
Logic Synthesis based Public Key Scheme

Boaz Shahar
boaz.public.123@gmail.com

Abstract. This article proposes a method for the construction of a public key system that is based on
VLSI logic synthesis algorithms. First, we discuss the properties of VLSI logic synthesis algorithms.
Then we view them in the context of cryptographic primitives. Then we propose a public key
encryption system and finally discuss its security properties.

 1 Introduction
One drawback of a symmetric key encryption schemes is that it requires a priori communication of the
key between A and B using a secure channel.

The development of Public Key Cryptography in the 20'th century enables dropping this requirement.
The receiver B can publish an information item called a Public Key for any one including the sender A
and any potential adversary. Anyone who has the public-key can encrypt a message. The receiver B
keeps secret information for himself alone, called the Private Key. The private key enables the receiver
to decrypt the message encrypted by anyone using the public key.

A public key encryption scheme can be constructed given a trapdoor function. A trapdoor function is a
one way function for which there exists some trapdoor secret information, known to the receiver alone,
with which the receiver can invert the function.

The idea of public key cryptography and trapdoor functions was presented first by Diffie and Hellman
in 1976 ([4],[5]). In 1977, Rivest, Shamir and Adleman invented the famous RSA cryptosystem [6]. In
the RSA case, for instance, the trapdoor function is c=f (x)=xe

(mod n) where n=p*q, a
multiplication of two large prime numbers. The trapdoor is the numbers p and q, known only to the
receiver. Knowing them, enables inverting the function by the receiver, that therefore for any C can
find x.

Practical usage of the RSA and other public-key crypto systems are utilizing the principle of
Probabilistic Cryptography, suggested first by Goldwasser and Micali [7] and OAEP that was proposed
by Bellare and Rogaway [8] and subsequently standardized in PKCS #1 and RFC 2437.

Although several public key systems have been proposed, whose security relies on different
computational problems, the most common ones are based on the factorization problem (e.g. RSA) or
the discrete log problem (El Gamal, ECC).

Thus, the motivation for finding a one way trapdoor functions is clear. In this article, we will try to
show a systematic way to compose a one way trapdoor function by utilizing the properties of VLSI
logic synthesis algorithms.

05/12/14 1

 2 VLSI Logic Synthesis
VLSI Logic Synthesis is a widely used process that is a necessary phase in the design and
manufacturing of VLSI devices, and FPGA images. During the Logic Synthesis phase, a logic design
defined by boolean equations is converted to an electrical implementation that uses boolean gates, like
NAND, NOR, OR, AND [1].

The Boolean Equation description of a given boolean function is usually called RTL (Register Transfer
Level), and is written in a dedicated language (e.g. VHDL , Verilog are common in the industry).

The Logic Synthesis process is using a Logic Synthesis Algorithm that converts the RTL representation
of a given function to a network of logic gates – the Logic Network, that represents the same function.
The logic synthesis phase is implemented by a computer program called a synthesis tool. Synthesis
tools are widely available in the commercial market from variety of vendors [2].

Figure 1: The Synthesis process generates Logic Network representation of the function f(x)

We will use the notation of f(x) to signify a binary function with the vector x as its domain, and by the
notation G[f(x)] to signify the Gate Level representation of f(x), that is the outcome of a synthesis
algorithm operated on f(x), as depicted in figure 1.

 2.1 Multi level logic minimization

A certain boolean function has an infinite number of gate level representations. Of those, there is a
single one that is the smallest graph that represents f(x). The problem of finding this minimum is called
circuit minimization. The general problem of circuit minimization is believed to be intractable, in the
sense that there is no polynomial time algorithm that can minimize the logic network. However, there
are variety of heuristics algorithm that find different local minimum of the network. As a result,
multiple runs of the synthesis tool yields a different result for each run.

At the circuit minimization phase of the logic synthesis, constant values embedded in the function f(x)
disappear, and the information associated with them is lost, and cannot be discovered from the network
itself. The minimization phase of the logic synthesis eliminates all constant values and replaces gates
associated with those values or exclude them from the network all together. As a result, it is impossible
to gather any information about the original values of those constants [1].

 3 Logic Synthesis Network as a One Way Function
In the this section, we will see why a synthesized network of logic gates may be refereed to as a One
Way Function in the cryptographic sense.

