
Efficient Hidden Vector Encryption

with Constant-Size Ciphertext

Tran Viet Xuan Phuong, Guomin Yang, and Willy Susilo⋆

Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
Email: tvxp750@uowmail.edu.au, {gyang, wsusilo}@uow.edu.au

Abstract. A Hidden Vector Encryption (HVE) scheme is a special type of anonymous identity-
based encryption (IBE) scheme where the attribute string associated with the ciphertext or the
user secret key can contain wildcards. In this paper, we introduce two constant-size ciphertext-
policy hidden vector encryption (CP-HVE) schemes. Our first scheme is constructed on composite
order bilinear groups, while the second one is built on prime order bilinear groups. Both schemes
are proven secure in a selective security model which captures plaintext (or payload) and attribute
hiding. To the best of our knowledge, our schemes are the first HVE constructions that can achieve
constant-size ciphertext among all the existing HVE schemes.

Keywords: Hidden vector encryption, Ciphertext policy, Constant-size ciphertext, Viète’s For-
mulas

1 Introduction

Embedding policy-based access control into modern encryption schemes is an interesting but challenging
task that has been intensively studied by the cryptologic research community in recent years. Typical
examples of such encryption schemes include Attribute-based Encryption (ABE) [1–4] and Predicate
Encryption [5, 6] schemes, which can be treated as special instances of a more general notion called
Functional Encryption which was formalized by Boneh, Sahai, and Waters [7].

As a special type of functional encryption, Hidden Vector Encryption (HVE) schemes [5, 6, 8, 9] allow
wildcards to appear in either the encryption attribute vector associated with a ciphertext or the decryp-
tion attribute vector associated with a user secret key. Similar to ABE schemes, we name the former
Ciphertext Policy (CP-) HVE schemes and the latter Key Policy (KP-) HVE schemes. The decryption
will work if and only if the two vectors match. That is, for each position, the two vectors must have the
same letter (defined in an alphabet Σ) unless a wildcard symbol ‘⋆’ appears in one of these two vectors
at that position. In this paper, we focus on the construction of CP-HVE schemes.

Related Works. All the recent development on functional encryptions can be traced back to the earlier
work on identity-based encryption which was introduced by Shamir [10] and first realized by Boneh and
Franklin [11] and Cocks [12]. One important extension of IBE is hierarchical IBE (HIBE) [13], which
allows users at a level to issue keys to those on the level below.

The notion of Anonymous IBE was introduced by Boneh et al. [14] and later formalized by Abdalla
et al. [15]. Compared with the normal IBE, anonymous IBE supports the additional feature of iden-
tity/attribute hiding. That is, except the user holding the correct decryption key, no one is able to link
a ciphertext with the identity string used to create that ciphertext.

In [16], Abdalla et al. also proposed another extension of IBE called Wildcarded IBE (or WIBE for
short). WIBE is closely related to CP-HVE except that the former does not consider the property of
identity/attribute hiding when it was introduced in [16]. Abdalla et al. proposed several WIBE construc-
tions based on the Waters HIBE [17], the Boneh-Boyen HIBE [18], and the Boneh-Boyen-Goh HIBE [13].
Recently, to address the identity hiding problem, Abdalla et al. also proposed an anonymous WIBE in
[19].

In a predicate encryption system [5, 6] for a (polynomial-time) predicate P , two inputs (besides some
public parameters) are required in the encryption process, one is the message M to be encrypted, and

⋆ This work is partially supported by Australian Research Council Discovery Project (DP130101383).

the other one is an index string i. A decryption key is generated based on a master secret and a key index
k. The decryption key can successfully decrypt a valid encryption of (i,M) if and only if P (k, i) = 1. IBE
can be treated as a special type of predicate encryption where the predicate function simply performs
an equality test, while for HVE the predicate function will ignore the positions where wildcard symbols
‘⋆’ have occurred when doing an equality test.

After the notion of hidden vector encryption was first proposed by Boneh and Waters in [5], several
HVE schemes [6, 20–22, 8, 23, 9] have been proposed, most of which are key policy based (i.e., the wild-
cards ‘⋆’ appear in the decryption attribute vector). One common drawback in many early HVE schemes
(e.g. [5, 6, 21, 22]) is that the ciphertext size and the decryption key size are large (linear in the length of
the vector). In [8], Sedghi et al. proposed an HVE scheme that has constant decryption key size and short
(but still not constant-size) ciphertext. In [9], Hattori et al. introduced a formal definition for CP-HVE
and proposed a CP-HVE scheme based on the anonymous HIBE proposed in [24] and the wildcarded
IBE proposed in [16]. Hattori et al.’s CP-HVE scheme also has a linear cipertext size. To the best of our
knowledge, there is no HVE scheme proposed in the literature that can achieve constant-size ciphertext.
Our Contributions. We propose two ciphertext policy hidden vector encryption schemes with constant-
size ciphertext.

• Our first proposed scheme (CP-HVE1) is constructed on bilinear groups with a composite order
n = pq where p, q are prime numbers. The security of the scheme is proven in the standard model
under three complexity assumptions: the Decisional L-composite Bilinear Diffie-Hellman Exponent
(L-cBDHE) assumption, the L-composite Decisional Diffie Hellman (l-cDDH) assumption, and the
Bilinear Subspace Decision (BSD) assumption.
• Additionally, we also construct our second scheme (CP-HVE2), which is built on bilinear groups with
a prime order. We note that our second scheme is more efficient compared to the scheme converted
from CP-HVE1 by applying the conversion tool from a composite order to a prime order bilinear
group. Our second scheme is proven under the Decisional L-Bilinear Diffie-Hellman Exponent (L-
BDHE) assumption.

We highlight the differences between our schemes and the previous HVE schemes in Table 1. A more
detailed comparison among these schemes is given in Sec. 7.

Table 1. A Comparison on Ciphertext Size and Key Size among HVE Schemes

Scheme Type Constant Ciphertext Size Constant Key Size

Katz et al. [6] Key Policy No No

Shi, Waters [20] Key Policy No No

Ivovino and Persiano [21] Key Policy No No

Sedghi et al. [8] Key Policy No Yes

Lee and Dong [25] Key Policy No Yes

Park [23] Key Policy No Yes

Hattori et al. [9] Ciphertext Policy No No

Ours Ciphertext Policy Yes No

2 Preliminaries

2.1 Bilinear Map on Prime Order Groups

Let G and GT be two multiplicative cyclic groups of same prime order p, and g a generator of G. Let
e : G×G→ GT be a bilinear map with the following properties:

1. Bilinearity : e(ua, vb) = e(ub, va) = e(u, v)ab for all u,v ∈ G and a,b ∈ Zp.
2. Non-degeneracy : e(g, g) 6= 1

Notice that the map e is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

2

Decision L-BDHE Assumption. The Decision L-BDHE problem in G is defined as follows: Let G

be a bilinear group of prime order p, and g, h two independent generators of G. Denote −→y g,α,L =

(g1, g2, . . . , gL, gL+2, . . . , g2L) ∈ G
2L−1 where gi = gα

i

for some unknown α ∈ Z
∗
p. We say that the

L-BDHE assumption holds in G if for any probabilistic polynomial-time algorithm A

|Pr[A(g, h,−→y g,α,L, e(gL+1, h)) = 1]− Pr[A(g, h,−→y g,α,L, T) = 1]| ≤ ǫ(k)

where the probability is over the random choive of g, h in G, the random choice α ∈ Z∗
p, the random

choice T ∈ GT , and ǫ(k) is negligible in the security parameter k.

