceaBased
Signatures on Reconfigurable Hardware,” Cryptology ePArthive,
Report 2014/254, 2014, http://eprint.iacr.org/.

[11] T. Pdppelmann and T. Glneysu, “Area Optimization afHtweight
Lattice-Based Encryption on Reconfigurable Hardware Piac. of the
IEEE International Symposium on Circuits and Systems (SC4)
2014, Preprint.

[12] T. Oder, T. Poppelmann, and T. Giineysu, “Beyond ECEHA RSA:
Lattice-based Digital Signatures on Constrained DevidasProceed-
ings of the The 51st Annual Design Automation Conference esigD
Automation Conferenceser. DAC '14. New York, NY, USA: ACM,
2014, pp. 110:1-110:6.

[13] A. Boorghany and R. Jalili, “Implementation and Compan of
Lattice-based Identification Protocols on Smart Cards anidrdv
controllers,” Cryptology ePrint Archive, Report 2014/072014,
http://eprint.iacr.org/.

[14] L. Ducas and P. Q. Nguyen, “Faster Gaussian Lattice $agpJsing
Lazy Floating-Point Arithmetic,” inAdvances in Cryptology ASI-
ACRYPT 2012ser. LNCS, vol. 7658. Springer Berlin, 2012, pp. 415—
432.

[15] D. E. Knuth and A. C. Yao, “The Complexity of Non-UniforRandom
Number Generation,Algorithms and Complexifypp. 357-428, 1976.

[16] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky,atlice
Signatures and Bimodal Gaussians,” Cryptology ePrint iesHReport
2013/383, 2013, http://eprint.iacr.orgl/.

[17] V. Lyubashevsky, “Lattice Signatures without Trapdg®d in Proceed-
ings of the 31st Annual international conference on Thearg Appli-
cations of Cryptographic Techniqueser. EUROCRYPT'12. Berlin:
Springer-Verlag, 2012, pp. 738-755.

[18] N. Dwarakanath and S. Galbraith, “Sampling from Diser&aussians
for Lattice-based Cryptography on a Constrained Deviégplicable
Algebra in Engineering, Communication and Computingl. 25, no. 3,
pp. 159-180, 2014.