In order to construct a Public Key Encryption system, one needs to find a one way function which is a
bijection and that has a trapdoor. We will see how such a function can be constructed using Logic
Synthesis algorithms and Gate level representation of a binary function. A logic network can be

05/12/14 2

RTL
Representation
 of function f(x)

Synthesis
Process

Gate
Level
Representation of
f(x) - G[f(x)]

referred as a directed graph that its nodes are logical gates, mainly NAND, AND, NOT and OR, and its
branches are binary functions of the inputs. A logic network can implement any desired logic function.
Although in most cases the gates are electronic elements, here we are interested only in their behavioral
characteristics.

 3.1 Inversion of Logic network in special cases

in certain cases it is possible to invert a logic network easily: Those are the cases where the function
f(x) represented by G[f(x)] is known and has a known inverse function f −1

(x) . In those cases, one
can simply operate the synthesis algorithm to f −1

(x) and thus constructs G [f −1
(x)] . If, for

instance, we are given a logic network G[f(x)] while it is known that f(x) = x+4, knowing that
f −1

(x)=x−4 we can easily construct G [f −1
(x)] by direct application of the logic synthesis

algorithm to f −1
(x)=x−4 . Nevertheless, even in the cases where G[f(x)] is invertible, the inversion

process is based on a priory knowledge of f −1
(x) .

 3.2 Logic network inversion in the general case is not feasible

A logic network cannot be inverted based on the network graph itself, in general. Given a logic network
G[f(x)], it is not known how to invert it in a polynomial time if f −1

(x) is not known. That is, given a
binary function f(x), and a gate level network G[f(x)] that represents f(x), there is no algorithm that can
construct G [f −1

(x)] from the network G[f(x)] itself in polynomial time, if f −1
(x) is not known a

priory. The only methodical algorithm known is the construction of a truth table of f −1
(x) , covering

all its possible values, and operate the synthesis algorithm over the inverted truth table. However, since
a truth table covers all possible inputs, a logic network G[f(x)] with, say, 128 binary inputs and 128
outputs would require a truth table table with a size of 2128 to be constructed. The complexity of this
approach is exponential in the size of the input vector.

The main reason for the absence of an inversion algorithm that is based on the graph of the logic
network itself is as follows: Except from the logic “NOT” gate, all basic binary logic gates are one
way functions. From the output of any certain logic gate, it is impossible, in the general case, to
reconstruct its inputs. Furthermore, for most of the logic gates, the inverse function is not existing at
all, as they map more than one input to the same value. Therefore, it is impossible to construct an
algorithm that will “opposite the direction” of the graph.

 3.3 Preserving the “one wayness” properties of cryptographic primitives

In this section we will see why a logic network representation of one way function preserves the one
way property. A cryptographic one way function (OWF), is, by definition, a function that is “easy” to
evaluate but “hard” to invert. The terms “easy” and “hard” are used in order to express the fact that
there is a complexity gap between the effort required for the evaluation of the function, to the effort
required to evaluate its inverse. For example, if f(x) can be calculated in polynomial time but f −1

(x)

can be calculated only in exponential time, or there is not known way to evaluate f −1
(x) in

polynomial time, than f(x) is a one way function.

Lets say that we are given a one way function f(x). Since the inverse of the function f −1
(x) cannot

05/12/14 3

be evaluated at polynomial time, as explained in section 3.2, the logic network G[f(x)] that represents
this function is also one way function in the sense that it cannot be inverted in polynomial time.

Example: Lets look at the cryptographic secure hash function SHA-256 [3]. This function is believed
to be a one way function. Lets look at its gate level representation, G[SHA-256(x)] when the input x is
a 512 bit vector, and the output is 256 bit vector. Clearly, G[SHA-256(x)] cannot be inverted in
polynomial time based on the graph of the logic network. If it would possible to invert it, we could
impose a successful preimage attack on SHA-256 as follows:

• Operate a logic synthesis algorithm on SHA-256, and construct the logic network G[SHA-
256(x)]

• Invert the logic network in a polynomial time, getting the graph G [f −1
(x)]

• Operate the inverted logic network on any image of SHA-256(x), getting an input x' s.t. SHA-
256(x') = SHA-256(x), thus executing a successful pre-image attack.

Since SHA-256 is believed to be pre image resistance, this cannot be done, and thus the one-wayness
property preserved by the logic network G{SHA-256(x)].