2.2 Bilinear Map on Composite Order Groups

Let p, q be two large prime numbers and n = pq. Let G,GT be cyclic groups of order n, We say
e : G×G→ GT is bilinear map on composite order groups if e satisfies the following properties:

1. Bilinearity : e(ua, vb) = e(ub, va) = e(u, v)ab. for all u,v ∈ G and a,b ∈ Zp.
2. Non-degeneracy : e(g, g) 6= 1

Let Gp and Gq be two subgroups of G of order p and q, respectively. Then G = Gp × Gq, GT =
GT,p × GT,q. We use gp and gq to denote generators of Gp and Gq, respectively. e(hp, hq) = 1 for all
elements hp ∈ Gp and hq ∈ Gq since e(hp, hq) = e(gap , g

b
q) = e(gqa, gpb) = e(g, g)pqab = 1 for a generator

g of G.
Below are three complexity assumptions defined on composite order bilinear groups: the decisional

L-composite bilinear Diffie-Hellman exponent (L-cBDHE) assumption, the L-composite Decisional Diffie-
Hellman (L-cDDH) assumption, and the bilinear subspace decision (BSD) assumption.

The Decisional L−cBDHE assumption:

Let gp, h
R
←− Gp, gq

R
←− Gq, α

R
←− Zn

Z = (gp, gq, h, g
α
p , . . . , g

αL

p , gα
L+2

p , . . . , gα
2L

p),

T = e(gp, h)
αL+1

, and R← GT,p

We say that the decisional L−cBDHE assumption holds if for any probabilistic polynomial-time algorithm
A

|Pr[A(Z, T) = 1]− Pr[A(Z,R) = 1]| ≤ ǫ(k)

where ǫ(k) denotes an negligible function of k.

The L− cDDH assumption:

Let gp
R
←− Gp, gq, R1, R2, R3

R
←− Gq, α, β

R
←− Zn

Z = (gp, gq, g
α
p , . . . , g

αL

p , gα
L+1

p R1, g
αL+1β
p R2)

T = gβpR3, and R← G

We say that the L− cDDH assumption holds if for any probabilistic polynomial-time algorithm A

|Pr[A(Z, T) = 1]− Pr[A(Z,R) = 1]| ≤ ǫ(k)

where ǫ(k) denotes an negligible function of k.

The BSD assumption:
Let gp ← Gp, gq ← Gq

Z = (gp, gq)
T ← GT,p, and R← GT,p

We say that the BSD assumption holds if for any probabilistic polynomial-time algorithm A

|Pr[A(Z, T) = 1]− Pr[A(Z,R) = 1]| ≤ ǫ(k)

where ǫ(k) denotes an negligible function of k.

3

2.3 The Viète’s formulas

Both of our schemes introduced in this paper are based on the Viète’s formulas [8] which is reviewed
below. Consider two vectors −→v = (v1, v2, . . . , vL) and −→z = (z1, z2, . . . , zL). Vector v contains both
alphabets and wildcards, and vector z only contains alphabets. Let J = {j1, . . . , jn} ⊂ {1, . . . , L} denote
the positions of the wildcards in vector −→v . Then the following two statements are equal:

vi = zi ∨ vi = ∗ for i = 1 . . . L
L
∑

i=1,i/∈J

vi
∏

j∈J

(i− j) =
L
∑

i=1

zi
∏

j∈J

(i − j).
(1)

Expand
∏

j∈J

(i− j) =
n
∑

k=0

aki
k, where ak are the coefficients dependent on J , then (1) becomes:

L
∑

i=1,i/∈J

vi
∏

j∈J

(i− j) =
n
∑

k=0

ak
L
∑

i=1

zii
k (2)

To hide the computations, we choose random group elemen Hi and put vi, zi as the exponents of
group elements: Hvi

i , H
zi
i . Then (2) becomes:

L
∏

i=1,i/∈J

H
vi

∏
j∈J (i−j)

i =
n
∏

k=0

(
L
∏

i=1
Hzii

k

i)ak (3)

Using Viète’s formulas we can construct the coefficient ak in (2) by:

an−k = (−1)k
∑

1≤i1<i2<...<ik≤n

ji1ji2 . . . jik , 0 ≤ k ≤ n. (4)

where n = |J |. If we have J = {j1, j2, j3}, the polynomial is (x− j1)(x− j2)(x− j3), then:

a3 = 1
a2 = −(j1 + j2 + j3)
a1 = (j1j2 + j1j3 + j2j3)
a0 = −j1j2j3.

3 Ciphertext-Policy Hidden Vector Encryption

A ciphertext-policy hidden vector encryption (CP-HVE) scheme consists of the following four probabilis-
tic polynomial-time algorithms:

• Setup(1k, Σ, L): on input a security parameter 1k, an alphabet Σ, a vector-length L, the algorithm
outputs a public key PK and master secret key MSK.
• Encryption(PK,−→v ,M): on input a public key PK, a message M , a vector v ∈ Σ∗

L where Σ∗

denotes Σ ∪ {∗}, the algorithm outputs a ciphertext CT .
• KeyGen(MSK,−→x): on input a master secret key MSK , a vector −→x ∈ ΣL, the algorithm outputs
a decryption key SK.
• Decryption(CT, SK): on input a ciphertext CT and a secret key SK, the algorithm outputs either
a message M or a special symbol ⊥.

Security Model. The security model for a CP-HVE scheme is defined via the following game between
an adversary A and a challenger B.

• Init: The adversary A chooses two target patterns,

−→
v∗0 = (v0,1, v0,2, . . . , v0,L) and

−→
v∗1 = (v1,1, v1,2, . . . , v1,L)

under the restriction that the wildcards ‘*’ must appears at the same positions.

4

• Setup: The challenger B run Setup(k,Σ, L) to generate the PK and MSK. PK is then passed to
A.
• Query Phase 1: A adaptively issues key queries for −→σ = (σ1, . . . , σL) ∈ ΣL under the restriction

that −→σ does not match
−→
v∗0 or

−→
v∗1 . That is, there exist i, j ∈ {1, . . . , L} such that v∗0,i 6= ∗ ∧ v

∗
0,i 6= σi,

and v∗1,j 6= ∗ ∧ v
∗
1,j 6= σj . The challenger runs KeyGen(MSK,−→σ) and returns the corresponding

decryption key to A.

• Challenge:A outputs two equal-length messagesM∗
0 ,M

∗
1 . B picks β ← {0, 1} and runs Encrypt(PK,

−→
v∗β,

M∗
β) to generate a challenge ciphertext C∗. B then passes C∗ to A.

• Query Phase 2: same as Learning Phase 1.
• Output: A outputs a bit β′ as her guess for β.

Define the advantage of A as
AdvCP−HVE

A (k) = Pr[β′ = β]− 1/2.

4 CP-HVE Scheme 1

In this section, we present our first CP-HVE under composite order bilinear groups. Let −→v denote the
attribute vector associated with the ciphertext and −→z the attribute vector associated with the user
secret key. The expression of these two vectors is designed based on the idea The Viète’s formulas. To

do encryption, we represent each component of the vector −→v by (gvi)

∏

j∈J

(i−j)

where J denotes all the

wildcard positions and is attached to the ciphertext. Notice that
∏

j∈J

(i − j) =
n
∑

k=0

aki
k according to the

Viète’s formulas. In the decryption process, based on J , the decryptor can reconstruct the coefficients

ak, and generate
∏

j∈J

gzii
kak = (gzi)

∏

j∈J

(i−j)

for each component of −→z . In this way, whether vi = zi will

not affect the decryption if i ∈ J .

◮ Setup(1k, Σ, L): The setup algorithm first chooses N << L where N is the maximum number of
wildcards that are allowed in an encryption vector. It then picks large primes p, q, generates bilinear
groups G,GT of composite order n = pq, and selects generators gp ∈ Gp, gq ∈ Gq. After that, it
selects random elements:

g, f, v, v′, h1, . . . , hL, h
′
1, . . . , h

′
L, w ∈ Gp,

Rg, Rf , Rv, Rv′ , Rh1 , . . . , RhL
, Rh′

1
, . . . , Rh′

L
∈ Gq,

and computes :
G = gRg, F = fRf , V = vRv, V

′ = v′Rv′ ,
H1 = h1Rh1 , . . . , HL = hLRhL

,
H ′

1 = h′1Rh′
1
, . . . , H ′

L = h′LRh′
L
,

E = e(g, w).

