
# Air Pollution

Instructor: Min Wu, Kunming University of Science and Technology



### Introduction

- Currently only two real problematic classes of pollutants
  - Non-point source agricultural pollution
  - Air quality
- Difficult to control because air flows in all directions (air shed)
- Difficult to perform bioassay(生物 鉴定)
- Easier to control front end (decrease generation of polluted air) than back end (clean up polluted air)
- Like water pollution, originates in one place, impact another place (unlike soil pollution).
- Most air pollution due to use of E.



## Sources & Types of Air Pollution

- Natural Sources: Volcano, Fire, Bacteria, Plant Pollen
- Artificial Sources:
  - Stationary sources: Industry, Boiler
  - Mobile sources: Cars, Trains, Planes

#### Three Types:

- Coal Combustion (reduction): Soot, SO<sub>2</sub>
- ➢ Oil Combustion (oxidation): NOx, CHx, SO₂, CO, Pb
- Both

# Some air pollution is not regulated





Wishful thinking





Air pollution in India



Photo by R. Grippo

Policeman directing traffic in India Photo by J. Farris



悉尼于九月底遭到沙尘暴袭击,图为在沙尘笼罩下的悉尼歌剧院。

### Toxic Effects of Air Pollution

- Acute Toxicity
  - Geographical & Meteorological change
  - Accidents
- Chronic Toxicity & Disease
  - Irritative Pollutants
  - Nonirritative Pollutants
  - Metals & others
  - In food
- Low Functional Immune Status
- Carcinogenic Action
  - Lung Cancer
  - Others





俄罗斯森林大火 导致的空气污染

## Primary & Secondary Air Pollutants

- Primary Pollutants: 由污染源直接排入大气
  - A. Suspended particulates
  - B. Gasses:  $SO_2$ ,  $NO_x$ , CO,  $O_3$ ,  $CH_x$
- Secondary Pollutants:

一次污染物在大气中相互作用 与大气正常组成成分发生反应 太阳光紫外线引起光化学反应而产生

## A. Suspended particulates

### Most common, oldest problem addressed

- Trace rock from burning pulverized (压成细粉的) coal (unburnable residues)
- ➤ Fly ash from coal (contains Cd, Cu, Pb, Se, As, Hg) has high volume → control by electrostatic (静电的) precipitators (沉降)
- Carbon/ soot (煤烟) from diesel (柴油)
- Natural Sources: volcano (火山), Forests Fire, Soil particulates

# Toxicity of SP

- A. 对呼吸道黏膜的刺激和腐蚀作用
- B. 对肺细胞的腐蚀和损伤
- c. 诱发心血管病
- D. 免疫毒性
- E. 间接毒性作用
- F. 致突变作用
- G. 致癌变作用

Factors of Toxicity /

Size \

Concentration /

Component: 化学组成; 表面吸附的有毒物

#### Size:

- > TSP: Grain Diameter ≤ 100um
- > PM<sub>10</sub>: Grain Diameter≤10um
- > PM<sub>2.5</sub>: Grain Diameter ≤ 2.5um

# B. Gasses-502

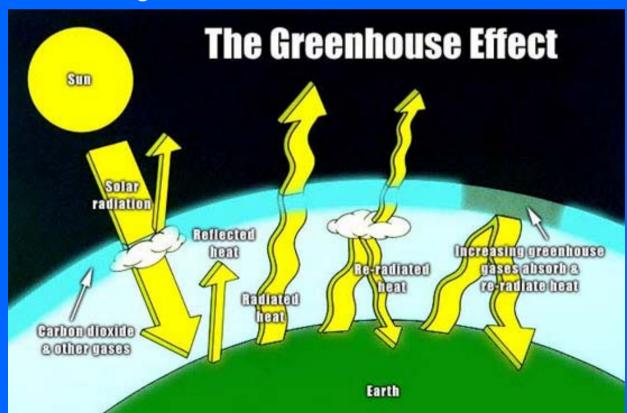
- Respiratory inhibitor (呼吸抑制剂)
- Causes mutation (突变) & Cancerization (癌变)
- Affects enzymatic (酶) action
- Plant leaf injury
- Oxidizes to  $SO_3$  (sulfur trioxide)  $\rightarrow$   $H_2SO_4$

Human health
Hydrobiology (水生生物)
Soil and buildings



### B. Gasses-NOx

#### Nitrogen oxides (NOx)


- > N<sub>2</sub>O nitric acid (ha, ha!)
- ➤ NO<sub>2</sub> nitrous oxide
- ➤ Respiratory aggravator 呼吸系统恶化
- ▶ Decreases soil pH → reduces soil micronutrient availability to plants
- $\rightarrow$  NO<sub>2</sub> + H<sub>2</sub>O = HNO<sub>3</sub> = azury (浅蓝色的) haze = smog



### B. Gasses-CO

#### Carbon oxides

- ► CO → competes with  $O_2$  binding on hemoglobin (血红蛋白) (affinity亲和力 is 200 X  $O_2$ )
- CO<sub>2</sub> dioxide = greenhouse effect



## B. Gasses-O<sub>3</sub>

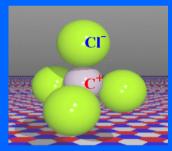
#### Oxidants (O<sub>3</sub>)