 4 Logic Synthesis of AES with a given key yields a one way
Function

One of the most well known pseudo random permutations (PRP) is the AES-128 block cipher. The
function C=AES-128(k,m) is invertible when the 128 bit key K is known. However, when the key is
not known explicitly, the function C=AES(k,m) is indistinguishable from random function (as a PRP)
and cannot be inverted in polynomial time, that is, its a one way function.

 Consider the logic network that is generated by logic synthesis process that is operated on AES-
128(k,m) when instead of using the key K as 128 bits input to the function, we use it as a constant
random variable that is embedded in the logic network. The effect of the substitution of a random
constant instead of the key K input is that AES-128 that is naturally a function of 256 bit (128 bit key
and 128 bit message) becomes a 128 bit one way function (a function of the message m). The result,

C=G [AES(m)] has 128 bit input vector (m) and 128 bit output (the vector C). The key is
embedded in the network and due to the non reversibility of C=G [AES(m)] cannot be recovered
but only by the one that operated the synthesis algorithm and choose the random key K. This is shown
in Figure 2 below:

05/12/14 4

Figure 2: The generation of the logic network that represents AES(m)

The process of logic minimization, which is a part of the synthesis process, cancels any constant in the
network and modifies the subsequent logic component so that any information about the constant K
disappears. Furthermore, the logic minimization impose by the availability of a constant in the network
spreads along the branches of the graph, cancels branches and nodes. And shrinks the network.

 4.1 Improving G1[AES(m)] immunity against invertability

Our target is to construct a trapdoor function by a logic synthesis of the AES cipher. For AES
specifically, the first step is “Add Round Key”, a logical operation that XOR all key bits with the
message bits. The message is inverted where the key k bits equal “1”, and remains un - changed where
the bits of the key k are “0”.
Since logic NOT is a reversible operation (As NOT is the only invertible logic function), inspecting the
network G1[AES(m)] defined in the previous section may yield some information about the bits of the
key. The same statement is true also for the last step of AES, where the last round key is added as last
step before the encrypted result is obtained.
In order to completely hide the bits of the key, Kr , we add two 128 bits random numbers, Ir and Fr

(initial random and final random respectively). The resulting encryption and decryption equations get
the following form:

(1) C '=AES (K r ,(m+ I r))+F r

(2) m=AES−1
(K r ,(C ' +Fr))+ Ir

Where “+” stands for bit wise addition modulo 2. The improved synthesized network, G2[AES(m)] is
generated by the process that described in figure 3 below:

05/12/14 5

AES

m k

C=AES(k,m)

Logic
SynthesisSet k=r

128 G
1
[AES(m)]

m

C=AES(m)

PRNG

Figure 3: The generation of G2[AES(m)]

The logic network G2[AES(m)] represents equation (1) above. It has m, a 128 bit message as input, and
it produces C', 128 bit number that is the encrypted value of m, as given by equation (1).

The decryption and recovery of m out of C' is done by calculating equation (2). In order to calculate
equation (2), one need to know the random numbers Kr, I r and Fr. Assuming that entity A generates
G2[AES(m)] by the process shown in figure 3, and publish the logic network G2[AES(m)] , than entity
B can use it to encrypt m.
Since entity B, or any other entity except from A does not know the secrets Kr, Ir and Fr , nobody
except A can decrypt the message m. Note that since G2[AES(m)] represents an AES cipher, knowing
C' , a potential adversary cannot reproduce m, without knowing the key Kr.

An adversary may encrypt a lot of values of m using the public logic network G2[AES(m)] . However,
another property of the AES cipher is that knowing C' and m the adversary cannot recover the key Kr.
Here the Adversary task is even harder, because he has also to recover Ir and Fr .