Then it creates the public key and master secret key as:

PK = {gp, gq, G, F, V, V
′, (H1, . . . , HL), (H

′
1, . . . , H

′
L), E},

MSK = {p, q, g, f, v, v′, (h1, . . . , hL), (h
′
1, . . . , h

′
L), w}.

◮ Encrypt(PK,M,−→v = (v1, . . . , vL) ∈ Σ
∗
L): Suppose that −→v contains τ ≤ N wildcards which occur

at positions J = {j1, . . . , jτ}. The encryption algorithm first chooses:

s ∈R Zn, and Z1, Z2, Z3, Z4 ∈R Gq.

Using formulas (3) and (4), compute ak for k = 1, 2, · · · , τ , and t = a0. Then set:

C0 =M ·Es, C1 = G
s
tZ1, C2 = F sZ2,

C3 = ((
L
∏

i=1

V Hvi
i)

τ∏

k=1

(i−jk)
)

s
t · Z3, C4 = ((

L
∏

i=1

V ′(H ′
i)
vi)

τ∏

k=1

(i−jk)
)

s
t · Z4,

J = {j1, j2, . . . , jτ},

and ciphertext CT = {C0, C1, C2, C3, C4, J}.

5

◮ KeyGen(MSK,−→z = (z1, . . . , zL) ∈ ΣL): The key generation algorithm chooses r1, r
′
1, r2 randomly

in Zn, and computes:

K1 = gr1 ,K2 = gr
′
1 ,K3 = gr2 ,





















K4,0 = w(
L
∏

i=1

hzii v)
r1(

L
∏

i=1

(h′i)
ziv′)r

′
1f r2 ,

K4,1 = (
L
∏

i=1

hzii v)
ir1 (

L
∏

i=1

(h′i)
ziv′)ir

′
1 ,

. . .

K4,N = (
L
∏

i=1

hzii v)
iN r1(

L
∏

i=1

(h′i)
ziv′)i

N r′1





















.

The secret key is SK = {K1,K2,K3,K4,0, . . . ,K4,N}.

◮ Decrypt(CT, SK): The decryption algorithm first applies the Viète’s formulas to compute

aτ−k = (−1)k
∑

1≤i1<i2<...<ik≤τ

ji1ji2 . . . jik , 0 ≤ k ≤ τ

and then outputs:

M =
e(K1, C3) · e(K2, C4) · e(K3, C2)

e(
τ
∏

k=0

Kak
4,k, C1)

· C0.

Correctness:

e(K1, C3) = e(gr1 , ((
L
∏

i=1

V Hvi
i)

τ∏

k=1

(i−jk)
)

s
a0 · Z3)

=
L
∏

i=1

e(g, v)

sr1

τ∏

k=1
(i−jk)

a0 · e(g, hi)

sr1

τ∏

k=1
(i−jk)vi

a0 .

e(K2, C4) = e(gr
′
1 , ((

L
∏

k=1

V ′(H ′)vii)

τ∏

k=1

(i−jk)
)

s
a0 · Z4)

=
L
∏

i=1

e(g, v′)

sr′1

τ∏

k=1
(i−jk)

a0 · e(g, h′i)

sr′1

τ∏

k=1
(i−jk)vi

a0 .

e(K3, C2) = e(gr2 , F sZ2) = e(g, f)r2s.

e(
τ
∏

k=0

Kak
4,k, C1) = e(wa0(

τ
∏

k=0

L
∏

i=1

vi
kakhzii

kak
i vi

kak)r1(
τ
∏

k=0

L
∏

i=1

(h′i)
zii

kakv′i
kak)r

′
1f r2a0 , G

s
a0 Z1)

= e(g, w)
sa0
a0 · e(g, f)

sr2a0
a0 ·

L
∏

i=1

e(g, hi)

sr1
τ∏

k=1
(i−jk)zi

a0 e(g, v)
sr1

∑τ
k=0 ikak
a0

·
L
∏

i=1

e(g, h′i)

sr′1

τ∏

k=1
(i−jk)zi

a0 e(g, v′)
sr′1

∑τ
k=0 ikak
a0

= e(g, w)s · e(g, f)sr2 ·
L
∏

i=1

e(g, v)

sr1

τ∏

k=1
(i−jk)

a0 · e(g, hi)

sr1

τ∏

k=1
(i−jk)zi

a0

·
L
∏

i=1

e(g, v′)

sr′1

τ∏

k=1
(i−jk)

a0 · e(g, h′i)

sr′1

τ∏

k=1
(i−jk)zi

a0 .

6

Then we have

e(K1, C3) · e(K2, C4) · e(K3, C2)

=
L
∏

i=1

e(g, v)

sr1

τ∏

k=1
(i−jk)

a0 · e(g, hi)

sr1

τ∏

k=1
(i−jk)vi

a0 ·
L
∏

i=1

e(g, v′)

sr′1

τ∏

k=1
(i−jk)

a0 · e(g, h′i)

sr′1

τ∏

k=1
(i−jk)vi

a0 ,

e(
τ
∏

k=0

Kak
4,k, C1)

=
L
∏

i=1

e(g, v)

sr1
τ∏

k=1
(i−jk)

a0 · e(g, hi)

sr1
τ∏

k=1
(i−jk)zi

a0 ·
L
∏

i=1

e(g, v′)

sr′1

τ∏

k=1
(i−jk)

a0 · e(g, h′i)

sr′1

τ∏

k=1
(i−jk)zi

a0

·e(g, w)s · e(g, f)sr2 ,

and can recover message M by:

e(K1, C3) · e(K2, C4) · e(K3, C2)

e(
τ∏

k=0

K
ak
4,k, C1)

· C0 =
e(g, f)r2s ·M · e(g,w)s

e(g,w)s · e(g, f)sr2
= M.

Theorem 1. Our CP-HVE Scheme 1 is secure if the Decisional L−cBDHE assumption, the L− cDDH

assumption, and the BSD assumption hold.

We prove Theorem 1 by the following sequence of games.

Game0 : [C0, C1, C2, C3, C4]

Game1 : [C0 · Rp, C1, C2, C3, C4]

Game2 : [R0, C1, C2, C3, C4]

Game3 : [R0, C1, C2, R3, C4]

Game4 : [R0, C1, C2, R3, R4],

where Rp is a randomly chosen fromGT,p, R0 is uniformly distributed inGT , and R0, R3, R4 are uniformly
distributed in G.

We will prove the following Lemmas. Notice that in Game4 the challenge ciphertext is independent
of the message and the encryption vector, which means the adversary has no advantage in winning the
game over random guess.

Lemma 1. Assume that the Decisional L−cBDHE assumption holds, then for any PPT adversary, the

difference between the advantages in Game0 and Game1 is negligible.

Lemma 2. Assume that the BSD assumption holds, then for any PPT adversary, the difference between

the advantages in Game1 and Game2 is negligible.

Lemma 3. Assume that the L−cDDH assumption holds, then for any PPT adversary, the difference

between the advantages in Game2 and Game3 is negligible.

Lemma 4. Assume that the L−cDDH assumption holds, then for any PPT adversary, the difference

between the advantages in Game3 and Game4 is negligible.

4.1 Proof of Lemma 1

Assume that the Decisional L−cBDHE assumption holds, then for any PPT adversary, the difference
between the advantages in Game0 and Game1 is negligible.

We assume that adversaryA’s advantage has a difference ǫ betweenGame0 andGame1. The simulator
B will use A to solve the Decisional L−cBDHE problem. B is given a challenge instance Z, T ′ of the

problem, where Z = (gp, gq, h, g
α
p , . . . , g

αL

p , gα
L+2

p , . . . , gα
2L

p) and T ′ is either T = e(gp, h)
αL+1

or R ∈R
GT,p.