- in atmosphere → not enough
- at ground level  $\rightarrow$  too much  $\rightarrow$  comes from hydrocarbons (gasoline) +  $O_2 = O_3$
- also a respiratory aggravator

加速衰老 减低血液输氧功能 引起甲状腺功能损害 诱发肺部肿瘤和染色体畸变

### Minor Gaseous Air Pollutants

Low in direct effects, high in indirect effects


- 1. CFC's (Freon)
  - Principal refrigerant 冷冻剂 (a/c, refrigerators)
- 2. Halon 卤代烷
  - Related to CFC
  - Used in fire extinguishers







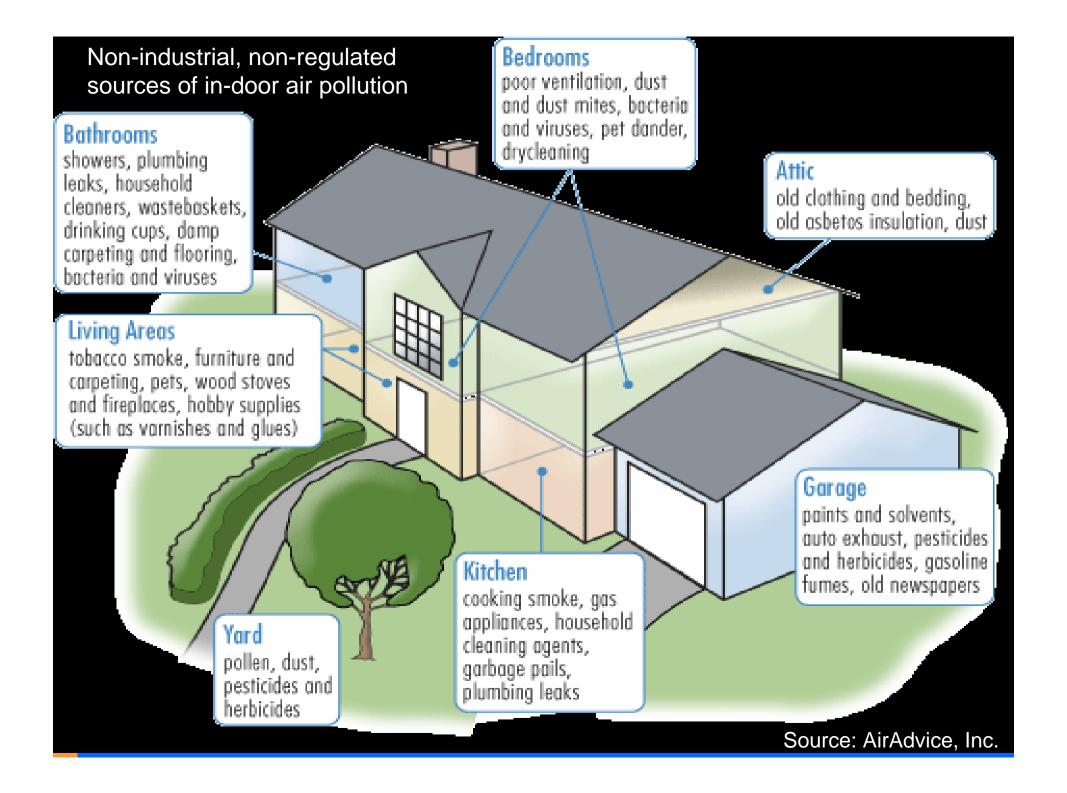
- Dry cleaner solvents (溶剂)
- Manufacturing processes



All above compounds catalyze (催化) the destruction of ozone (臭氧) - Ozone forms protective layer around earth → partially blocks UV

Recall: catalyzers participate in a reaction but are not consumed → hang around a long time and continue to reduce ozone

Therefore, if stopped using now  $\rightarrow$  good effects would take many years to appear


### Characteristics of Greenhouse Gasses

|                     | CO <sub>2</sub> | CH <sub>4</sub> | $N_2O$ | O <sub>3</sub> | CFC-11 | CFC-12  |
|---------------------|-----------------|-----------------|--------|----------------|--------|---------|
| Atm contribution    | 346             | 1.65            | 0.31   | 0.02           | 0.0002 | 0.00032 |
| Potential GH effect |                 |                 |        |                |        | 17,000  |

Note: Up to  $1970 \rightarrow CO_2$  dominated  $\rightarrow$  by 1980 dominance decreased  $\rightarrow$  by 2020  $\rightarrow$  other gasses dominate. Result in predicted increase of 0.5° to 3°C

### Indoor Air Pollutants

- □ Includes SO<sub>2</sub>, NOx, CO, CO<sub>2</sub> (coal furnace (炉), kerosene (煤油) heater)
- □ Formaldehyde(甲醛,福尔马林)
  - Common constituent of building material
  - Many health effects
    - Respiratory aggravator
    - Potential carcinogen (潜在的致癌物)



## Summary of Major Air Pollutants

- Burning fossil fuels = air pollution
- Coal → sulfur → acid rain
- Cars → NOx -→ "smog", haze

Approximately 10,000,000 premature deaths (猝死) /year world-wide are attributable to stationary and mobile air pollution sources