 This leads to the following algorithm for the construction of a Public key system:

05/12/14 6

AES

Kr

Ir Fr

m C'

Logic
Synthesis

G
2
[AES(m)]m C'

 5 Public Key System Construction

 5.1 Key Generation

1. Select three 128 bit random numbers K r , Ir , F r

2. Write the RTL description of C '=AES (K r ,(m+ I r))+F r Where m is 128 bit binary input
vector of the function, and C' is 128 binary output vector, and “+” stands for bit wise addition
modulo 2

3. Synthesize C '=AES (K r ,(m+ I r))+F r to get G2[AES(m)] as described in Figure 3 above .
G2[AES(m)] is a logic network of 128 bit input (the binary vector m) and 128 bit output (the
binary vector C'). The logic network G2[AES(m)] has 128 signals as input and 128 signals as
outputs

4. G2[AES(m)] is the Public Key

5. K r , Ir ,F r is the private key

 5.2 Encryption

1. Select a message m, a 128 binary vector

2. Operate G2[AES(m)] and generate C'

3. C' is the encrypted message

 5.3 Decryption

1. Calculate the original message m by using equation (2) above: m=AES−1
(K r ,(C ' +Fr))+ Ir

and using the standard AES algorithm

Note that decryption can be done only by the generator of the logic network G2[AES(m)] , because he
is the only one who has the values of K r , Ir ,F r .

 6 Security Discussion
 A potential adversary may attack the above scheme by one of two ways:

• Either by trying to recover m from C'. This, if succeeded, breaks AES security because it is
actually a successful Cipher Text attack on AES, as it detects m from C without knowing the
key

• Trying to recover the key Kr from different values of m and C' that the adversary can encrypt
as he knows G2[AES(m)]. This is actually a CPA on AES, as it tries to detect the key by
applying the encryption to chosen plain text m and inspection of C'. So, relying on AES
immunity to CPA, this attack cannot succeed.

Another way of detecting m or the key K is to try to reverse the logic network, but as explained in

05/12/14 7

section 2 above, there is not known way how to do it in a polynomial time.

 7 Conclusions
We presented a scheme for the construction of a public key encryption scheme that is based on Gate
Level Synthesis of the AES block cipher. In this public key scheme, the logic network represents the
public key and the random AES key and additional two random numbers compose the private key.

As a matter of fact, in addition to AES, any Pseudo Random Permutation (PRP) can be used by the
above scheme in a similar manner, for example, DES, 3DES etc.

 8 References
[1] Synthesis and Optimization of Digital Circuits, by Giovanni De Micheli, ISBN 0-07-016333-2.

[2] “Logic Synthesis Using Synopsys”, textbook, Pran Kurup, Taher Abbasi, Kluwer Academic
Publication

[3] FIPS PUB 180-4 “Secure Hash Standard” March 2012 , NIST,
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[4] W. Diffie and M. E. Hellman. Multiuser cryptographic techniques. In Proc. AFIPS 1976 National
Computer Conference, pages 109–112, Montvale, N.J., 1976. AFIPS.

[5] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inform. Theory, IT-
22:644– 654, November 1976.

[6] Rivest, R.; A. Shamir; L. Adleman (1978). "A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems". Communications of the ACM February 1978

[7] Shafi Goldwasser and Silvio Micali, Probabilistic Encryption, Special issue of Journal of Computer
and Systems Sciences, Vol. 28, No. 2, pages 270-299, April 1984

[8]M. Bellare, P. Rogaway. Optimal Asymmetric Encryption -- How to encrypt with RSA. Extended
abstract in Advances in Cryptology - Eurocrypt '94 Proceedings, Lecture Notes in Computer Science
Vol. 950, A. De Santis ed, Springer-Verlag, 1995. full version (pdf)

05/12/14 8

http://en.wikipedia.org/wiki/Special:BookSources/0070163332
http://www-cse.ucsd.edu/users/mihir/papers/oae.pdf
http://en.wikipedia.org/wiki/Springer-Verlag
http://en.wikipedia.org/wiki/Eurocrypt
http://en.wikipedia.org/wiki/Phillip_Rogaway
http://en.wikipedia.org/wiki/Mihir_Bellare
http://theory.lcs.mit.edu/~cis/pubs/shafi/1984-jcss.pdf
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

	1 Introduction
	2 VLSI Logic Synthesis
	2.1 Multi level logic minimization

	3 Logic Synthesis Network as a One Way Function
	3.1 Inversion of Logic network in special cases
	3.2 Logic network inversion in the general case is not feasible
	3.3 Preserving the “one wayness” properties of cryptographic primitives

	4 Logic Synthesis of AES with a given key yields a one way Function
	4.1 Improving G1[AES(m)] immunity against invertability

	5 Public Key System Construction
	5.1 Key Generation
	5.2 Encryption
	5.3 Decryption

	6 Security Discussion
	7 Conclusions
	8 References