In the rest of the proof, we denote W (−→v) = {1 ≤ i ≤ L|vi = ∗} and W (−→v) = {1 ≤ i ≤ L|vi 6= ∗},
and W (−→v)|kj as {i ∈W (−→v)|j ≤ i ≤ k}.

7

• Init: A declares two challenge alphabet vectors
−→
v∗0 = (v∗0,1, . . . , v

∗
0,L) and

−→
v∗1 = (v∗1,1, . . . , v

∗
1,L) under

the restriction that W (
−→
v∗0) =W (

−→
v∗1).

• Setup: In this phase, B generates:

γ, y, y′, ψ, {ui, u
′
i}i∈|L|

R
←− Zn, Rg, Rf , Rv, Rv′ , Rh1 , . . . , RhL

, Rh′
1
, . . . , Rh′

L

R
←− Gq

Then B flips a coin µ ∈ {0, 1} and sets:

G = gpRg, F = gψpRf , E = e(gαp , g
αL

p gγp), V = gyp
∏

i∈W (
−→
v∗µ)

g
αL+1−iv∗µ,i
p Rv, V

′ = gy
′

p Rv′ ,

{Hi = gui−α
L+1−i

p Rh,i}i∈W (
−→
v∗µ)
, {Hi = gui

p Rh,i}i∈W (
−→
v∗µ)
, {H ′

i = gui
p Rh′,i}

L
i=1.

Then the corresponding elements of the master secret key are: g = gp, f = gψp , {hi = gui−α
L+1−i

p }
i∈W (

−→
v∗µ)
, {hi =

gui
p }i∈W (

−→
v∗µ)
, {h′i = g

u′
i
p }Li=1, v

′ = gy
′

p , v = gyp
∏

i∈W (
−→
v∗µ)

g
αL+1−iv∗µ,i
p .

The master key component w is gα
L+1+αγ

p . Since B does not have gα
L+1

p , B cannot compute w
directly.
• Query Phase 1: A queries the user secret key for −→σu = (σ1, σ2, . . . , σu) that does not match the

challenge patterns. Let k ∈ W (
−→
v∗µ) be the smallest integer such that σk 6= v∗µ,k.

B needs to simulate the user key generation process. We start from K4,i.

K4,0 = w(
L
∏

i=1

hσi

i v)
r1(v′

L
∏

i=1

(h′i)
σi)r

′
1f r2

= gα
L+1+αγ

p (
∏

W (
−→
v∗µ)|

k
1

g
(ui−α

L+1−i)σi
p ·

∏

W (
−→
v∗µ)|

k
1

(gui
p)σi · g

y+
∑

i∈W (
−→
v∗µ)

αL+1−iv∗µ,i

p ·)r1(v′
L
∏

i=1

(h′i)
zi)r

′
1f r2 .

def
= gα

L+1+αγ
p (gXp)r1(v′

L
∏

i=1

(h′i)
zi)r

′
1f r2

where
X =

∑

W (
−→
v∗µ)

αL+1−iv∗µ,i + y +
∑

W (
−→
v∗µ)|

k
1

(ui − α
L+1−i)σi +

∑

W (
−→
v∗µ)|

k
1

uiσi.

Since
∑

W (
−→
v∗µ)|

k
1

(ui − α
L+1−i)σi +

∑

W (
−→
v∗µ)|

k
1

uiσi =
∑

W (
−→
v∗µ)|

k
1

(−αL+1−iσi) +
k

∑

i=1

uiσi

and recall σi = v∗µ,i for i ∈ W (
−→
v∗µ)|

k−1
1 and σk 6= v∗µ,k. Hence, we have

X = αL+1−k∆k +
∑

W (
−→
v∗µ)|

L
k+1

αL+1−iv∗µ,i +
∑k

i=1 xiσi + y

where ∆k = v∗µ,k − σk. Then we choose r′1, r̂1, r2 randomly in Zn, and set r1 = −αk

∆k
+ r̂1. K4,0 can

be represented as

K4,0

= gα
L+1+αγ

p · g−α
L+1

p · g

∑

i∈W (
−→
v∗µ)|L

k+1

−αL+1−i+kv∗µ,i
∆k

p · g
ak(−

∑k
i=1 xiσi+y.

∆k
)

p · (v

k
∏

i=1

hσi

i)r̂1(v′
L
∏

i=1

(h′i)
σi)r

′
1 · f r2

= gαγp · g

∑

i∈W (
−→
v∗µ)|L

k+1

−αL+1−i+kv∗µ,i
∆k

p · g
ak(−

∑k
i=1 xiσi+y.

∆k
)

p · (v

k
∏

i=1

hσi

i)r̂1 · (v′
L
∏

i=1

(h′i)
σi)r

′
1 · f r2 .

8

For k̂ = 1 to N , we compute

K4,k̂ = ((
∏

W (
−→
v∗µ)|

k−1
1

(gui−α
L+1−i

p)σi ·
∏

W (
−→
v∗µ)|

k−1
1

(gui
p)σi · g

y+
∑

i∈W (
−→
v∗µ)

αL+1−iv∗µ,i

p)
−αkik̂

∆k
+r̂1i

k̂

· (v′
L
∏

i=1

(h′i)
σi)r

′
1i

k̂

.

Other elements in the key can also be simulated:

K1 = gr1p = (gα
k

p)−1/∆k · gr̂1p ,K2 = g
r′1
p ,K3 = gr2p .

• Challenge: A sends to message M0,M1 to B. B generates Z1, Z2, Z3, Z4
R
←− Gq and then sets using

Viète’s formulas

aτ−k = (−1)k
∑

i≤i1<i2<...<ik≤τ

ji1ji2 . . . jik , 0 ≤ k ≤ τ.

Let t = a0. It creates ciphertext as:

C0 =Mb · T
′ · e(gαp , h)

γ , C1 = h1/t · Z1, C2 = hψ · Z2,

C3 = ((h
y+

L∑

i=1

uiv
∗
µ,i

)

τ∏

k=1

(i−jk)
)

1
t · Z3, C4 = ((h

y′+
L∑

i=1

u′
iv

∗
µ,i

)

τ∏

k=1

(i−jk)
)

1
t · Z4.

If T ′ = T = e(gp, h)
αL+1

, where h = gcp for some unknown c ∈ Zp, then

C0 =Mb · e(gp, g
c
p)
αL+1

· e(gαp , g
c
p)
γ =Mb · e(gp, g

αL+1

p)c · e(gαp , g
γ
p)
c =Mb · E

c,

C1 = (gcp)
1/t · Z1 = Gc/t · Z ′

1, C2 = (gcp)
ψ · Z2 = F c · Z ′

2,

C3 = ((g
y+

L∑

i=1

uiv
∗
µ,i

p)

τ∏

k=1

(i−jk)
)

c
t · Z3 = ((V

L
∏

i=1

Hvi
i)

τ∏

k=1

(i−jk)
)

s
t · Z ′

3,

C4 = ((g
y′+

L∑

i=1

u′
iv

∗
µ,i

p)

τ∏

k=1

(i−jk)
)

c
t · Z4 = ((V ′

L
∏

i=1

(H ′
i)
vi)

τ∏

k=1

(i−jk)
)

s
t · Z ′

4.

Hence, A is in Game0. Otherwise, if T ′ = Rp = e(gp, h)
αL+1

· R′
p for some random R′

p ∈ GT,p, then
A is in Game1.
• Query Phase 2: Repeat Phase 1.
• Guess: A output b′ ∈ {0, 1}. If b′ = b then B outputs 1; otherwise B outputs 0.

Let AdvB(k) be the advantage of B to solve the L−wDBDHI problem, and AdvGame0A (k), AdvGame1A (k)
be the advantages of A in Game0 and Game1. Then we have

AdvB(λ) = |Pr[B → 1|T ′ = T]− Pr[B → 1|T ′ = Rp]|
= |Pr[B → 1|Game0]− Pr[B → 1|Game1]|

= |(12 +AdvGame0A (k)− (12 +AdvGame1A (k))|
= ǫ.

4.2 Proof of Lemma 2

Assume that the BSD assumption holds, then for any PPT adversary, the difference between the advan-
tages in Game1 and Game2 is negligible.

We assume that adversaryA’s advantage has a difference ǫ betweenGame1 andGame2. The simulator

B is given a challenge instance Z, T ′ of the BSD problem, where Z = (gp, gq) and T
′ is either T

R
←− GT,p

or R
R
←− GT . B simulates the game for A as follows.

• Init: A declares two challenge alphabet vectors.

9

• Setup: B follows the setup algorithm and creates the public key and master secret key using gp and
gq.
• Query Phase 1: A queries the user secret key for −→σ . B simulate the key generation algorithm
honestly by using the master secret key.

• Challenge: A sends to message M0,M1 to B. B flips a coin b
R
←− {0, 1} and returns a normal

ciphertext of Mb, with the exception that C0 is multiplied by T ′. If T ′ = T
R
←− GT,p then A is in

Game1; otherwise, if T
′ = R

R
←− GT , then A is in Game2.

• Query Phase 2: Repeat Phase 1.
• Guess: A output b′ ∈ {0, 1}. If b′ = b then B outputs 1; otherwise, B outputs 0.

Let AdvB(k) be the advantage of B to solve the BSD problem, and AdvGame0A (k), AdvGame1A (k) be
the advantages of A in Game1 and Game2. Then we have

AdvB(k) = |Pr[B → 1|T ′ = T]− Pr[B → 1|T ′ = R]|
= |Pr[B → 1|Game1]− Pr[B → 1|Game2]|

= |(12 +AdvGame1A (k))− (12 +AdvGame2A (k))|
= ǫ.

4.3 Proof of Lemma 3

Assume that the L−cDDH assumption holds, then for any PPT adversary, the difference between the
advantages in Game2 and Game3 is negligible.

We assume that the adversary A has difference ǫ in the advantages between Game2 and Game3. We
use A to solve the L−cDDH problem. The simulator B is given a challenge instance Z, T ′ of the L-cDDH

problem, where Z = (gp, gq, h, g
α
p , . . . , g

αL

p , gα
L+1

p ·R1, g
αL+1b
p ·R2) and T

′ is either T = gbp ·R3 or R← G.
B simulates the game for A as follows:

• Init: A declares two challenge alphabet vectors
−→
v∗0 = (v∗0,1, . . . , v

∗
0,L) and

−→
v∗1 = (v∗1,1, . . . , v

∗
1,L) under

the restriction that W (
−→
v∗0) =W (

−→
v∗1).

• Setup: In this phase, B generates:

γ, y, y′, ψ, {ui, u
′
i}i∈|L|

R
←− Zn,

w
R
←− Gp,

Rg, Rf , Rv̂, Rv′ , Rh1 , . . . , RhL
, Rh′

1
, . . . , Rh′

L
∈ Gq.

Then B flips µ ∈ {0, 1} and sets:

G = gpRg, F = gψpRf , E = e(gαp , g
αL

p gγp),

V = (gα
L+1

p R1) · g
y
p

∏

i∈W (
−→
v∗µ)

g
αL+1−iv∗µ,i
p Rv̂ = gα

L+1

p · gyp
∏

i∈W (
−→
v∗µ)

g
αL+1−iv∗µ,i
p Rv,

V ′ = gy
′

p

∏

i∈W (
−→
v∗µ)

g
αL+1−iv∗µ,i
p Rv′ ,

{Hi = gui−α
L+1−i

p Rh,i}i∈W (
−→
v∗µ)
, {Hi = gui

p Rh,i}i∈W (
−→
v∗µ)
,

{H ′
i = g

u′
i−α

L+1−i

p Rh′,i}i∈W (
−→
v∗µ)
, {H ′

i = g
u′
i
p Rh′,i}i∈W (

−→
v∗µ)
.

The corresponding master secret key components are: g = gp, f = gψp , {hi = gui−α
L+1−i

p }
i∈W (

−→
v∗µ)

,

{hi = gui
p }i∈W (

−→
v∗µ)
, {h′i = g

u′
i−α

L+1−i

p }
i∈W (

−→
v∗µ)
, {h′i = g

u′
i
p }i∈W (

−→
v∗µ)
, v = gα

L+1+y
p

∏

i∈W (
−→
v∗µ)

g
αL+1−iv∗µ,i
p ,

v′ = gy
′

p

∏

i∈W (
−→
v∗µ)

g
αL+1−iv∗µ,i
p . Notice that the master key component v is gα

L+1+y
p

∏

i∈W (
−→
v∗µ)

g
αL+1−iv∗µ,i
p .

Since B does not have gα
L+1

p , B cannot compute v directly.

10

• Query Phase 1: A queries the user secret key for −→σu = (σ1, σ2, . . . , σu) that does not match the

challenge patterns. Let k ∈ W (
−→
v∗µ) be the smallest integer such that σk 6= v∗µ,k.

B first simulates K4,i as follows.

K4,0 = w(
L
∏

i=1

hσi

i v)
r1(

L
∏

i=1

(h′i)
σiv′)r

′
1f r2

= w((
∏

W (
−→
v∗µ)|

k
1

g
(ui−α

L+1−i)σi
p ·

∏

W (
−→
v∗µ)|

k
1

(gui
p)σi · g

αL+1+y+
∑

W (
−→
v∗µ)

αL+1−iv∗µ,i

p ·)r1

· ((
∏

W (
−→
v∗µ)|

k
1

g
(u′

i−α
L+1−i)σi

p ·
∏

W (
−→
v∗µ)|

k
1

(g
u′
i
p)σi · g

y′+
∑L

i=1 α
L+1−iv∗µ,i

p)r
′
1f r2

def
= w(gXp)r1(gYp)

r′1f r2

where
X = αL+1 + y +

∑

i∈W (
−→
v∗µ)

αL+1−iv∗µ,i +
∑

W (
−→
v∗µ)|

k
1

(ui − α
L+1−i)σi +

∑

W (
−→
v∗µ)|

k
1

uiσi

and
Y = y′ +

∑

i∈W (
−→
v∗µ)

αL+1−iv∗µ,i +
∑

W (
−→
v∗µ)|

k
1

(u′i − α
L+1−i)σi +

∑

W (
−→
v∗µ)|

k
1

u′iσi.

Since
∑

W (
−→
v∗µ)|

k
1

(ui − α
L+1−i)σi +

∑

W (
−→
v∗µ)|

k
1

uiσi =
∑

W (
−→
v∗µ)|

k
1

(−αL+1−iσi) +

k
∑

i=1

uiσi,

and
∑

W (
−→
v∗µ)|

k
1

(u′i − α
L+1−i)σi +

∑

W (
−→
v∗µ)|

k
1

u′iσi =
∑

W (
−→
v∗µ)|

k
1

(−αL+1−iσi) +

k
∑

i=1

u′iσi,

and recall σi = v∗µ,i for i ∈ W (
−→
v∗µ)|

k−1
1 and σk 6= v∗µ,k. Hence,

X = αL+1 + αL+1−k∆k +
∑

W (
−→
v∗µ)|

L
k+1

αL+1−iv∗µ,i +
∑k

i=1 uiσi + y,

Y = αL+1−k∆k +
∑

W (
−→
v∗µ)|

L
k+1

αL+1−iv∗µ,i +
∑k

i=1 u
′
iσi + y′.

where ∆k = v∗µ,k − σk. B then randomly chooses r1, r̂′1, r2 in Zn, sets r
′
1 = −αkr1

∆k
+ r̂′1. Hence, we

have:

K4,0 = w(gXp)r1(gYp)
−αkr1

∆k
+r̂′1 · f r2

= w(g
X+−Y αk

∆k
p)r1(gYp)

r̂′1 · f r2

= w(g
αL+1−k∆k+

∑

W (
−→
v∗µ)|L

k+1

αL+1−iv∗µ,i+
∑k

i=1 uiσi+y

p g
−

∑

W (
−→
v∗µ)|L

k+1

αL+1−i+kv∗µ,i

∆k
−

(
∑k

i=1 u′
iσi+y′)αk

∆k
p)r1

· (v′
L
∏

i=1

(h′i)
σi)r̂

′
1 · f r2 .

Also, for k̂ = 1 to N , B sets

K4,k̂ = (g
αL+1−k∆k+

∑

W (
−→
v∗µ)|L

k+1

αL+1−iv∗µ,i+
∑k

i=1 uiσi+y

p g
−

∑

W (
−→
v∗µ)|L

k+1

αL+1−i+kv∗µ,i

∆k
−

(
∑k

i=1 u′
iσi+y′)αk

∆k
p)r1i

k̂

· (
L
∏

i=1

(h′i)
σiv′)r̂

′
1i

k̂

.

And other elements can also be simulated as follows:

K1 = gr1p ,K2 = g
r′1
p = g

−αk

∆k
r1+r̂′1

p ,K3 = gr2p .

11

• Challenge: A sends two message M0,M1 to B. Then B generates R0
R
←− GT , Z1, Z2, Z3, Z4

R
←− Gq

and sets using Viète’s formulas:

aτ−k = (−1)k
∑

i≤i1<i2<...<ik≤τ

ji1ji2 . . . jik , 0 ≤ k ≤ τ.

Let t = a0. B creates ciphertext as:

C0 = R0, C1 = T ′1/t · Z1, C2 = T ′ψ · Z2,

C3 = (((gα
L+1b

p R2)(T
′y+

L∑

i=1

uiv
∗
µ,i

))

τ∏

k=1

(i−jk)
)

1
t · Z3, C4 = ((T

′y′+
L∑

i=1

u′
iv

∗
µ,i

)

τ∏

k=1

(i−jk)
)

1
t · Z4.

If T ′ = gbpg
c
q some unknown c ∈ Zq, then we have

C1 = (gbpg
c
q)

1/t · Z1 = Gb/t · Z ′
1,

C2 = (gbpg
c
q)
ψ · Z2 = F b · Z ′

2, ,

C3 = (((gα
L+1b

p R2)(g
b
pg
c
q)
y+

L∑

i=1

uiv
∗
µ,i

))

τ∏

k=1

(i−jk)
)

1
t · Z3

= ((gα
L+1

g
y+

L∑

i=1

uiv
∗
µ,i

)

τ∏

k=1

(i−jk)
)

b
t · ((R2g

c(y+
L∑

i=1

uiv
∗
µ,i)

q)

τ∏

k=1

(i−jk)
)

1
t · Z3

= ((V

L
∏

i=1

Hvi
i)

τ∏

k=1

(i−jk)
)

s
t · Z ′

3,

C4 = (((gbpg
c
q)
y′+

L∑

i=1

u′
iv

∗
µ,i

)

τ∏

k=1

(i−jk)
)

1
t · Z4

= (((gp)
y′+

L∑

i=1

u′
iv

∗
µ,i

)

τ∏

k=1

(i−jk)
)

b
t · (((gcq)

y′+
L∑

i=1

u′
iv

∗
µ,i

)

τ∏

k=1

(i−jk)
)

1
t · Z4

= ((V ′
L
∏

i=1

(H ′
i)
vi)

τ∏

k=1

(i−jk)
)

s
t · Z ′

4.

and CT is in Game2. Otherwise, if T ′ = R = gb
′

p g
c′

q for some b′ ∈ Zp, c
′ ∈ Zq, then

C1 = (gb
′

p g
c′

q)
1/t · Z1 = Gb

′/t · Z ′′
1 ,

C2 = (gb
′

p g
c′

q)
ψ · Z2 = F b

′

· Z ′′
2 ,

C3 = (((gα
L+1b

p R2)(g
b′

p g
c′

q)
y+

L∑

i=1

uiv
∗
µ,i

))

τ∏

k=1

(i−jk)
)

1
t · Z3,

= ((gα
L+1

p)
δ

τ∏

k=1

(i−jk)
)

1
t ((g

αL+1+y+
L∑

i=1

uiv
∗
µ,i

p)

τ∏

k=1

(i−jk)
)

b′

t · ((R2g
c′(y+

L∑

i=1

uiv
∗
µ,i)

q)

τ∏

k=1

(i−jk)
)

1
t · Z3

= ((gα
L+1

p)
δ

τ∏

k=1

(i−jk)
)

1
t · ((V

L
∏

i=1

Hvi
i)

τ∏

k=1

(i−jk)
)

s
t · Z ′′

3 ,

C4 = (((gb
′

p g
c′

q)
y′+

L∑

i=1

u′
iv

∗
µ,i

)

τ∏

k=1

(i−jk)
)

1
t · Z4

= (((gp)
y′+

L∑

i=1

u′
iv

∗
µ,i

)

τ∏

k=1

(i−jk)
)

b′

t · (((gc
′

q)
y′+

L∑

i=1

u′
iv

∗
µ,i

)

τ∏

k=1

(i−jk)
)

1
t · Z4

= ((V ′
L
∏

i=1

(H ′
i)
vi)

τ∏

k=1

(i−jk)
)

s
t · Z ′′

4 ,

where δ = b − b′ is uniformly distributed in Zn for R chosen randomly from G, and hence CT is in
Game3.
• Query Phase 2: Repeat Phase 1.
• Guess: A outputs b′ ∈ {0, 1}. If b′ = b, then B outputs 1; otherwise B outputs 0.

12

Let AdvB(k) be the advantage of B in solving the L−cDDH problem, and AdvGame2A (k), AdvGame3A (k)
be the advantage of A in Game2 and Game3, respectively. Then we have

AdvB(k) = |Pr[B → 1|T ′ = T]− Pr[B → 1|T ′ = R]|
= |Pr[B → 1|Game2]− Pr[B → 1|Game3]|

= |(12 +AdvGame2A (k))− (12 +AdvGame3A (k))|
= ǫ.

4.4 Proof of Lemma 4

The proof for Lemma 4 is almost the same as that for Lemma 3, where we generate V ′ as the role of V
in Lemma 3. We omit the details of the proof here.

5 CP-HVE Scheme 2

One straightforward approach to obtain a new CP-HVE scheme under prime-order bilinear groups is to
apply the conversion technique introduced by Lewko [26]. In this section, we present a new prime-order
CP-HVE scheme that is more efficient than the converted scheme.

◮ Setup(1k, Σ, L): The setup algorithm chooses N << L to be the maximum number of wildcards
that are allowed in an encryption vector. Then it generates other system parameters including:

e : G×G→ GT ,
L+ 1 random elements V,H1, . . . , HL ∈R G,
Then chooses randomly generator g, w, f ∈ G,
Y = e(g, w).

The public key and master secret key are set as:

PK = (Y, V, (H1, . . . , HL), g, f, p,G,GT , e),
MSK = w.

◮ Encrypt(PK,M,−→v = (v1, . . . , vL) ∈ Σ
∗
L): Assume that −→v = (v1, . . . , vL) contains τ ≤ N wildcards

which occur at positions J = {j1, . . . , jτ}. The encryption algorithm chooses s ∈R Zp, and computes
using Viete’s formulas t = a0. It then computes:

C0 =MY s, C1 = g
s
t , C2 = f s, C3 = (

L
∏

i=1

V Hvi
i)

∏τ
k=1(i−jk)s

t ,

and set the ciphertext CT = (C0, C1, C2, C3, J = {j1, j2, . . . , jτ}).

◮ Key Generation(MSK,−→z = (z1, . . . , zL) ∈ ΣL): given a key vector −→z = (z1, . . . , zL), the key
generation algorithm chooses r, r1 ∈R Zp, then it creates secret key SK as:

K1 = gr,K2 = gr1 ,





















K3,0 = w(
L
∏

i=1

(Hzi
i V)rf r1

K3,1 = (
L
∏

i=1

Hzi
i V)ir

. . .

K3,N = (
L
∏

i=1

Hzi
i V)i

N r





















.

◮ Decrypt(CT, SK): The decryption algorithm first applies the Viete formulas on J = {j1, . . . , jτ}
included in the ciphertext to compute:

aτ−k = (−1)k
∑

1≤i1<i2<...<ik≤τ

ji1ji2 . . . jik , for 0 ≤ k ≤ τ

13

and then outputs:

M =
e(K1, C3) · e(K2, C2)

e(
τ
∏

k=0

Kak
3,k, C1)

· C0.

Correctness

e(K1, C3) = e(gr, ((
L
∏

i=1

V Hvi
i)

τ∏

k=1

(i−jk)
)

s
a0)

=
L
∏

i=1

e(g, V)

sr
τ∏

k=1
(i−jk)

a0 · e(g,Hi)

sr
τ∏

k=1
(i−jk)vi

a0 .

e(K2, C2) = e(gr1 , f s) = e(g, f)r1s

e(
τ
∏

k=0

Kak
3,k, C1) = e(wa0 (

τ
∏

k=0

L
∏

i=1

Hzii
kak

i V i
kak)rf r1a0 , g

s
a0)

= e(g, w)
sa0
a0 · e(g, f)

sr1a0
a0 ·

L
∏

i=1

e(g, V)

sr
τ∏

k=1
(i−jk)

a0 e(g,Hi)

sr
τ∏

k=1
(i−jk)zi

a0

= e(g, w)s · e(g, f)sr1 ·
L
∏

i=1

e(g, V)

sr
τ∏

k=1
(i−jk)

a0 · e(g,Hi)

sr
τ∏

k=1
(i−jk)zi

a0 .

Then we have:

e(K1,C3)·e(K2,C2)·C0

e(
τ∏

k=0

K
ak
3,k,C1)

=
M·e(g,w)s·

L∏

i=1

e(g,V)

sr
τ∏

k=1
(i−jk)

a0 ·e(g,Hi)

sr
τ∏

k=1
(i−jk)vi

a0 ·e(g,f)r1s

e(g,w)s·e(g,f)sr1 ·
L∏

i=1

e(g,V)

sr
τ∏

k=1
(i−jk)

a0 ·e(g,Hi)

sr
τ∏

k=1
(i−jk)zi

a0

=M.

6 Security Proof of CCP-HVE2 Scheme

Theorem 2. Assume decision L-BDHE assumption holds in G, then our CP-HVE Scheme 2 is secure.

Proof. Suppose that there exists an adversary A which can attack our scheme with non-negligible ad-
vantage ǫ, we construct another algorithm B which uses A to solve the decision L-BDHE problem. On
input (g, h,−→y g,α,L = (g1, g2, . . . , gL,

gL+2, . . . , g2L), T), where gi = gα
i

and for some unknown α ∈ Z∗
p. The goal of B is to determine whether

T = e(gL+1, h) or not.
In the rest of the proof, we denote W (−→v) = {1 ≤ i ≤ L|vi = ∗} and W (−→v) = {1 ≤ i ≤ L|vi 6= ∗}, and
W (−→v)|kj as {i ∈ W (−→v)|j ≤ i ≤ k}.
B simulates the game for A as follows:

• Init: A declares two challenge alphabet vectors
−→
v∗0 ∈ Σ∗

L and
−→
v∗1 ∈ Σ∗

L under the restriction that

W (
−→
v∗0) =W (

−→
v∗1). B flips a coin µ ∈ {0, 1}. For simplicity we denote

−→
v∗µ = (v∗1 , v

∗
2 , · · · , v

∗
L).

• Setup: B chooses N << L, and random values γ, y, ψ, u1, . . . , uL ∈R Zp and sets

Y = e(gα, gα
L

gγ), f = gψ,

V = gy
∏

i∈W (
−→
v∗µ)

gα
L+1−iv∗µ,i

{Hi = gui−α
L+1−i

}
i∈W (

−→
v∗µ)
, {Hi = gui}

i∈W (
−→
v∗µ)
.

The master key component w is gα
L+1+αγ . Since B does not have gα

L+1

, B cannot compute w
directly.

14

• Query Phase 1: A queries the user secret key for −→σu = (σ1, σ2, . . . , σu) that does not match the

challenge patterns. Let k ∈ W (
−→
v∗µ) be the smallest integer such that σk 6= v∗µ,k.

B needs to simulate the user key generation process. We start from K3,i.

K3,0 = w(
L
∏

i=1

Hσi

i V)rf r1

= gα
L+1+αγ(

∏

W (
−→
v∗µ)|

k
1

gui−α
L+1−i

·
∏

W (
−→
v∗µ)|

k
1

(gui))σi · g

y+
∑

W (
−→
v∗µ)

αL+1−iv∗µ,i

)rf r1 .

def
= gα

L+1+αγ(gX)rf r1

where
X =

∑

W (
−→
v∗µ)

αL+1−iv∗µ,i + y +
∑

W (
−→
v∗µ)|

k
1

(ui − α
L+1−i)σi +

∑

W (
−→
v∗µ)|

k
1

uiσi.

Since
∑

W (
−→
v∗µ)|

k
1

(ui − α
L+1−i)σi +

∑

W (
−→
v∗µ)|

k
1

uiσi =
∑

W (
−→
v∗µ)|

k
1

(−αL+1−iσi) +

k
∑

i=1

uiσi

and recall σi = v∗µ,i for i ∈ W (
−→
v∗µ)|

k−1
1 and σk 6= v∗µ,k. Hence, we have

X = αL+1−k∆k +
∑

W (
−→
v∗µ)|

L
k+1

αL+1−iv∗µ,i +
∑k

i=1 xiσi + y

where ∆k = v∗µ,k − σk. Then we choose r̂, r1 randomly in Zn, and set r = −αk

∆k
+ r̂. K3,0 can be

represented as

K3,0

= gα
L+1+αγ · g−α

L+1

· g

∑

i∈W (
−→
v∗µ)|L

k+1

−αL+1−i+kv∗µ,i
∆k

· g
ak(−

∑k
i=1 xiσi+y.

∆k
)
· (V

k
∏

i=1

hσi

i)r̂ · f r1

= gαγ · g

∑

i∈W (
−→
v∗µ)|L

k+1

−αL+1−i+kv∗µ,i
∆k

· g
ak(−

∑k
i=1 xiσi+y.

∆k
)
· (V

k
∏

i=1

Hσi

i)r̂ · f r1 .

For k̂ = 1 to N , we compute

K3,k̂ = (g

y+
∑

W (
−→
v∗µ)

αL+1−iv∗µ,i

· (
∏

W (
−→
v∗µ)|

k−1
1

gui−α
L+1−i

·
∏

W (
−→
v∗µ)|

k−1
1

(gui)σi)
−αkik̂

∆k
+r̂ik̂

.

Other elements in the key can also be simulated:

K1 = gr = (gαk)−1/∆k · gr̂,K2 = gr1 .

• Challenge: A sends to message M0,M1 to B, then sets using Viete formulas

aτ−k = (−1)k
∑

i≤i1<i2<...<ik≤τ

ji1ji2 . . . jik , 0 ≤ k ≤ τ.

Let t = a0. It creates ciphertext as:

C0 =Mb · T · e(g
α, h)γ , C1 = h1/t, C2 = hψ, C3 = ((h

y+
L∑

i=1

uiv
∗
µ,i

)

τ∏

k=1

(i−jk)
)

1
t

If T = e(g, h)α
L+1

, the challenge ciphertext is a valid encryption of Mb. On the other hand, when T
is uniformly distributed in GT , the challenge ciphertext is independent of b.

15

• Query Phase 2: Same Phase 1.
• Guess: A output b′ ∈ {0, 1}. If b′ = b then B outputs 1, otherwise outputs 0.

If b′ = 0, then the simulation is the same as in the real game. Hence, A will have the probability 1
2 + ǫ to

guess b correctly. If b′ = 1, then T is random in G, then A will have probability 1
2 to guess b correctly.

Therefore, B can solve the decision L-BDHE assumption also with advantage ǫ. �

7 Performance Comparison

We give a detailed comparison among all the HVE schemes in Table 2. The schemes are compared in
terms of the order of the underlying group, ciphertext size, decryption cost, and security assumption.
In the table, p denotes the pairing operation, L the length of the vector, and N denotes the maximum
number of wildcards.

Table 2. Performance Comparison

Scheme Group Order Ciphertext Size Decryption Cost Assumption

Katz et al. [6] pqr (2L+ 1)|G| + 1|GT | (2L+ 1)p c3DH

Shi–Waters [20] pqr (L+ 3)|G|+ 1|GT | (L+ 3)p c3DH

Ivovino–Persiano[21] p (2L+ 1)|G| + 1|GT | (2L+ 1)p DBDH + DLIN

Sedghi et al. [8] p (N + 3)|G|+ 1|GT | 3p DLIN

cBDH
Lee–Dong [25] pqr (L+ 2)|G|+ 1|GT | 4p BSD

c3DH

Park [23] p (2L+ 3)|G| + 1|GT | 5p DBDH+DLIN

L−wDBDHI
Hattori et al. [9] pq (2L+ 3)|G| + 1|GT | 3p BSD

L− cDDH

L−cBDHE
CP-HVE1 pq 4|G|+ 1|GT | 4p BSD

L− cDDH

CP-HVE2 p 3|G|+ 1|GT | 3p L-BDHE

Remark : In Table 2, we do not count the wildcard positions when measuring the ciphertext size. To
indicate those wildcard positions, a naive way is to use an L-bit string, which has the same size as
several group elements when L is linear in the security parameter. When N ≪ L, then a more efficient
way is to use the index for the first wildcard position and the offsets for the remaining wildcard positions.

8 Conclusion

We proposed two efficient ciphertext policy Hidden Vector Encryption schemes in this paper. Both of
our encryption schemes can achieve constant ciphertext size, which forms the major contribution of this
work. We proved the security of our schemes in a selective security model which captures both plaintext
and attribute hiding properties. One of our future work is to extend our schemes so that they can achieve
adaptive security.

References

1. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of
encrypted data. In: Proceedings of the 13th ACM conference on Computer and communications security.
CCS ’06, New York, NY, USA, ACM (2006) 89–98

2. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption:
Attribute-based encryption and (hierarchical) inner product encryption. In: Advances in Cryptology – EU-
ROCRYPT. (2010) 62–91

16

3. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure real-
ization. In: Public Key Cryptography. (2011) 53–70

4. Lewko, A.B., Waters, B.: New proof methods for attribute-based encryption: Achieving full security through
selective techniques. In: CRYPTO. (2012) 180–198

5. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Proceedings of the 4th
conference on Theory of cryptography. TCC’07, Berlin, Heidelberg, Springer-Verlag (2007) 535–554

6. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and
inner products. In: Proceedings of the theory and applications of cryptographic techniques 27th annual
international conference on Advances in cryptology. EUROCRYPT’08, Berlin, Heidelberg, Springer-Verlag
(2008) 146–162

7. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In: TCC. (2011) 253–273
8. Sedghi, S., Liesdonk, P., Nikova, S., Hartel, P., Jonker, W.: Searching keywords with wildcards on encrypted

data. In Garay, J., Prisco, R., eds.: Security and Cryptography for Networks. Volume 6280 of Lecture Notes
in Computer Science., Springer Berlin Heidelberg (2010) 138–153

9. Hattori, M., Hirano, T., Ito, T., Matsuda, N., Mori, T., Sakai, Y., Ohta, K.: Ciphertext-policy delegatable
hidden vector encryption and its application to searchable encryption in multi-user setting. In Chen, L., ed.:
Cryptography and Coding. Volume 7089 of Lecture Notes in Computer Science., Springer Berlin Heidelberg
(2011) 190–209

10. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Advances in Cryptology – CRYPTO.
(1984) 47–53

11. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Advances in Cryptology –
CRYPTO. (2001) 213–229

12. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: IMA Int. Conf. (2001)
360–363

13. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with constant size ciphertext. In:
EUROCRYPT05. (2005) 440–456

14. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In:
Advances in Cryptology – EUROCRYPT. (2004) 506–522

15. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P.,
Shi, H.: Searchable encryption revisited: Consistency properties, relation to anonymous ibe, and extensions.
J. Cryptology 21(3) (2008) 350–391

16. Abdalla, M., Catalano, D., Dent, A., Malone-Lee, J., Neven, G., Smart, N.: Identity-based encryption gone
wild. In Bugliesi, M., Preneel, B., Sassone, V., Wegener, I., eds.: Automata, Languages and Programming.
Volume 4052 of Lecture Notes in Computer Science., Springer Berlin Heidelberg (2006) 300–311

17. Waters, B.: Efficient identity-based encryption without random oracles. In: Advances in Cryptology –
EUROCRYPT. (2005) 114–127

18. Boneh, D., Boyen, X.: Efficient selective-id secure identity based encryption without random oracles. In:
Proceedings of Eurocrypt 2004, volume 3027 of LNCS, Springer-Verlag (2004) 223–238

19. Abdalla, M., De Caro, A., Phan, D.H.: Generalized key delegation for wildcarded identity-based and inner-
product encryption. Information Forensics and Security, IEEE Transactions on 7(6) (2012) 1695–1706

20. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In: Proceedings of the 35th
international colloquium on Automata, Languages and Programming, Part II. ICALP ’08, Berlin, Heidelberg,
Springer-Verlag (2008) 560–578

21. Iovino, V., Persiano, G.: Hidden-vector encryption with groups of prime order. In: Proceedings of the 2nd
international conference on Pairing-Based Cryptography. Pairing ’08, Berlin, Heidelberg, Springer-Verlag
(2008) 75–88

22. Blundo, C., Iovino, V., Persiano, G.: Private-key hidden vector encryption with key confidentiality. In Garay,
J., Miyaji, A., Otsuka, A., eds.: Cryptology and Network Security. Volume 5888 of Lecture Notes in Computer
Science., Springer Berlin Heidelberg (2009) 259–277

23. Park, J.H.: Efficient hidden vector encryption for conjunctive queries on encrypted data. IEEE Trans. on
Knowl. and Data Eng. 23(10) (October 2011) 1483–1497

24. Seo, J., Kobayashi, T., Ohkubo, M., Suzuki, K.: Anonymous hierarchical identity-based encryption with
constant size ciphertexts. In: Public Key Cryptography – PKC 2009. Volume 5443 of Lecture Notes in
Computer Science., Springer Berlin Heidelberg (2009) 215–234

25. Lee, K., Lee, D.H.: Improved hidden vector encryption with short ciphertexts and tokens. Des. Codes
Cryptography 58(3) (March 2011) 297–319

26. Lewko, A.B.: Tools for simulating features of composite order bilinear groups in the prime order setting. In:
Advances in Cryptology – EUROCRYPT. (2012) 318–335

17

